999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

低植酸水稻種質資源篩選、遺傳生理調控與環境生態適應性研究進展

2019-03-22 03:14:00蘇達吳良泉renRasmussen周廬建程方民
中國水稻科學 2019年2期
關鍵詞:水稻

蘇達 吳良泉 S?ren K Rasmussen 周廬建 程方民,*

?

低植酸水稻種質資源篩選、遺傳生理調控與環境生態適應性研究進展

蘇達1,2吳良泉2S?ren K Rasmussen3周廬建4程方民4,*

(1福建農林大學 作物科學學院 作物遺傳育種與綜合利用教育部重點實驗室, 福州 350002;2福建農林大學 國際鎂營養研究所, 福州 350002;3哥本哈根大學 植物與環境科學系, 丹麥 哥本哈根;4浙江大學 農業與生物技術學院, 杭州 310058;*通訊聯系人, E-mail: chengfm@zju.edu.cn)

提高或維持水稻產量的同時,提高稻米品質已成為目前水稻育種的首要目標之一。其中,通過降低籽粒中植酸等抗營養因子,增加鋅、鐵生物有效性以提升水稻營養品質,是目前水稻品質改良的一個重要方向。本文主要綜述了水稻籽粒中植酸合成的代謝路徑、低植酸水稻的篩選及相關功能基因的遺傳特點、植酸生理代謝的調控網絡、低植酸水稻農藝性狀劣變和生態適應性降低的生理原因、籽粒植酸合成的環境調控效應等相關研究進展。可為低植酸水稻品質改良以及栽培調優提供借鑒。

植酸;水稻;籽粒品質;遺傳調控;生態效應

植酸(C6H18O24P6,IP6,六磷酸肌醇)是作物籽粒中磷的最主要貯存形式,約占籽粒總磷含量的60%~90%[1]。植酸與籽粒其他內含物(如淀粉、蛋白質和脂類等)一起隨灌漿充實逐漸積累。在此過程中,植酸可與籽粒中的礦質離子(Zn2+、Fe2+、Ca2+、Mg2+等)以及活性蛋白絡合,形成難溶性的植酸鹽(phytin),并以圓球狀復合晶體(globoid crystal)的形式貯存于籽粒中[2]。由于人和單胃動物消化系統中缺乏分解植酸的內源植酸酶,因此,作物籽粒中植酸(鹽)的存在大幅降低了有關礦質營養元素(尤其是鋅和鐵)的生物有效性以及人體對活性蛋白和氨基酸的有效吸收[3, 4]。因此,大量攝取植酸含量相對較高的谷物和豆類,被認為是發展中國家人群鐵、鋅缺乏的主要原因。同時,在畜牧業生產中,不能被單胃動物有效吸收的植酸磷,70%以上以糞便形式排泄到環境,也加劇了土壤污染和水體富營養化[1, 5]。

水稻是我國重要的糧食作物,在傳統高產育種和優化栽培體系的基礎上,進一步挖掘其品質潛力,是水稻品質育種的主要目標之一。其中,培育和篩選低植酸種質資源是目前解決水稻籽粒植酸等抗營養問題以及谷物營養品質改良的重要手段,也是保障鋅、鐵生物強化,磷資源可持續利用以及農業生態保護的有效措施[1, 6, 7]。為此,本文主要綜述了植酸的合成代謝及分子遺傳特點、植酸合成的生理調控網絡、低植酸水稻的農藝性狀和環境生態適應性表現等內容,相關研究進展可為低植酸水稻品質改良以及相應的栽培調控提供借鑒。

1 植酸合成的代謝路徑及其關鍵酶

植酸的合成和代謝路徑主要分為三個階段:肌醇合成、多磷酸肌醇合成以及植酸合成后從胞質向液泡的轉運(圖1)。1)肌醇(-inositol)合成階段。肌醇-3-磷酸合成酶(-inositol-3-phosphate synthase,MIPS)以NADH(Nicotinamide adenine dinu cleotide)為輔酶,將光合產物葡萄糖-6-磷酸(Glucose-6-phosphate,G-6-P)轉化為肌醇-3-單磷酸[Ins(3)P1][8,9]。肌醇-3-磷酸隨后在肌醇-3-磷酸水解酶[Ins(3)P1- monophosphatase,IMP]的催化下水解肌醇環上的磷酸基團,生成肌醇。2)多磷酸肌醇的合成階段。可分為脂獨立途徑(磷酸肌醇順序磷酸化路徑,lipid-independent)和脂依賴途徑(磷脂酰肌醇代謝路徑,lipid-dependent)。兩條代謝途徑的最初產物均為肌醇,終產物均為1,3,4,5,6-五磷酸肌醇[Ins(1,3,4,5,6)P5],區別在于代謝分支路徑中是否會有磷酸酯的出現。其中,脂獨立途徑中,肌醇在肌醇激酶(-inositol kinase,MIK)的催化下重新生成肌醇-3-磷酸,之后在磷酸甘油酸激酶(phosphoglycerate kinase,PGK)和多磷酸肌醇激酶(如多磷酸-肌醇5,6-激酶,Inositol 1,3,4-trisphosphate 5/6-kinase)催化下,逐漸順序磷酸化并最終合成植酸。前人研究多表明,此途徑是作物籽粒植酸合成的主要路徑。而在脂依賴途徑中,肌醇首先在磷脂酰肌醇合酶(phosphatidylinositol synthase)的催化下合成磷脂酰肌醇(phosphatidylinositol),隨后由磷酸磷脂酶C(Phospholipase C, PLC)水解生成肌醇-1,4,5-三磷酸[-inositol-1,4,5-trisphosphate,Ins(1,4,5)P3],繼而進一步磷酸化生成植酸。因此,脂依賴途徑中有磷脂酰肌醇以及肌醇-1,4,5-三磷酸等第二信使參與。與脂獨立途徑相比,脂依賴途徑對植物籽粒器官植酸含量的影響較小。上述兩條代謝路徑的共同終產物均為1,3,4,5,6-五磷酸肌醇,其后在1,3,4,5,6-5-肌醇-2-磷酸激酶[Ins(1,3,4,5,6) P5-2-kinase]的催化下生成植酸[10];3)植酸合成后的轉運路徑。胞質中合成的植酸,需經ABC跨膜轉運蛋白(ATP-binding cassette)家族中MRP蛋白(multidrug resistance-associated protein,MRP)的運輸作用,將胞質中合成的植酸最終轉移至液泡中。此外,真核細胞植酸還可在六磷酸肌醇激酶的催化下繼續磷酸化生成高階磷酸肌醇鹽(如7、8-磷酸肌醇),參與磷和ATP能量代謝等生理過程的調節[8]。同時,在籽粒萌發過程中,植酸可在內源植酸酶或磷酸化酶的催化下去磷酸化,重新降解為不同價位的磷酸肌醇(如IP1、IP2、IP3、IP4、IP5)和肌醇。總之,植酸合成主要有以下三個特點:1)代謝途徑同時進行,不同代謝途徑之間相互協調和補充[11-14];2)反應過程非線性,磷酸化和去磷酸化同時進行;3)植酸合成過程中的關鍵酶大多數具有多功能性特性,不局限于作用某一特定底物[15]。

G-6-P,葡萄糖-6-磷酸; Inositol,肌醇;Ins(3)P1, 肌醇-3-單磷酸;Ins(3,4)P2,肌醇-3,4-二磷酸;Ins(3,4,6)P3,肌醇-3,4-6-三磷酸;Ins(3,4,5,6)P4,肌醇-3,4-5-6-四磷酸;Ptd Ins,磷酯酰肌醇;PtdIns(4)P,磷脂酰肌醇-4-單磷酸;PtdIns(4,5)P2,磷脂酰肌醇4,5二磷酸;Ins(1,4,5)P3,肌醇1,4,5三磷酸;Ins(1,4,5,6)P4,肌醇1,4,5,6四磷酸;Ins(1,3,4,5,6)P5,肌醇1-3,4-5-6-五磷酸;Ins(1,2,3,4,5,6)P6,肌醇1-2-3-4-5-6-六磷酸(植酸)。

[1]-肌醇-3-磷酸合成酶;[2]-肌醇-3-磷酸水解酶;[3]-肌醇激酶;[4]-磷酸甘油酸激酶;[5]-多磷酸-肌醇5,6-激酶;[6]-1,3,4,5,6-5-肌醇-2-磷酸激酶;[7]-磷脂酰肌醇合成酶;[8]-磷酸磷脂酶C;[9]-肌醇1,4,5-三磷酸激酶;[10]-ABC轉運蛋白;MRP轉運蛋白;[11]-六磷酸肌醇激酶;[12]-植酸酶或磷酸酶。

[1], MIPS,-inositol-3-phosphate synthase; [2], Ins(3)P1-monophosphatase IMP,-inositol-phosphate monophosphatase; [3], MIK,-inositol- kinase; [4], PGK,phosphoglycerate kinase; [5], ITP5/6K,inositol 1,3,4-triphosphate 5/6-kinase; [6], IPK1,inositol 1,3,4,5,6-pentakisphosphate 2-kinase; [7], PtdIns Synthase,phosphatidy linositol synthase; [8], Phospholipase C; [9], Inositol 1,4,5-tris-phosphate kinase; [10], ABC transporter; MRP transporter; [11], InsP6 Kinase; [12], Phytases or phosphatase.

圖1 植酸的生物合成

Fig. 1. Biosynthetic pathways of phytic acid.

2 植酸合成過程的重要功能基因以及低植酸水稻種質篩選

培育低植酸新品種是提高作物籽粒微營養及生物有效性的一條有效途徑。近年來隨著分子生物技術的發展,在傳統理化誘變的基礎上,利用基因操作已成為作物低植酸突變材料創建的常用手段之一。目前,國內外已獲得大麥、玉米、水稻和大豆等作物的低植酸突變材料,其籽粒植酸下降30%~95%[1, 4, 9, 14, 16-18]。人體和動物試驗結果均表明,低植酸作物鐵、鈣的利用率增加了30%~50%,鋅的有效性增幅高達76%[1, 19-22]。其中,通過基因工程技術對植酸合成的限速酶基因進行干擾或敲除,籽粒植酸含量降低了14.9%~75%[23-26]。Ali等[27]和Kuwano等[23]在前人利用組成型表達啟動子進行低植酸作物選育的基礎上,進一步利用籽粒特異性啟動子對()進行RNA干擾,轉基因后代中籽粒的表達量為原來的21.8%,籽粒植酸含量降低了68%~75%,特異性啟動子的選擇有效避免了相關基因突變對營養器官中磷代謝的干擾。除外,近年來對參與植酸代謝過程其他基因進行突變,也正不斷豐富低植酸的突變類型。據Kim等[28]報道,通過EMS篩選出的(肌醇激酶基因)型低植酸突變水稻,籽粒植酸含量降低了34%~75%,這與通過基因工程篩選出的型低植酸突變體的植酸降幅相近(37.0%~50.7%)[25, 28]。對以及()等基因進行突變或干擾,也篩選出相應的低植酸突變材料[29],籽粒植酸降幅分別可達39%~71%和46%~68%[29-31]。雖然目前對PGK的功能研究相對較少,但研究者在細菌中觀察到PGK在ATP參與下會催化生成2,3-二磷酸甘油酸鹽,此物質會抑制肌醇多磷酸的產生,這可能是基因缺失引起植物細胞中肌醇單磷酸鹽增加以及植酸含量降低的一個原因。IPK1催化植酸合成的最后一步。Ali等[32]利用特異性啟動子()對基因進行RNA干擾,轉基因后代中籽粒基因表達量降至原來的26.0%,植酸含量也同步降低了69%。基因的突變一般并不會影響低價肌醇磷酸的合成,考慮到肌醇、磷脂酰肌醇以及低價磷酸肌醇(IP1-3)在作物生長發育過程中參與了多個重要生理代謝過程,而高價磷酸肌醇,如4-磷酸肌醇或5-磷酸肌醇具有與植酸相似的生理功能,因此對該基因進行突變后產生的低植酸突變材料,其農藝性狀的劣變趨勢比突變小。同時,雖然IMP在植酸合成中的功能現已基本明確,主要參與催化肌醇的合成,但迄今尚未獲得此基因突變的低植酸水稻材料。

此外,對參與植酸合成后從胞質向液泡轉運/分儲的轉運蛋白(如MRP)的相關基因進行突變,也已在不同主栽糧食作物中篩選出相應的低植酸突變材料,如擬南芥[33]、水稻[34, 35]、豆類[36, 37]、玉米[38-40]和小麥[41, 42]等。由于植酸合成過程中存在肌醇回補路徑[43, 44],因此,MRP蛋白可能充當了植酸在不同器官和組織中相互交流的媒介。Mitsuhashi等[43]在擬南芥中發現,IMP催化產生的肌醇在肌醇轉運蛋白的作用下從胚乳轉移到胚中參與肌醇順序磷酸化,這一過程也受到MRP蛋白的調控。利用T-DNA插入技術對水稻MRP基因進行突變,籽粒植酸降幅可達90%[45]。由于MRP同時還參與作物穎花發育、激素調控、信號代謝、氧化脅迫響應等多個生理過程[46, 47],該基因的突變還會影響除籽粒植酸合成外的其他生理過程,如突變后擬南芥對激素調控的響應變得更為敏感[33]。MRP蛋白還可以通過與谷胱甘肽偶聯參與重金屬的抗性表達,對該基因進行突變后,小麥根系對鎘脅迫的敏感度增加,同時還改變了籽粒中礦質元素的空間分布以及鐵離子的再運轉[41]。基于MRP酶的多功能性,此基因的突變可能是導致水稻、小麥等作物的生長發育(如籽粒灌漿、營養器官的形態建成)及農藝性狀劣變(粒重降低,萌發延遲,胚芽鞘生長緩慢,感病性增強)的原因之一。同時,由于不同作物中MRP同源基因組成/功能有所差異,型低植酸突變體的農藝性狀在不同作物中的表現有所不同。水稻中多表現為農藝性狀劣變的趨勢,而豆科作物由于不同基因的同工型之間表現為一定程度的功能互補(如同工型在一定程度上可補償缺失對營養器官中磷代謝造成的影響,而不參與籽粒中植酸合成),因此在一定程度上補償了突變后造成的農藝性狀劣變的多效性[21, 37, 48]。前人研究表明型低植酸大豆籽粒中肌醇含量表現為增加[49],而()三基因突變后,肌醇含量變化不顯著,推測可能與位點突變補償了突變后肌醇的降低有關,對型低植酸大豆的轉錄譜分析也表明,基因突變促進植酸水解生成肌醇/磷酸肌醇[50],說明型低植酸突變體中肌醇和磷酸肌醇中間產物含量的增加和植酸的降解有關。但也有觀點認為,沉默后肌醇含量增加,可能與植酸(或肌醇、磷酸肌醇)減少后通過反饋調節激活肌醇轉運子相關基因的表達有關[51]。因此,關于基因突變后降低植酸積累的生理原因還有待進一步研究。除MRP轉運蛋白外,研究者通過對已篩選出的低植酸突變體-Z9B-1和-MH86-1的突變位點進行定位分析,結果表明硫酸鹽轉運蛋白(sulfate transporter,sultr3;3)酶基因突變也會顯著影響水稻籽粒植酸的合成。研究表明在大麥、水稻和擬南芥中對;基因進行突變,籽粒植酸降幅可達45%,同時籽粒總磷的含量也會顯著降低[52-56],這種植酸磷和總磷同步降低的低植酸類型是未來低植酸作物選育的一個新目標。此外,Zhang等[57]對玉米轉錄譜分析表明,除上述功能基因直接參與植酸合成外,還有三個候選基因可能也參與了植酸的合成,包括(編碼磷酸肌醇合成相關酶基因)、(參與磷酸肌醇在不同器官中的轉運)和(參與磷酸肌醇向液泡轉運),但其同源基因在水稻中尚未見相關報道,這可能是未來水稻植酸合成相關基因克隆以及相應低植酸突變篩選的一個新方向。

根據水稻籽粒中植酸磷、無機磷和總磷含量的變化特點,可將不同低植酸突變體分為4種類型(表1):1)類低植酸突變。該類低植酸突變體的籽粒植酸磷變化特點表現為籽粒植酸含量明顯降低的同時,無機磷含量等摩爾增加,而不同價位的磷酸肌醇和籽粒總磷含量保持不變。類低植酸突變體通常是由于植酸合成代謝路徑中作用于肌醇供應階段(從葡萄糖-6-磷酸到三磷酸肌醇合成)的相關功能基因發生突變所引起的(如和等);2)類低植酸突變。該類低植酸突變體籽粒植酸含量明顯下降,而籽粒中無機磷和其他形態的磷酸肌醇(如IP1~IP5)均有所增加,總磷含量保持不變。類低植酸突變體多是由多磷酸肌醇磷酸化環節的重要功能基因發生突變所引起的(如、、和等),籽粒植酸含量的降幅一般小于類低植酸突變;3)類低植酸突變。主要是肌醇激酶(MIK)基因發生突變所引起,其籽粒植酸磷和肌醇含量的變化特點表現為籽粒植酸含量明顯下降,肌醇含量也顯著降低。與和型低植酸突變有所不同,類低植酸突變體的籽粒總磷含量也會隨籽粒植酸含量的降低而發生明顯改變;4)其他類低植酸突變。此類突變相關基因通常與植酸在植物不同組織中的轉運分配有關。如ABC轉運子家族中MRP蛋白以及硫酸鹽轉運蛋白(sultr3;3)基因(表1)。其中,基因突變所導致的籽粒植酸磷、總磷含量變化特征與類低植酸突變體相似,因而也有研究將其劃歸為類低植酸突變體。而sultr3;3酶基因突變可引起籽粒植酸磷和總磷含量的同步下降,其籽粒磷組分變化與突變類型不一致。

3 植酸生理代謝的調控網絡

明確植酸合成代謝的調控網絡,并建立起植酸代謝與其他生理過程之間的聯系,對于籽粒植酸積累的調控、低植酸“優質種性”的發揮具有重要的意義。研究表明植酸合成與糖代謝、信號轉導[Ca2+和Ins(1,4,5)-P3]、激素調控、肌醇/磷酸肌醇代謝、ROS響應密切相關。例如,型低植酸作物降低籽粒植酸含量的同時,還影響了糖代謝[64]。Edwards等[65]通過QTL定位分析表明,水稻籽粒植酸和堊白形成相關基因高度連鎖,推測植酸含量降低是水稻堊白率增加的原因之一。Zhou等[66]分析低植酸水稻(9311-)及其野生對照(9311)的萌發生理差異發現,低植酸水稻籽粒中Ins(1,4,5)-P3升高抑制了ROS活性(SOD、CAT、POD、NOX和APX)。Redekar等[51]對低植酸大豆發育籽粒的轉錄譜分析表明,在發育籽粒的不同階段,(低植酸基因型,單基因突變)和1MWT(野生對照基因型)相比共有250個差異表達基因。而(,三基因突變)與3MWT(野生對照)相比,差異表達的基因增加到4000個。同時,低植酸突變體與其野生對照在肌醇代謝、磷酸肌醇代謝、激素信號代謝(如auxin-ABA信號,肌醇-生長素信號)均表現出顯著差異。對大豆和玉米的植酸代謝研究表明,植酸代謝相關基因的表達同時受到轉錄因子的調控,如(調控逆境脅迫和激素響應)、(參與ABA信號轉導、寡聚糖合成以及鈣調蛋白結合轉錄激活因子表達)、、和等[50, 51, 57]。Zhang等[57]用系統生物學方法,利用轉錄組測序(RNA-Seq)以及小RNA測序(microRNA-Seq)對不同植酸遺傳背景玉米(Qi319,低植酸基因型;B73,高植酸基因型)進行轉錄表達分析,發現低植酸突變體和野生對照基因型之間差異最大的基因為和,這與IPs含量的變化一致。對參與植酸合成的代謝網絡進行分析表明,在植酸和激素關系上,磷酸肌醇合成路徑和赤霉素(GA)合成路徑之間通過泛素化途徑相關聯。而在植酸與信號代謝上,Ca2+信號路徑是植酸和其他代謝路徑之間的橋梁。在植酸和碳水化合物代謝上,植酸(磷酸肌醇)轉運相關基因與碳水化合物轉運代謝密切相關。此外,、乙烯響應相關轉錄因子(參與初級和次級代謝調控)、以及(參與調控作物生長發育,逆境響應等),是突變體及其野生對照比較中表達差異最顯著的轉錄因子。Redekar等[50]在低植酸大豆中的轉錄譜分析表明,和相比,肌醇轉運子相關基因都表現為顯著上調表達,推測兩種突變類型均誘導了相同的信號代謝。明確植酸代謝和調控的網絡聯系,為今后利用栽培調優或外源調控效應降低籽粒植酸積累具有重要的借鑒意義,相關轉錄因子的發現也為未來低植酸品種選育提供了新的研究思路。

4 低植酸水稻的農藝性狀和環境生態適應性表現

低植酸作物在增加籽粒鋅、鐵生物有效性的同時,農藝性狀卻表現出不同程度的劣變特征[60, 67, 68],如籽粒活性、發育、萌發率、出苗率或花粉育性降低,灌漿充實不暢,籽粒充實度下降,易早衰,營養器官生長緩慢,花期及成熟延遲等[43, 67, 69, 70],并最終導致產量降低[1, 46, 71, 72]。且籽粒植酸的降幅與農藝性狀劣變程度還表現出正相關趨勢,即籽粒植酸降幅越大,其灌漿充實度和產量水平的劣變趨勢就越明顯[9, 30, 67, 68, 73]。低植酸水稻籽粒植酸降幅從35%增加到63.6%時,對應產量降幅從12.5%上升至25.6%。籽粒植酸降幅超過70%時,農藝性狀劣變的多效性開始加劇。對植酸降幅90%的低植酸大麥(-M955)進行轉錄分析表明,在發育籽粒的信號代謝、激素代謝(細胞分裂素、乙烯)、碳水化合物轉運和合成代謝路徑中,相關酶基因的表達量均表現出顯著降低的趨勢[74]。當籽粒植酸含量降幅達90%以上時,作物的正常生長發育都會受到嚴重影響[1, 9, 73];植酸降幅超過95%時甚至無法完成正常的發育進程(表現為胚發育缺陷或致死)[1, 46, 75, 76]。因此,低植酸作物的優質種性,往往因其農藝性狀劣變表現,難以進一步在育種中得以推廣和應用。探明低植酸突變作物籽粒灌漿特點,以及低植酸作物籽粒灌漿不良和產量下降的生理機制及其與植酸合成積累間的代謝生理聯系,對于通過育種、栽培等途徑協調作物籽粒植酸含量降低與產量性狀劣變之間的矛盾具有重要的理論和生產指導意義。

籽粒植酸含量的降低也會伴隨作物生態適應性的改變。據Meis等[69]報道,型大豆和玉米低植酸突變體在適宜的溫度區域種植,其子代的田間出苗率為63%,同一低植酸材料種植于高溫區域,其子代的出苗率僅為8%,而野生型對照品種在不同生態區域的出苗率差異卻不明顯。相似地,在非脅迫環境中具有優良田間農藝表現的低植酸大麥(胚乳特異性),在逆境條件下產量也表現出顯著下降的趨勢[77]。Bregitzer等[68]研究表明,低植酸作物農藝性狀的劣變程度在逆境條件下尤為明顯,并把這一現象稱為“種源效應”。前人對“種源效應”的分析認為,低植酸作物早衰以及籽粒成熟過程中化學結構/組分的變化可能是后代籽粒萌發率降低的主要原因[1, 46, 69]。然而,環境生態因子或外源物質調控對作物籽粒植酸積累的影響是否還與品種本身的植酸遺傳特性有關?即關于低植酸作物的農藝表現的爭議是否忽略了其環境生態穩定性變化?Naidoo等[78]研究表明,相比野生對照,型低植酸玉米()對干旱脅迫表現更敏感。Su等[71]利用多對低植酸水稻進行灌漿期高溫脅迫處理,結果證實水稻籽粒植酸的種性與其在逆境條件下的生態穩定性之間也存在密切聯系。與野生型對照相比,低植酸水稻對逆境表現更“敏感”,其籽粒植酸含量和結實特性(結實率、花粉育性和千粒重)的生態穩定性也明顯變差。

雖然近年來利用基因工程選用器官特異性啟動子(如胚、糊粉層等特異性啟動子和)對植酸代謝相關基因(如、、和等)進行沉默,篩選出的低植酸突變體(玉米、大麥、水稻)表現出了與野生型對照相似的農藝性狀特征[1, 23, 26, 39, 46, 79]。如Kuwano等[23]以糊粉層特異表達的啟動子對水稻()基因進行沉默,籽粒植酸含量顯著降低的同時,產量性狀并未受到顯著影響。對植酸代謝路徑中下游基因的沉默和敲除(如等),由于未影響到低價磷酸肌醇及1,4,5-3-磷酸肌醇等信號物質的合成,低植酸突變體的產量優勢也得以保留[32]。然而上述低植酸突變體及其野生型的產量對照多在初代遺傳材料之間或單一生態環境條件下進行,低植酸性狀的同源性還有待進一步提高。因此,低植酸突變體是否能表現出與野生型對照相似的農藝表現還有待進一步觀察。事實上,Raboy等[77]經多代篩選,并進行了多年、多點的大田試驗,發現初代具有產量優勢的低植酸突變體,純合后的農藝性狀再次表現出一定的劣變特征,如花期延遲、萌發率降低等。因此,低植酸作物品質和產量的同步提升在未來品質育種與改良中依然是個挑戰。

5 低植酸水稻的農藝性狀劣變和生態適應性降低的生理原因

明確低植酸作物產量降低的生理機制及其與植酸合成積累的生理聯系,是協調與優化低植酸作物品質與產量潛力的基礎。低植酸作物農藝性狀變劣、結實/灌漿障礙、產量水平下降可能與以下四方面有關:

1)肌醇及磷酸肌醇是植酸代謝的主要產物,在胞間信號轉導以及磷酸肌醇信號轉導[如1,4,5-3-磷酸肌醇作為胞內第二信使通過誘導Ca2+離子釋放激活信號級聯、肌醇1-3,4-5-6-5磷酸(IP5)是COI1-JAZ信號代謝路徑的配體][80]、激素調控/代謝與平衡(肌醇與生長素受體結合參與逆境響應、葡萄糖醛酸代謝)[50]、鈣和糖信號生理[81, 82]、糖轉運、碳水化合物代謝(寡聚糖、蔗糖和淀粉合成)、生長發育調節、生物和非生物脅迫[83, 84]、滲透調節和保護、磷貯存和平衡[85, 86]、萌發、光合形態建成[87]、質膜和細胞壁合成、膜/囊泡轉運、能量調控、基因調控、染色體修飾和重組[88]、DNA 修復、mRNA輸送/轉運、細胞程序性死亡、環醇合成、多元化合物貯存以及病原體防御中均發揮著重要的生理調控作用[50, 74, 89-92]。以肌醇為例,肌醇會通過抗壞血酸、磷脂酰肌醇等途徑參與植物抗逆生理。研究表明肌醇甲基化后形成的甲酯、D-芒柄醇或D-松醇等代謝物質,可通過保護細胞結構和維持膨壓提高植物對干旱脅迫的耐受能力[93, 94]。過表達基因會引起肌醇含量同步增加,作物耐鹽性也同步增強[94, 95]。這些代謝過程涉及籽粒從萌發、出苗、營養生長以及灌漿等發育過程的各個方面,植酸代謝路徑中相關基因的突變,不僅會直接降低籽粒植酸含量,還會影響作物生長發育的其他生理過程,降低作物的逆境適應性,并最終體現為農藝性狀的變化[50]。除植酸代謝的中間產物外,調控植酸代謝相關的酶基因(如等)也參與了多個生理代謝過程,如除是植酸合成的限速酶外,對逆境響應也較為敏感,高溫、冷害、干旱、脫水和強光等逆境脅迫均會誘導基因的顯著上調表達[8, 96-100]。Das-Chatterjee等[101]將基因轉入煙草,轉基因后代的耐鹽性得以顯著提升。此外,植酸合成代謝途徑的中間產物還可能通過調控磷酸肌醇信號傳導和ATP能量轉換等生理代謝過程對低植酸作物的生長發育和結實產生影響。

2)低植酸作物在籽粒植酸含量降低的同時,無機磷含量顯著增加。由于常規水稻品種的籽粒植酸主要隔離于液泡中,其相對獨立的細胞區位保證了胞內的離子平衡,可能并不會影響籽粒中包括淀粉、蛋白以及脂類在內的其他內含物的合成和積累。但當植酸含量顯著降低后,游離出的過量無機磷不僅會打破細胞內的離子平衡,同時還會通過抑制ADPG焦磷酸化酶和淀粉磷酸化酶的活性影響淀粉的合成及積累,從而影響發育籽粒的正常灌漿和充實[102]。也有研究認為過量無機磷的胞外泄漏可能是低植酸作物易感病和籽粒活力降低的原因之一[1];

3)植酸代謝路徑較為復雜,涉及多條代謝路徑、多種酶/基因、多底物、多器官共同協調參與調控。除籽粒高表達的植酸代謝相關基因(如、、)外,營養器官(、、、、)及花器()中植酸(或磷)代謝受阻也會影響光合同化物的合成、運輸與分配[10]。

6 籽粒植酸合成的環境調控效應

作物籽粒植酸積累除與作物類型和品種基因型的高遺傳力有關外,還顯著受生態因素和栽培環境的影響。土壤類型/結構、種植區域、肥水管理(磷肥、氮肥和鋅肥運籌)、氣象因素、種植年份或播期、溫室效應等,均會顯著影響作物籽粒的植酸積累[103-115]。Liu等[116]通過多點生態區域種植,對24個常規粳稻品種的籽粒植酸進行分析,結果表明品種基因型、環境條件以及基因型和環境的互作效應(G×E)均會顯著影響水稻籽粒的植酸含量,其中以環境(種植地點)效應最為顯著。Magallane-Lopez等[117]對小麥的研究結果表明,環境效應對籽粒中植酸和鐵的生物有效性的影響最為顯著,且對鐵的生物有效性的影響(57.8%)高于對植酸(46%)的影響。Su等[71]和Hummel等[118]在水稻和大豆的研究結果表明,灌漿期高溫或全球氣候變化所導致的干旱等逆境脅迫會顯著增加作物籽粒中的植酸含量。由于植酸是磷的最主要貯存形式,多數研究結果均表明土壤磷水平會對作物籽粒中的植酸積累產生顯著正調控的影響。這可能是不同種植區域、土壤類型條件下作物籽粒植酸含量顯著變化的原因之一。Gibson等[119]和Thavarajah等[110]以豆科作物為研究對象,發現高溫脅迫下籽粒植酸含量和總磷積累量均呈顯著增加的趨勢。同一大田中同一作物品種在不同播期和年際效應所引起的籽粒植酸含量變異,可能就與作物灌漿結實期間的溫度變化有關。此外,肥水管理也會顯著影響作物籽粒的植酸積累,合理氮肥運籌可同步實現小麥籽粒植酸降低以及蛋白質含量增加[120],且不同氮源形態(氯化銨、硫酸銨和尿素)對籽粒植酸含量的影響一致[121]。灌漿初期葉片噴施鋅肥可抑制植酸積累、提高籽粒鋅的生物有效性[121, 122]。適宜的水肥調控也會使水稻籽粒中植酸含量有所降低[123]。相反,增施磷肥可引起谷物籽粒中植酸含量顯著上升[124-128]。最近的研究進一步表明,外源無機磷供應雖然能在一定程度上提高籽粒植酸含量和積累量,但過量磷水平下,水稻籽粒的植酸積累量卻表現出顯著降低的趨勢[124]。明確低植酸突變水稻的環境調控效應,對進一步提高低植酸作物產量的同時,保持低植酸的優質種性發揮具有重要的參考價值。

7 研究展望

關于植物籽粒植酸合成的大致路徑現已基本清楚,相關關鍵酶及其編碼基因的功能、克隆和定位也已在多種作物中得到驗證,如、、、、、、、和等。然而在脂獨立途徑中,低價磷酸肌醇之間(如IP1和IP2等)、低價磷酸肌醇向高價磷酸肌醇轉化的過程,以及脂依賴途徑中磷脂酰肌醇向1,3,4,5,6-5磷酸肌醇轉化的過程,究竟還受到哪些其他關鍵調控位點或酶(基因)催化的影響,目前的研究還較少。未來利用數量性狀基因座(quantitative trait locus, QTL)、精細定位、基因組測序、關聯分析、關鍵調控基因克隆和定位以及CRISPR-Cas9基因編輯等方法,并結合ICS-HPLC對不同價位磷酸肌醇衍生物及其同分異構體(InsP1-InsP5)變化進行分析,明確低價肌醇磷酸的磷酸化過程,有利于進一步明確植酸的生物合成過程、遺傳機理以及兩條代謝路徑的功能特點。同時,明確相關轉錄因子在植酸合成以及調控中的作用,可繼續豐富低植酸的突變類型,為篩選具有產量優勢的低植酸基因型提供依據。此外,篩選低植酸和低總磷雙性狀水稻基因型,在改善作物品質的同時,還能進一步節約磷肥資源。考慮到水稻籽粒植酸積累的環境調控效應以及低植酸水稻突變體在逆境生態系統中的不穩定性,如何利用栽培調優(如肥料運籌、環境調控、株型改造)或外源調控等措施,確保低植酸的優質種性發揮的同時,進一步提升其產量潛力,也是栽培學研究的重要方向。這些研究將會對以鋅、鐵生物強化為目標的水稻品質育種提供借鑒和補充。

[1] Raboy V. Seeds for a better future: 'Low phytate', grains help to overcome malnutrition and reduce pollution., 2001, 6(10): 458-462.

[2] Borg S, Brinch-Pedersen H, Tauris B, Holm P B. Iron transport, deposition and bioavailability in the wheat and barley grain., 2009, 325(1-2): 15-24.

[3] Rosa-Sibakov N, Kaisa P, Valérie M. How does wheat grain, bran and aleurone structure impact their nutritional and technological properties?, 2015, 41(2): 118-134.

[4] 張倩雯, 丁廣大, 王效華, Liu L, King J G, 徐芳森, 石磊. 植物種子植酸研究進展. 植物科學學報, 2016, 34(5): 814-820.

Zhang Q W, Ding G D, Wang X H, Liu L, King J G, Xu F S, Shi L. Research progress on plant seed phytate., 2016, 34(5): 814-820. (in Chinese with English abstract)

[5] Brinch-Pedersen H, Sorensen L D, Holm P B. Engineering crop plants: Getting a handle on phosphate., 2002, 7(3): 118-125.

[6] Welch R M, Graham R D. Breeding for micronutrients in staple food crops from a human nutrition perspective., 2004, 55(396): 353-364.

[7] Boncompagni E, Gregorio O, Eleonora C, Prakash I G, Stefania G, Theophilus T K Z, Maria G D, Erik N, Francesca S. Antinutritional factors in pearl millet grains: Phytate and goitrogens content variability and molecular characterization of genes involved in their pathways., 2018, 13(6): e0198394.

[8] Loewus F A, Murthy P.-inositol metabolism in plants., 2000, 150(1): 1-19.

[9] Raboy V. Low-phytic-acid grains., 2000, 21(4): 423-427.

[10] Suzuki M, Tanaka K, Kuwano M, Yoshida K T. Expression pattern of inositol phosphate-related enzymes in rice (L.): Implications for the phytic acid biosynthetic pathway., 2007, 405(1-2): 55-64.

[11] Coelho C M, Tsai S M, Vitorello V A. Dynamics of inositol phosphate pools (tris-, tetrakis- and pentakisphosphate) in relation to the rate of phytate synthesis during seed development in common bean (L.)., 2005, 162(1): 1-9.

[12] Shi J, Wang H, Wu Y, Hazebroek J, Meeley R B, Ertl D S. The maize low-phytic acid mutantis caused by mutation in an inositol phosphate kinase gene., 2003, 131(2): 507-515.

[13] Cui M, Liang D, Ma F W. Molecular cloning and characterization of a cDNA encoding kiwifruit L--inositol-1-phosphate synthase, a key gene of inositol formation., 2013, 40(1): 697-705.

[14] Perera I, Saman S, Naoki H. Manipulating the phytic acid content of rice grain toward improving micronutrient bioavailability., 2018, 11(1): 4.

[15] Coelho C M, Benedito V A, Figueira A, Vitorello V A, Azevedo R A. Variation in the enzyme activity and gene expression of-inositol-3-phosphate synthase and phytate accumulation during seed development in common bean (L.)., 2007, 190(3): 24-39.

[16] Larson S R, Rutger J N, Young K A, Raboy V. Isolation and genetic mapping of a non-lethal rice (L.) low phytic acid 1 mutation., 2000, 40(5): 1397-1405.

[17] Wilcox J R, Premachandra G S, Young K A, Raboy V. Isolation of high seed inorganic P, low-phytate soybean mutants., 2000, 40(6): 1601-1605.

[18] Yuan F J, Zhao H J, Ren X L, Zhu S L, Fu X J, Shu Q Y. Generation and characterization of two novel low phytate mutations in soybean (L. Merr.)., 2007, 115(7): 945-957.

[19] Hambidge K M, Krebs N F, Westcott J L, Sian L, Miller L V, Peterson K L, Raboy V. Absorption of calcium from tortilla meals prepared from low-phytate maize., 2005, 82(1): 84-87.

[20] Poulsen H D, Johansen K S, Hatzack F, Boisen S, Rasmussen S R K. Nutritional value of low-phytate barley evaluated in rats., 2001, 51(1): 53-58.

[21] Petry N, Egli I, Campion B, Nielsen E, Hurrell R. Genetic reduction of phytate in common bean (L.) seeds increases iron absorption in young women., 2013, 143(8): 1219-1224.

[22] Hambidge K M, Huffer J W, Raboy V, Grunwald G K, Westcott J L, Sian L, Miller L V, Dorsch J A, Krebs N F. Zinc absorption from low-phytate hybrids of maize and their wild-type isohybrids., 2004, 79(6): 1053-1059.

[23] Kuwano M, Mimura T, Takaiwa F, Yoshida K T. Generation of stable 'low phytic acid' transgenic rice through antisense repression of the 1D--inositol 3-phosphate synthase gene () using the 18-kDa oleosin promoter., 2009, 7(1): 96-105.

[24] Feng X, Yoshida K T. Molecular approaches for producing low-phytic-acid grains in rice., 2004, 21(3): 183-189.

[25] Li W X, Huang J Z, Zhao H J, Tan Y Y, Cui H R, Poirier Y, Shu Q Y. Production of low phytic acid rice by hairpin RNA- and artificial microRNA-mediated silencing ofin seeds., 2014, 119(1): 15-25.

[26] Kuwano M, Ohyama A, Tanaka Y, Mimura T, Takaiwa F, Yoshida K T. Molecular breeding for transgenic rice with low-phytic-acid phenotype through manipulating-inositol 3-phosphate synthase gene., 2006, 18(3): 263-272.

[27] Ali N, Paul S, Gayen D, Sarkar S N, Datta S K, Datta K. RNAi mediated down regulation of-inositol-3- phosphate synthase to generate low phytate rice., 2013, 6(1): 1-12.

[28] Kim S I, Andaya C B, Newman J W, Goyal S S, Tai T H. Isolation and characterization of a low phytic acid rice mutant reveals a mutation in the rice orthologue of maize., 2008, 117(8): 1291-1301.

[29] Kim S I, Andaya C B, Goyal S S, Tai T H. The ricegene encodes a novel protein involved in phytic acid metabolism., 2008, 117(5): 769-779.

[30] Zhao H J, Liu Q L, Ren X L, Wu D X, Shu Q Y. Gene identification and allele-specific marker development for two allelic low phytic acid mutations in rice (L.)., 2008, 22(4): 603-612.

[31] Kim S, Tai T H. Identification of novel rice low phytic acid mutations via TILLING by sequencing., 2014, 34(4): 1717-1729.

[32] Ali N, Paul S, Gayen D, Sarkar S N, Datta K, Datta S K. Development of low phytate rice by RNAi mediated seed-specific silencing of inositol 1,3,4,5,6-pentakis phosphate 2-kinase gene ()., 2013, 8(7): e68161.

[33] Nagy R, Grob H, Weder B, Green P, Klein M, Frelet-Barrand A, Schjoerring J K, Brearley C, Martinoia E. The Arabidopsis ATP-binding cassette protein ATMRP5/ATABCC5 is a high-affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage., 2009: jbc. M109. 030247.

[34] Xu X H, Zhao H J, Liu Q L, Frank T, Engel K H, An G H, Shu Q Y. Mutations of the multi-drug resistance-associated protein ABC transporter gene 5 result in reduction of phytic acid in rice seeds., 2009, 119(1): 75-83.

[35] Wanke D, üner Kolukisaoglu H. An update on the ABCC transporter family in plants: Many genes, many proteins, but how Many functions?, 2010, 12: 15-25.

[36] Maroof M A, Glover N M, Biyashev R M, Buss G R, Grabau E A. Genetic basis of the low-phytate trait in the soybean line CX1834., 2009, 49(1): 69-76.

[37] Panzeri D, Cassani E, Doria E, Tagliabue G, Fort L, Campion B, Bollini R, Brearley C A, Pilu R, Nielsen E, Sparvoli F. A defective ABC transporter of the MRP family, responsible for the beanmutation, affects the regulation of the phytic acid pathway, reduces seed-inositol and alters ABA sensitivity., 2011, 191(1): 70-83.

[38] Cerino B F, Amelotti M, Cassani E, Pilu R. Study of low phytic acid1-7 (), a new ZmMRP4 mutation in maize., 2012, 103(4): 598-605.

[39] Shi J, Wang H, Hazebroek J, Harp T. The maize low-phytic acid 3 encodes a-inositol kinase that plays a role in phytic acid biosynthesis in developing seeds., 2005, 42(5): 708-719.

[40] Pilu R, Panzeri D, Cassani E, Cerino B F, Landoni M, Nielsen E. A paramutation phenomenon is involved in the genetics of maize low phytic acid 1-241 () trait., 2009, 102(3): 236-245.

[41] Bhati K K, Alok A, Kumar A, Kaur J, Tiwari S, Pandey A K, Notes A. Silencing of ABCC13 transporter in wheat reveals its involvement in grain development, phytic acid accumulation and lateral root formation., 2016, 67(14): 4379-4389.

[42] Bhati K K, Aggarwal S, Sharma S, Mantri S, Singh S P, Bhalla S, Kaur J, Tiwari S, Roy J K, Tuli R, Pandey A K. Differential expression of structural genes for the late phase of phytic acid biosynthesis in developing seeds of wheat (L.)., 2014, 224: 74-85.

[43] Mitsuhashi N, Kondo M, Nakaune S, Ohnishi M, Hayashi M, Hara-Nishimura I, Richardson A, Fukaki H, Nishimura M, Mimura T. Localization of-inositol-1- phosphate synthase to the endosperm in developing seeds of., 2008, 59(11): 3069-3076.

[44] Chiera J M, Grabau E A. Localization of-inositol phosphate synthase (-) during the early stages of soybean seed development., 2007, 58: 2261-2268.

[45] Li W X, Zhao H J, Pang W Q, Cui H R, Poirier Y, Shu Q Y. Seed-specific silencing ofreduces seed phytic acid and weight in rice., 2014, 23(4): 585–599.

[46] Sparvoli F, Cominelli E. Seed biofortification and phytic acid reduction: a conflict of interest for the plant?, 2015, 4(4): 728-755.

[47] Borghi L, Kang J, Ko D, Lee Y, Marinoia E. The role of ABCG-type ABC transporters in phytohormone transport., 2015, 43(5): 924-930.

[48] Cominelli E, Confalonieri M, Carlessi M, Cortinovisa G, Daminati M G, Porch T G, Losa A, Sparvoli F. Phytic acid transport in Phaseolus vulgaris: A new low phytic acid mutant in the PvMRP1 gene and study of the PvMRPs promoters in two different plant systems., 2018, 270: 1-12.

[49] Israel D W, Taliercio E, Kwanyuen P, Burton J W, Dean L. Inositol metabolism in developing seed of low and normal phytic acid soybean lines., 2011, 51: 282-289.

[50] Redekar N, Pilot G, Raboy V, Song L, Saghai-Maroof M A. Inference of transcription regulatory network in low phytic acid soybean seeds., 2017, 8: 2029.

[51] Redekar N R, Biyashev R M, Jensen R V, Helm R, Grabau E A, Maroof M A. Genome-wide transcriptome analyses of developing seeds from low and normal phytic acid soybean lines., 2015, 16(1): 1074.

[52] Liu K S, Xu X H, Ren X L, Fu H W, Wu D X, Shu Q Y. Generation and characterization of low phytic acid germplasm in rice (L.)., 2007, 114(5): 803-814.

[53] Zhao H J, Liu Q L, Fu H W, Xu X H, Wu D X, Shu Q Y. Effect of non-lethal low phytic acid mutations on grain yield and seed viability in rice., 2008, 108(3): 206-211.

[54] Zhao H, Frank T, Tan Y. Disruption ofreduces phytate and phosphorus concentrations and alters the metabolite profile in rice grains., 2016, 211(3): 926-939.

[55] Ye H, Zhang X Q, Broughton S, Westcott S, Wu D, Lance R, Li C. A nonsense mutation in a putative sulphate transporter gene results in low phytic acid in barley., 2011, 11(1): 103-110.

[56] Takahashi H, Buchner P, Yoshimoto N, Hawkesford M J, Shiu S H. Evolutionary relationships and functional diversity of plant sulfate transporters., 2012, 2: 119.

[57] Zhang S, Yang W, Zhao Q, Zhou X, Jiang L, Ma S, Liu X, Li Y, Zhang C, Fan Y, Chen R. Analysis of weighted co-regulatory networks in maize provides insights into new genes and regulatory mechanisms related to inositol phosphate metabolism., 2016, 17(1): 129.

[58] Frank T, Norenberg S, Engel K H. Metabolite profiling of two novel low phytic acid () soybean mutants., 2009, 57(14): 6408-6416.

[59] Emami K, Morris N J, Cockell S J, Golebiowska G, Shu Q Y, Gatehouse A M R. Changes in protein expression profiles between a low phytic acid rice (L. ssp.) line and its parental line: a proteomic and bioinformatic approach., 2010, 58(11): 6912-6922.

[60] Rutger J N, Raboy V, Moldenhauer K A K, Bryant R J, Lee F N, Gibbons J W. Registration of KBNT1-1 low phytic acid germplasm of rice., 2004, 44(1): 363-364.

[61] Lott J N A, Liu J C, Ockenden I, Truax M. Phytic acid-phosphorus and other nutritionally important mineral nutrient elements in grains of wild-type and low phytic acid () rice., 2004, 14(2): 109-116.

[62] Andaya C B, Tai T H. Fine mapping of the rice low phytic acid (Lpa1) locus., 2005, 111(3): 489-495.

[63] Yatou O, Aoki H, Aii J, Tanaka H. Selection of novel non-lethal, low phytic acid mutants and evaluation of their agronomic traits/mineral compositions in rice ()., 2018, 52(1): 39-47.

[64] Hitz W D, Carlson T J, Kerr P S, Sebastian S A. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds., 2002, 128(2): 650-660.

[65] Edwards J D, Jackson A K, McClung A M. Genetic architecture of grain chalk in rice and interactions with a low phytic acid locus., 2017, 205: 116-123.

[66] Zhou L, Ye Y, Zhao Q, Du X, Zakari S A, Su D, Pan G, Cheng F M. Suppression of ROS generation mediated by higher InsP3 level is critical for the delay of seed germination inrice., 2018, 85(3): 411-424.

[67] Oltmans S E, Fehr W R, Welke G A, Raboy V, Peterson K L. Agronomic and seed traits of soybean lines with low-phytate phosphorus., 2005, 45(2): 593-598.

[68] Bregitzer P, Raboy V. Effects of four independent low-phytate mutations in barley on (L.) seed phosphorus characteristics and malting quality., 2006, 83: 460-464.

[69] Meis S J, Fehr W R, Schnebly S R. Seed source effect on field emergence of soybean lines with reduced phytate and raffinose saccharides., 2003, 43(4): 1336-1339.

[70] Hulke B S, Fehr W R, Welke G A. Agronomic and seed characteristics of soybean with reduced phytate and palmitate., 2004, 44: 2027-2031.

[71] Su D, Lei B T, Li Z W, Cao Z Z, Huang F D, Pan G, Ding Y, Cheng F M. Influence of high temperature during filling period on grain phytic acid and its relation to spikelet sterility and grain weight in non-lethal low phytic acid mutations in rice., 2014, 60(2): 331-338.

[72] Pilu R, Landoni M, Cassani E, Doria E, Nielsen E. The maizemutation causes a remarkable variability of expression and some pleiotropic effects., 2005, 45: 2096-2105.

[73] Raboy V, Gerbasi P F, Young K A, Stoneberg S D, Pickett S G, Bauman A T, Murthy P, Sheridan W F, Ertl D S. Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1., 2000, 124(1): 355-368.

[74] David E B, Edward J S, Mary J G, Victor R, Jianming F. A low phytic acid barley mutation alters seed gene expression., 2007, 47: S149.

[75] Ertl D S, Young K A, Raboy V. Plant genetic approaches to phosphorus management in agricultural production.1998, 27(2): 299-304.

[76] Nunes A C, Vianna G R, Cuneo F, Amayafarf A, De-Capdeville G, Rech L, Arag A. RNAi-mediated silencing of the-inositol-1-phosphate synthase gene () in transgenic soybean inhibited seed development and reduced phytate content., 2006, 224(1): 125-132.

[77] Raboy V, Peterson K. A substantial fraction of barley (L.) low phytic acid mutations have little or no effect on yield across diverse production environments., 2015, 4 (2): 225-239.

[78] Naidoo R, Tongoona P, Derera J, Laing M D, Watson G M F. Combining ability of low phytic acid (1-1) and quality protein maize (QPM) lines for seed germination and vigour under stress and non-stress conditions., 2012, 185(3): 529-541.

[79] Ockenden I, Dorsch J A, Reid M M, Lin L, Grant L K, Raboy V, Lott J N A. Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley (L.) low phytic acid genotypes., 2004, 167(5): 1131-1142.

[80] Sheard L B, Tan X, Mao H, Withers J, Ben-Nissan G, Hinds T R, Kobayashi Y, Hsu F F, Sharon M. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor., 2010, 468(7322): 400-405.

[81] Ananieva E, Gillaspy G. Switches in nutrient and inositol signaling., 2009, 4 (4): 304-306.

[82] Lemtiri-Chlieh F, MacRobbie E, Webb A, Manison N F, Brownlee C, Skeppe J N, Chen J, Prestwich G D, Brearley C A. Inositol hexakisphosphate mobilizes an endomembrane store of calcium in guard cells., 2003, 100(17): 10091-10095.

[83] Murphy A M, Otto B, Brearley C A, Carr J P, Hanke D E. A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens., 2008, 56(4): 638-652.

[84] Munnik T, Vermeer J E. Osmotic stress-induced phosphoinositide and inositol phosphate signalling in plants., 2010, 33(4): 655-669.

[85] Stevenson-Paulik J, Bastidas R J, Chiou S T, Frye R A, York J D. Generation of phytate-free seeds inthrough disruption of inositol polyphosphate kinases., 2005, 102(35): 12612-12617.

[86] Kuo H, Chang T, Chiang S.inositol pentakisphosphate 2-kinase, AtIPK1, is required for growth and modulates phosphate homeostasis at the transcriptional level., 2014, 80(3): 503-515.

[87] Qin Z, Chen Q, Tong Z. Theinositol 1,3,4-trisphosphate 5/6 kinase, AtItpk-1, is involved in plant photomorphogenesis under red light conditions, possibly via interaction with COP9 signalosome., 2005, 43(10-11): 947-954.

[88] Latrasse D, Jegu T, Meng P H, Mazubert C, Hudik E, Delarue M, Charon C, Crespi M, Hirt H, Raynaud C, Bergounioux C, Benhamed M. Dual function of MIPS1 as a metabolic enzyme and transcriptional regulator., 2013, 41(5): 2907-2917.

[89] Loewus F A, Loewus M W. Myo-inositol: its biosynthesis and metabolism., 1983, 34(1): 137-161.

[90] Gumber S C, Loewus M W, Loewus F A. Further studies on-Inositol-1-phosphatase from the pollen of Lilium longiflorum Thunb., 1984, 76(1): 40-44.

[91] Irvine R F, Schell M J. Back in the water: The return of the inositol phosphates., 2001, 2(5): 327-338.

[92] Hui Q, Yang R, Shen C, Zhou Y, Gu Z. Mechanism of calcium lactate facilitating phytic acid degradation in soybean during germination., 2016, 64(27): 5564-5573.

[93] Nelson D E, Rammesmayer G, Bohnert H J. Regulation of cell-specific inositol metabolism and transport in plant salinity tolerance., 1998, 10(5): 753-764.

[94] Patra B, Ray S, Richter A, Majumder A L. Enhanced salt tolerance of transgenic tobacco plants by co-expression ofandis accompanied by increased level of-inositol and methylated inositol., 2010, 245(1-4): 143-152.

[95] Majee M, Maitra S, Dastidar K G, Pattnaik S, Chatterjee A, Hait N C, Das K P, Majumder A L. A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype., 2004, 279(27): 28539-28552.

[96] Ishitani M, Majumder A L, Bornhouser A, Michalowski C B, Jensen R G, Bohnert H J. Coordinate transcriptional induction of-inositol metabolism during environ mental stress., 1996, 9(4): 537-548.

[97] Boominathan P, Shukla R, Kumar A, Manna D, Negi D, Verma P K, Chattopadhyay D. Long term transcript accumulation during the development of dehydration adaptation in Cicer arietinum., 2004, 135(3): 1608-1620.

[98] Abreu E, Aragao F. Isolation and characterization of a-inositol-1-phosphate synthase gene from yellow passion fruit (Passiflora edulis f. flavicarpa) expressed during seed development and environmental stress., 2007, 99(2): 285-292.

[99] Iwai T, Takahashi M, Oda K, Terada Y, Yoshida K T. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development., 2012, 160(4): 2007-2014.

[100]Kaur H, Shukla R K, Yadav G, Chattopadhyay D, Majee M. Two divergent genes encoding L-inositol 1-phosphate synthase1 () and 2 () are differentially expressed in chickpea., 2008, 31(11): 1701-1716.

[101]Das-Chatterjee A, Goswami L, Maitra S, Dastidar K G, Ray S, Majumder A L. Introgression of a novel salt-tolerant L--inositol 1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka () confers salt tolerance to evolutionary diverse organisms., 2006, 580(16): 3980-3988.

[102]Plaxton W C, Preiss J. Purification and properties of nonproteolytic degraded ADPglucose pyrophosphorylase from maize endosperm., 1987, 83(1): 105-112.

[103]Bilgrami S S, Houshmand S, Kadivar M, Fakheri B, Zandi P, Shariati V, Razavi K, Tavakol E, Mahdinezhad N, Sabouri S J, Kumar B S, Mo?d?eń K. Phytic acid, iron and zinc content in wheat ploidy levels and amphiploids: The impact of genotype and planting seasons., 2018, 64(3): 331-346.

[104]Miller G A, Youngs V L. Environmental and cultivar effects on oat phytic acid concentration., 1980, 57: 189-191.

[105]Batten G D, Lott J. The influence of phosphorus nutrition on the appearance and composition of globoid crystals in wheat aleurone cells., 1986, 63(1): 14-18.

[106]Feil B, Fossati D. Phytic acid in triticale grains as affected by cultivar and environment., 1997, 37(3): 916-921.

[107]Jaksomsak P, Tuiwong P, Rerkasem B, Guild G, Palmer L, Stangoulis J, Prom-u-thai C T. The impact of foliar applied zinc fertilizer on zinc and phytate accumulation in dorsal and ventral grain sections of four Thai rice varieties with different grain zinc.,, 2018 79: 6-12.

[108]Dost K, Tokul O. Determination of phytic acid in wheat and wheat products by reverse phase high performance liquid chromatography., 2006, 558(1-2): 22-27.

[109]Dai F, Wang J, Zhang S, Xu Z, Zhang G. Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley., 2007, 105(2): 606-611.

[110]Thavarajah D, Thavarajah P, See C T, Vandenberg A. Phytic acid and Fe and Zn concentration in lentil (L.) seeds is influenced by temperature during seed filling period., 2010, 122(1): 254-259.

[111]Fernando N, Panozzo J, Tausz M, Norton R M, Fitzgerald G J, Myers S, Nicolas M E, Seneweera S. Intra-specific variation of wheat grain quality in response to elevated [CO2] at two sowing times under rain-fed and irrigation treatments., 2014, 59(2): 137-144.

[112]Dhole V J, Reddy K S. Genetic variation for phytic acid content in mungbean (L. Wilczek)., 2015, 3(2): 157-162.

[113]趙寧春, 張小明, 葉勝海, 程方民. 不同栽培方式和施氮量對稻米營養品質及植酸積累的影響. 浙江農業學報, 2009, 21(3): 259-263.

Zhao N C, Zhang X M, Ye S H, Cheng F M. Effects of different cultivation methods and nitrogen application on grain phytic acid contents and nutritional quality for japonica rice., 2009, 21(3): 259-263. (in Chinese with English abstract)

[114]趙寧春, 張其芳, 程方民, 周偉軍. 氮、磷、鋅營養對水稻籽粒植酸含量的影響及與幾種礦質元素間的相關性. 中國水稻科學, 2007, 21(2): 185-190.

Zhao N C, Zhang Q F, Cheng F M. Phosphorus and zinc supply levels on grain phytic acid content and its correlation with several mineral nutrients in rice grain., 2007, 21(2): 185-190. (in Chinese with English abstract)

[115]Steiner T, Mosenthin R, Zimmermann B, Greiner R, Roth S. Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced by harvest year and cultivar., 2007, 133(3-4): 320-334.

[116]Liu Z H, Cheng F M, Zhang G P. Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content., 2005, 89(1): 49-52.

[117]Magallanes-López A M, Hernandez-Espinosa N, Velu G, Posadas-Romano G, Ordo?ez-Villegas V M G, Crossa J, Ammar K, Guzmán C. Variability in iron, zinc and phytic acid content in a worldwide collection of commercial durum wheat cultivars and the effect of reduced irrigation on these traits., 2017, 237: 499-505.

[118]Hummel M, Hallahan B F, Brychkova G, Ramirez-Villegas J, Guwela V, Chataika B, Curley E, McKeown P C, Morrison L, Talsma E F, Beebe S, Jarvis A, Chirwa R, Spillane C. Reduction in nutritional quality and growing area suitability of common bean under climate change induced drought stress in Africa., 2018, 8: 16187.

[119]Gibson L R, Mullen R E. Mineral concentrations in soybean seed produced under high day and night temperature., 2001, 81(4): 595-600.

[120]Ning H, Liu Z, Wang Q, Lin Z, Chen S, Li G, Wang S, Ding Y. Effect of nitrogen fertilizer application on grain phytic acid and protein concentrations in japonica rice and its variations with genotypes., 2009, 50(1): 49-55.

[121]Khan A M, Hussain S, Rengel Z, Shah M A A. Zinc bioavailability and nitrogen concentration in grains of wheat crop sprayed with zinc sulfate, ammonium sulfate, ammonium chloride, and urea., 2018, 41(15): 1926-1936.

[122]Wang Z M, Liu Q, Pan F, Yuan L X, Yin X B. Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat., 2015, 184: 58-64.

[123]張其方, 劉奎剛, 蘇達, 王復標, 程方民. 氮素和水分處理對稻米植酸含量和蛋白組分的影響. 植物營養與肥料學報, 2012, 18(3): 542-550.

Zhang Q F, Liu K G, Su D, Wang F B, Cheng F M. Effects of different nitrogen and water treatments on phytic acid contents and protein components in rice grain., 2012, 18(3): 542-550. (in Chinese with English abstract)

[124]Su D, Zhou L J, Zhao Q, Pan G, Cheng F M. Different phosphorus supplies altered the accumulations and quantitative distributions of phytic acid, zinc, and iron in rice (L.) Grains., 2018, 66(7): 1601-1611.

[125]Raboy V, Dickinson D B. Phytic acid levels in seeds of Glycine max and G. soja as influenced by phosphorus status., 1993, 33(6): 1300-1305.

[126]Buerkert A, Haake C, Ruckwied M, Marschner H. Phosphorus application affects the nutritional quality of millet grain in the Sahel., 1998, 57(2): 223-235.

[127]Zhang W, Liu D Y, Liu Y M, Chen X P, Zou C Q. Overuse of phosphorus fertilizer reduces the grain and flour protein contents and zinc bioavailability of winter wheat (L.)., 2017, 65(8):1473-1482.

[128]Lickfett T, Matthaus B, Velasco L, Mollers C. Seed yield, oil and phytate concentration in the seeds of two oilseed rape cultivars as affected by different phosphorus supply., 1999, 11(3-4): 293-299.

Research Advances on the Low Phytic Acid Rice Breeding and Their Genetic Physiological Regulation and Environmental Adaptability

SU Da1,2, WU Liangquan2, S?ren K Rasmussen3, ZHOU Lujian4, CHENG Fangmin4,*

(,,,,,;International Magnesium Institute,,;Department of Plant and Environmental Sciences,,,,;,,,;,:)

Breeding variety with improved quality while maintaining or improving yields is one of the primary objectives in rice breeding. Among which, reducing the anti-nutritional factors, such as grain phytic acid content, is an effective strategy to cope with hidden hunger and increase grain bioavailabilities of zinc and iron. In this paper, we reviewed the biosynthesis of phytic acid and the genetic characteristics of related functional genes, the co-regulatory networks of phytic acid synthesis and other physiological metabolism, breeding of low phytic acid () germplasm resource and their genetic characteristics, agronomic performance and environmental ecological adaptability ofmutants, the possible reasons for their agronomic deterioration and ecological adaptation change, and the environmental regulation of grain phytic acid accumulation. Those contents could provide reference for production ofrice with suitable agronomic cultivation practices.

phytic acid; rice (L.); grain nutrition; genetic regulation; ecological effect

10.16819/j.1001-7216.2019.8083

S482.8; S511.02

A

1001-7216(2019)02-0095-13

2018-07-16;

2018-12-31。

國家自然科學基金資助項目(31571602和31271655); 福建省中青年教師教育科研項目(JAT170156); 國家留學基金委資助項目; 國家重點研發計劃資助項目(2017YFD0200200)。

猜你喜歡
水稻
水稻和菊花
幼兒100(2023年39期)2023-10-23 11:36:32
什么是海水稻
機插秧育苗專用肥——機插水稻育苗基質
有了這種合成酶 水稻可以耐鹽了
今日農業(2021年21期)2021-11-26 05:07:00
水稻種植60天就能收獲啦
軍事文摘(2021年22期)2021-11-26 00:43:51
油菜可以像水稻一樣實現機插
今日農業(2021年14期)2021-10-14 08:35:40
中國“水稻之父”的別樣人生
金橋(2021年7期)2021-07-22 01:55:38
海水稻產量測評平均產量逐年遞增
今日農業(2020年20期)2020-11-26 06:09:10
一季水稻
文苑(2020年6期)2020-06-22 08:41:52
水稻花
文苑(2019年22期)2019-12-07 05:29:00
主站蜘蛛池模板: 国产成人一区免费观看| 欧美不卡视频在线| 欧美一级视频免费| 欧美日韩一区二区在线免费观看| 日本在线视频免费| 成人在线综合| 亚洲日本精品一区二区| 国产91成人| 亚洲三级色| 人妻丰满熟妇AV无码区| 99一级毛片| 欧美日韩精品一区二区视频| 免费观看亚洲人成网站| 91麻豆精品视频| 国产av无码日韩av无码网站| 国产JIZzJIzz视频全部免费| 亚洲成人精品| 亚洲中久无码永久在线观看软件 | 国产欧美日韩精品第二区| 波多野结衣久久高清免费| 色综合a怡红院怡红院首页| 亚洲精选无码久久久| av在线无码浏览| av午夜福利一片免费看| 亚洲一区无码在线| 国产黄色视频综合| 国内老司机精品视频在线播出| 欧美性久久久久| 亚洲欧美一区二区三区蜜芽| 欧美高清国产| 免费国产高清视频| 国产性精品| 国产黄网站在线观看| 丁香五月亚洲综合在线 | 亚洲第一网站男人都懂| 亚洲中文字幕在线一区播放| 精品一区二区三区波多野结衣| 19国产精品麻豆免费观看| 亚洲中字无码AV电影在线观看| 亚洲欧美在线精品一区二区| 亚洲无码免费黄色网址| 久久国产精品影院| 99re热精品视频中文字幕不卡| 2020国产在线视精品在| 四虎国产精品永久一区| 丝袜国产一区| 国产乱子伦一区二区=| 亚洲伊人久久精品影院| 亚洲品质国产精品无码| 99在线观看视频免费| 中文成人无码国产亚洲| 久久毛片基地| 欧美亚洲一区二区三区在线| 亚洲人成网站在线播放2019| 最新国产麻豆aⅴ精品无| 久久中文字幕2021精品| 四虎亚洲精品| 在线综合亚洲欧美网站| 国产极品美女在线播放| 丰满人妻中出白浆| 国产视频大全| 成人欧美在线观看| 国产精品va| 国内精品久久久久久久久久影视| 午夜无码一区二区三区| 精品一区二区三区自慰喷水| 成人日韩欧美| 日韩精品中文字幕一区三区| 伊人久久大香线蕉综合影视| 国产系列在线| 无码一区中文字幕| 欧美日韩午夜| 国产真实自在自线免费精品| 国产成人免费视频精品一区二区| 91麻豆精品国产高清在线| 亚洲一级毛片在线观播放| 高清乱码精品福利在线视频| 91亚洲视频下载| 国产99视频精品免费视频7| 免费A级毛片无码无遮挡| 亚洲第一成年免费网站| 久久久久九九精品影院|