郜斌斌,王 選,王 玨,樊秉乾,常瑞雪,陳 清
?
化學和黏土礦物鈍化劑對牛糞秸稈堆肥磷形態轉化的影響
郜斌斌1,王 選2,王 玨1,樊秉乾1,常瑞雪1,陳 清1※
(1. 農田土壤污染防控與修復北京市重點實驗室,中國農業大學資源與環境學院,北京 100193;2. 中國科學院遺傳與發育生物學研究所農業資源研究中心,中國科學院農業水資源重點實驗室,河北省節水農業重點實驗室,石家莊 050021)
盲目施用糞肥導致農田土壤磷素(P)積累和產生的面源污染等環境風險已引起人們的重視。該文通過在牛糞秸稈堆肥過程中,添加質量分數2.5%的化學物質或黏土礦物2類磷素鈍化劑,研究其對磷素形態轉化的影響。結果顯示,和對照相比,添加氧化鈣、氧化鎂、硫酸亞鐵和明礬可明顯降低堆肥產品中磷素的活性,水溶性磷(water extract phosphorus,WEP)占總磷(total phosphorus,TP)百分比分別為:38.0%、60.2%、58.8%、28.9%;添加蛭石和沸石使堆肥產品中WEP占TP百分比分別下降11.7%、17.3%。第35天堆肥樣品的Hedley磷分組結果顯示,添加氧化鈣和氧化鎂主要促進了H2O-Pi向更穩定態的NaHCO3-Pi、HCl-P(Pi和Po)、殘余態-P轉化;添加硫酸亞鐵和明礬主要促進了H2O-Pi向更穩定態的NaOH-P(Pi和Po)、殘余態-P轉化。添加黏土礦物鈍化劑均略微促進了不穩定態磷H2O-Pi和NaHCO3-Pi向穩定態磷HCl-Pi轉化。堆肥結束時添加MgO明顯提高了堆體的pH值,其他處理均對pH值影響較小。綜合來看硫酸亞鐵、明礬、沸石和蛭石依次為較好的磷素鈍化材料。
糞;堆肥;磷;鈍化;化學添加劑;黏土礦物添加劑
磷(P)通常被認為是水體富營養化的限制性營養元素[1],而農業生產通常是水體污染磷素的重要來源[2];第一次全國污染源普查公報顯示,2010年畜禽養殖業總磷排放量占全國總磷排放量的37.9%。隨著中國畜禽養殖規模的擴大和養殖集約化程度的不斷提高,畜禽養殖業帶來的磷素污染環境問題將日益嚴重[3]。
畜禽糞便經過堆肥處理可轉化為優質的商品有機肥料,但與作物的生長需求相比,有機肥的N/P比通常較低,當以滿足作物氮素需求施肥時,會導致磷素投入過量,造成土壤磷素的大量累積。土壤中磷素的不斷積累降低了土壤對磷素的吸附能力,進而加劇了磷素從農田向水體的遷移[4]。有機肥施用除本身帶入大量活性磷增加磷素環境風險之外,還會改變土壤的理化性質以及生物化學過程提高磷素在土壤中的移動性;Koopmans等[5]指出有機肥中含有大量腐殖質,施入土壤后會與鈣、鐵、鋁等鹽類發生螯合作用,或者有機肥中的腐殖酸和其他有機酸等與磷酸根離子競爭吸附位點,導致了部分鈣磷、鐵磷、鋁磷的釋放;另外有機肥施用帶入大量的有機物,促進了土壤有機磷的礦化[6],這都增加了磷素在土壤中的移動性和環境風險。
為減少農田施用有機肥后帶來的磷素環境問題,在畜禽糞便堆肥過程中添加磷素鈍化材料是一種行之有效的方法;Moore和Miller[7]向畜禽糞便中添加了不同種類和濃度梯度的Ca、Fe、Al鹽,結果顯示添加硫酸鋁、硫酸亞鐵和生石灰均可以使糞肥中水溶性磷(water extract phosphorus,WEP)從2000 mg/kg左右降低到1 mg/kg以下。Shreve等[8]采用降雨模擬裝置進行小范圍試驗得出,在糞肥中添加FeSO4和KAl(SO4)2,分別使徑流中WEP濃度減少了77%和87%,而且它們還能降低氨揮發,起到保存氮素的作用[9]。楊宇等考察了添加氯化鎂(MgCl2)對豬糞高溫堆肥過程中氮、磷養分轉化的影響,Hedley磷分級結果顯示,堆肥結束后未添加鈍化劑的對照處理不穩定態磷(H2O-P和NaHCO3-P)占總磷的比例從30%提高到65%,而添加MgCl2的堆體不穩定態磷的比例保持在30%,而且氨揮發比對照處理減少58%[10]。除了通過化學作用固定磷素,黏土礦物的物理吸附也能達到一定的磷素固定作用。黏土礦物是一種層狀鋁硅酸鹽礦物,屬硅氧四面體或鋁(鎂)氧(氫氧)八面體結構,因其具有吸附能力可以吸附磷素,已在廢水除磷方面有較廣泛的應用[11-14];黏土礦物材料還可以吸附氨氣降低氨揮發,并提高堆肥的品質,在堆肥領域也有較廣泛的應用[15-18]。
化學鈍化劑的特點是對磷素的鈍化以化學沉淀為主,效果好且穩定,但是添加化學磷素鈍化劑處理的堆肥施用到土壤后,堆肥產品中磷素養分可能不易被作物活化利用。黏土礦物鈍化劑的特點是對磷素的鈍化以物理吸附為主,效果較差,但是添加黏土礦物磷素鈍化劑處理的堆肥施用到土壤后,堆肥產品中磷素養分釋放可能影響較小。施用添加磷素鈍化劑處理的堆肥產品的農田,可以減少糞肥中磷素在作物生長前期不必要的損失,從而增加磷素的潛在利用效率。在作物需磷關鍵期,在水肥管理過程中增施部分氨基酸或者檸檬酸類磷素活化劑肥料可以活化糞肥中被固定的磷素,從而解決磷素供應不足問題。
中國的堆肥技術研究深入,具有先進的規模化堆肥產業,但是未將廢棄物功能化處理與源頭控制磷素面源污染緊密聯系。國內外有較多學者對于糞肥中的磷素鈍化進行了研究,施用的材料包括氧化鈣、氫氧化鈣、碳酸鈣、明礬、氯化鐵、氟化鈣、氧化鎂、紅泥、沸石等[7,9,19-21],但是多集中在將糞肥和鈍化劑直接混合來減少磷素的突發性損失。因此,針對中國農田中存在的氮磷供需失衡問題以及水體中存在的日益嚴重的水體富營養化問題,本試驗利用成熟的堆肥工藝與技術,在糞肥堆肥過程中添加磷素鈍化劑,研究不同類型的鈍化劑與糞肥中磷素的結合方式與形態及其鈍化效果,在廢棄物功能化過程中降低堆體中磷素的活性,以期為糞肥的磷素管理和降低面源污染風險提供技術參考。
試驗在中國科學院遺傳與發育生物學研究所農業資源研究中心欒城生態農業系統試驗站試驗室內進行。堆肥原料為鮮牛糞和青貯玉米秸稈,均取自石家莊市欒城區鼎源牧業奶牛場。試驗所用化學鈍化劑為氧化鈣(CaO)、輕質氧化鎂(MgO)、明礬(KAl(SO4)2·12H2O)和硫酸亞鐵(FeSO4·7H2O),均購自國藥分析純試劑;黏土鈍化劑為蛭石(vermiculite)、沸石(zeolite)、麥飯石(medical stone)和膨潤土(bentonite),均為市場購買;鈍化劑風干后粉碎過60目篩備用。本文共進行添加化學物質(第1批)和黏土礦物(第2批)的2批堆肥試驗,主要原料的基本理化性質如表1所示。

表1 堆肥原料理化性狀
1.2.1 試驗設計
每批堆肥試驗共設置5個處理,反應開始前,將秸稈粉碎至1~5 cm左右的小段,鈍化劑添加量為物料干質量的2.5%;堆肥物料按鮮質量比3:2,即牛糞15 kg、秸稈10 kg混合,然后添加0.25 kg鈍化劑后混合均勻。以未加鈍化劑的堆肥作為對照(CK)處理。第1批堆肥處理:T1(CK1):牛糞+秸稈;T2:牛糞+秸稈+CaO;T3:牛糞+秸稈+MgO;T4:牛糞+秸稈+FeSO4;T5:牛糞+秸稈+ KAl(SO4)2。第2批堆肥處理:M1(CK2):牛糞+秸稈;M2:牛糞+秸稈+蛭石;M3:牛糞+秸稈+沸石;M4:牛糞+秸稈+麥飯石;M5:牛糞+秸稈+膨潤土。
堆肥罐為自制的不銹鋼材質圓筒形密閉反應器,體積為50 L;堆肥周期為35 d,在堆肥第0、3、7、10、14、21、28、35天時翻堆并取樣,部分樣品冷凍處理,用于測定含水率、pH值,部分樣品自然風干粉碎后過1 mm篩,用于測定總磷(TP)、水溶性磷(WEP)、Hedlay磷分級。
1.2.2 樣品分析
1)含水率:稱取鮮樣20 g左右,在烘箱中105 ℃烘干至恒質量后經計算測得。
2)pH值:稱取鮮樣10 g,按固液比1:10,加100 mL去離子水,然后在搖床上25 ℃、180 r/min震蕩0.5 h,用濾紙過濾得浸提液,用校準過的MP522型pH計測定,記錄讀數。
3)全磷(total phosphorus,TP):樣品全磷含量的測定參照中華人民共和國農業行業標準有機肥料測定方法(NY 525-2012)進行。
4)水溶性磷(WEP):參照Kleinman等的方法:稱取1 g風干過1 mm篩的樣品,加100 mL去離子水;在180 r/min、25 ℃下震蕩1 h;然后4 000 r/min,離心10 min,用濾紙過濾得上清液,用鉬銻抗比色法進行測定[22]。
5)磷分組:采用修正的Hedley連續浸提法測定磷分組,該方法簡便易操作,能夠有效區分樣品中的無機磷和有機磷,以及樣品中磷組分的有效性和溶解性,為我們判斷糞便施用到土壤后磷的去向提供依據,其中H2O-P能夠有效地評價糞便磷的環境風險,NaHCO3-P能夠較好的評估糞便磷對作物的有效性。具體步驟為[23-24]:
①稱取0.3g風干粉碎過1 mm篩的樣品于50mL離心管中,加30 mL去離子水,震蕩16 h后(25 ℃、180 r/min),離心(4 ℃、18 000 r/min)10 min,之后收集上層清液并過0.45m(濾膜1),該溶液用于測定H2O-Pt和H2O-Pi。
②將濾膜1上的樣品用少量0.5 mol/L NaHCO3溶液沖回離心管中,然后添加0.5 mol/L NaHCO3溶液,使得離心管中的0.5 mol/L NaHCO3溶液為30 mL,震蕩16 h后,離心(同上),之后收集上層清液并過0.45m(濾膜2),該溶液用于測定NaHCO3-Pt和NaHCO3-Pi。
③將濾膜2上的樣品用少量0.1 mol/L NaOH溶液沖回離心管中,然后添加0.1 mol/L NaOH溶液,使得離心管中的0.1mol/L NaOH溶液為30 mL,震蕩16 h后,離心(同上),之后收集上層清液并過0.45m(濾膜3),該溶液用于測定NaOH-Pt和NaOH-Pi。
④將濾膜3上的樣品用少量1 mol/L HCl溶液沖回離心管中,然后添加1 mol/L HCl溶液,使得離心管中的1 mol/L HCl溶液為30 mL,震蕩16 h后,離心(同上),之后收集上層清液并過0.45m(濾膜4),該溶液用于測定HCl- Pt和HCl- Pi。
⑤將濾膜4上的樣品用少量去離子水沖回離心管中,加少量去離子水到樣品殘渣中,分散樣品(搖晃),然后將其轉移到100 mL的消化管中,加5 mL濃硫酸和0.5 mL 30%過氧化氫,小心搖勻,瓶口放一彎頸小漏斗,放置過夜,在可調電爐上緩慢升溫至硫酸冒煙,取下,稍冷加0.5 mL 30%過氧化氫,小心搖勻,加熱10 min,取下,稍冷再加0.5 mL 30%過氧化氫并分次消煮,直至溶液澄清,再加熱10 min,取下冷卻,用去離子水定容至100 mL,搖勻,靜置澄清或用無磷濾紙過濾后,測定溶液中的磷(殘余態-P)。
無機態磷(Pi)和殘余態-P含量采用鉬銻抗比色法測定。0.5 mol/L NaHCO3和0.1 mol/L NaOH提取液在顯色前應做以下前處理(絮凝提取液中有機質,避免顯色干擾):吸取10 mL提取液至50 mL離心管中;用硫酸溶液調節pH值至1.5,之后在冰箱中放置30 min;離心(4 ℃、18 000 r/min)10 min后,取上清液測定。
全磷(Pt)含量采用過硫酸銨氧化-鉬銻抗比色法測定,有機態磷(Po)含量等于全磷減去無機態磷的差值。
堆肥過程中堆體pH值隨時間的變化如圖1a、1b所示,化學鈍化劑比黏土礦物對堆體pH值的影響更顯著。和對照CK1相比,在堆肥第1周,添加CaO和MgO分別提高堆體0.5~0.7和1.6~2.1個pH值單位;添加KAl(SO4)2在堆肥第0天降低了堆體1個pH值單位。堆肥結束后,CaO處理的堆體pH值接近對照,添加MgO提高堆體1.4個pH值單位;KAl(SO4)2和FeSO4均降低堆體0.6~0.7個pH值單位。黏土礦物對堆體pH值的影響較小,這和前人在2.5%添加量下的研究結果基本一致[15-17,25]。堆肥結束時,添加MgO的堆體pH值為9.36,其他化學和黏土礦物鈍化劑處理堆體pH值均在7~8之間。

圖1 化學和黏土礦物鈍化劑對堆肥過程pH值的影響
堆體pH值的變化和鈍化劑的性質相關。CaO與水反應會生成氫氧化鈣提高pH值,而氫氧化鈣可與堆體的碳酸根離子反應生成中性的碳酸鈣,以及和磷素結合生成穩定磷酸鈣或羥基磷灰石沉淀,因此在堆肥后期未對堆體pH值產生影響;MgO水溶液pH值為10.3,具有堿性氧化物的通性使堆體pH值升高;KAl(SO4)2處理的變化是由于三價鋁離子水解產生氫離子的結果,而FeSO4中的二價鐵離子在堆肥前期被氧化為三價鐵離子之后,三價鐵離子可以水解使堆體pH值降低。添加黏土礦物對堆體pH值的影響較小。
磷素的形態和有效性與pH值的關系密切,不同金屬陽離子與磷酸根結合生成沉淀從而鈍化磷素的最適pH值一般不同。Hsu[26]研究表明,當Al/P、Fe/P的摩爾比介于2~5之間時,鋁離子去除磷素的最佳pH值范圍為5.5~8.0,鐵離子去除磷素的最佳pH值范圍為4.7~7.1;鈣離子沉淀鈍化磷素的pH值在8.0~10.0之間,pH值過高則容易生成Ca(OH)2沉淀[27-28];鎂離子與磷生成鳥糞石(磷酸銨鎂)結晶反應的pH值在8.0~10.0之間[29],生成磷酸鎂的pH值在10.0以上[30],滿足磷素鈍化pH值條件(7~10)。
2.2.1 總磷含量的變化
堆肥過程總磷含量的變化如圖2a、2b所示,在所有處理中,總磷含量均隨著堆肥進程呈現上升趨勢。本試驗所用堆肥罐為密閉反應器,堆肥過程中沒有滲濾液產生,而且磷素幾乎沒有揮發損失;全磷含量的上升是由于堆體的有機物料被微生物分解,以碳、氫、氧、氮等形式揮發損失掉,堆體質量降低,磷元素發生了濃縮效應[31]。不同處理最終磷素含量相對于初始含量增加的比例,與對照處理相比略有不同,這是因為不同添加劑對有機物分解和物料損失的影響不同,導致了不同的濃縮比例[32]。

圖2 化學和黏土礦物添加劑對堆肥過程總磷含量的影響
2.2.2 水溶性磷含量的變化
糞肥中水溶性磷(WEP)的含量是評價糞肥磷素環境風險的有效指標[33],不同處理對堆體WEP的影響如圖3a、3b所示,化學鈍化劑處理的堆體WEP含量和WEP占TP的百分比均明顯低于對照,尤其是在堆肥第0~3天期間,這說明化學鈍化劑很好的降低了糞肥磷素活性;黏土礦物鈍化劑處理對堆體WEP的影響較小。
圖3a顯示,對照CK1處理WEP占TP的百分比呈逐漸下降并趨于穩定的變化趨勢,但MgO、FeSO4和KAl(SO4)2處理WEP占TP的百分比,在堆肥第1周逐漸升高,然后緩慢下降趨于平穩,而CaO處理WEP占TP的百分比則一直下降,然后趨于平穩。添加黏土礦物鈍化劑的處理,WEP占TP的百分比均和對照CK2處理的變化趨勢一致,即逐漸下降并趨于平穩。
堆肥結束時,和對照CK1處理相比,等質量添加不同化學鈍化劑降低WEP的能力依次為:MgO 60.2%,FeSO458.8%,CaO 38.0%,KAl(SO4)228.9%;添加黏土礦物的處理,和對照CK2相比,蛭石和沸石分別使WEP占TP的百分比降低了11.7%和17.3%,而麥飯石和膨潤土則基本沒有效果。
對照處理WEP占TP的百分比逐漸下降并趨于穩定,說明堆肥化有利于磷素的穩定,其原因可能是WEP主要由可溶的磷酸鹽組成,隨著堆肥進行容易被堆體物料吸附和與堆體物料中的金屬離子反應變為更穩定的形態[34-35]。
添加Ca、Mg、Fe、Al的處理,由于和磷酸根發生化學反應生成了各種磷酸鈣鹽、磷酸銨鎂和磷酸鎂、磷酸亞鐵和磷酸鐵、磷酸鋁等沉淀[27-30,36],所以在堆肥初始時迅速將磷素沉淀轉化為穩定態,Moore等的研究也得到了相似的結果[7]。MgO處理的WEP占TP的百分比在堆肥初期升高的原因,可能是因為磷酸銨鎂中的磷素可以緩慢釋放,而且磷酸銨鎂易溶于熱水[37],第一周為堆肥高溫期,磷酸銨鎂溶解釋放了磷素,導致WEP的比例上升。Cooke等提出,在pH值較低時形成磷酸鐵和磷酸鋁,而當pH值升高時會有氫氧化鐵和氫氧化鋁生成,氫氧化鐵/鋁絮凝物通過吸附作用鈍化磷素,其鈍化能力較弱[38],FeSO4處理堆體pH值在堆肥第1周上升了1個單位,KAl(SO4)2處理上升了2個pH值單位,pH值升高會造成鐵鋁氫氧化物(氧化物)對于磷素的專性吸附能力降低,這可能是造成添加鐵鋁鹽處理WEP比例上升的原因。添加CaO的處理,堆體磷素隨著堆肥進程,逐漸被轉化為穩定態磷素,使WEP的比例逐漸下降。
黏土礦物多為硅酸鹽層狀結構,膨潤土則層間包含可交換的無機陽離子,這種特殊的結構和性能決定了黏土具有強的吸附能力,因而對磷具有良好的吸附性能[39],隨著堆肥進程WEP的比例逐漸下降。

圖3 化學和黏土礦物添加劑對堆肥過程水溶性磷含量以及占總磷百分比的影響
2.2.3 Hedley磷分級的變化
相比于WEP和TP,磷分級更能反映出添加不同鈍化劑對磷素形態轉化的影響。Hedley連續浸提法中,H2O-P是活性最強的磷素形態,主要包括易溶于水的無機磷和部分有機磷;NaHCO3-P是活性較強的磷素形態,主要是被礦物吸附的磷素,包括無機和有機磷,是作物可利用的有效磷;NaOH-P是中穩定性的磷素形態,主要是鐵鋁等物質通過化學沉淀和吸附的磷素;HCl-P是高穩定性的磷素形態,主要是與鈣結合生成的沉淀;Residual-P是最穩定的磷素形態,主要是難分解的有機磷[40]。
各處理不同磷素組分占總磷的比例見圖4。與對照相比,添加CaO和MgO主要促進了H2O-Pi,向更穩定態的NaHCO3-Pi、HCl-P(Pi和Po)、Residual-P轉化。添加FeSO4和KAl(SO4)2主要促進了H2O-Pi,向更穩定態的NaOH-Pi、Residual-P轉化。對于黏土礦物鈍化劑,和對照相比,各處理均觀察到了不穩定態磷H2O-P和NaHCO3-P的略微降低,穩定態磷HCl-Pi的略微升高。
添加CaO和MgO分別使H2O-Pi減少43.5%、69.3%;使NaHCO3-Pi增加25.5%、51.9%,HCl-Pi增加52.2%、15.6%。添加FeSO4和KAl(SO4)2分別使H2O-Pi減少60.4%、20.0%;使NaOH-Pi增加428.3%、149.9%。添加FeSO4和KAl(SO4)2還使NaOH-Po分別減少12.0%、56.9%。由于有機磷被微生物逐漸礦化,各處理H2O-Po和NaHCO3-Po的含量均非常少。對于Residual-P,化學物質的添加均使其增加10%左右,說明可能有非常難容的磷酸鹽沉淀生成。
添加黏土礦物對磷素的穩定效果以及形態轉化的影響微弱;綜合來看,以沸石效果最好,其次是蛭石,磷素從不穩定態向穩定態轉化的比例在10%左右。而麥飯石和膨潤土效果較差。
添加CaO和MgO均會提高堆體pH值,增加堆體中非穩定態鈣磷向穩定態轉化。但是隨著堆肥過程的進行,CaO和堆體中CO2反應,會造成pH值緩慢下降,如圖1所示。由于鈣磷的穩定性與pH值關系很緊密,所以堆肥結束后,MgO處理的WEP含量要低于CaO處理。此外,CaO和MgO本身可與堆體磷素發生化學反應生成了磷酸鈣、羥基磷灰石等鈣結合磷和鳥糞石、磷酸銨鎂等鎂結合磷(方程式(1)(2))[27-30]。而Hedley磷分組中HCl-P正好是與鈣、鎂結合的磷,另外添加CaO和MgO可能增加了堆體鈣、鎂離子含量,提高了礦物結合磷(NaHCO3-P)的含量。添加FeSO4和KAl(SO4)2對于堆體中磷素的固定和堆體pH值也關系密切,Cooke等[38]的試驗結果表明,當pH值介于6~8時,Al3+更容易形成Al(OH)3,而Al(OH)3可以和堆體中磷素發生羥基交換,生成氫氧化鐵/鋁吸附磷(方程式(3)(4))[36],提高了堆體磷組分中鐵鋁結合態磷的含量,而Hedley磷分組中NaOH-P正好是與鐵、鋁結合的磷。
3Ca2++2PO43-→Ca3(PO4)2;
5Ca(OH)2+3H2PO4-+3H+→Ca5(PO4)3(OH) + 9H2O(1)
Mg2++NH4++PO43-→MgNH4PO4;
3Mg2++2PO43-→ Mg3(PO4)2(2)
Fe(OH)3+PO43-→Fe(OH)y(PO4)z(3)
Al(OH)3+ PO43-→ Al(OH)y(PO4)z(4)
Peak等[41]利用X射線吸收近邊結構(XANES)得出,向家禽糞便中添加明礬導致磷吸附在氫氧化鋁上,而不是以磷酸鋁的形式沉淀。另外Hunger等[42]利用核磁共振研究用明礬處理過的家禽糞便中磷素形態間的轉化,結果揭示磷素化合物存在的形態容易受到環境條件的影響。
黏土礦物對磷素的吸附能力和其化學組成密切相關,而pH值、陽離子交換能力CEC和比表面的影響較小。黏土礦物中鈣、鐵、鋁等氧化物或其他形態化合物含量越多,對磷素的吸附能力越強;而且黏土礦物吸附磷素后,對磷素形態轉化的影響也與其化學組成有關,鈣、鐵、鋁物質含量較高的黏土礦物,其相應轉化為鈣磷、鐵磷、鋁磷的含量就高[43-44]。
Hedley磷素分級方法通過不同浸提劑對樣品的連續浸提,能夠很好的評價穩定態磷和非穩定態磷的含量,以及磷素可能存在的一些形態,但是,不同鈍化劑的添加,促使了哪些具體形態磷素之間的相互轉化,有待進一步研究。

注:Pi為無機態磷,Po為有機態磷。
從本文結果來看,添加CaO、MgO、FeSO4和KAl(SO4)2分別使水溶性磷(WEP)占總磷(TP)的比例下降38.0%、60.2%、58.8%和28.9%;添加蛭石和沸石分別使WEP占TP的百分比下降11.7%和17.3%,而麥飯石和膨潤土則基本沒有效果。等質量添加下黏土礦物鈍化磷素的效果遠不如化學物質,這一方面是因為通過吸附作用結合的磷素,其穩定性本身就弱,另一方面,相比于純的化學試劑,其添加量相對較少。添加MgO明顯提高了堆體pH值,其他化學和黏土鈍化劑對堆體pH值影響較小,至堆肥結束時MgO處理的堆體pH值為9.36,這可能會影響堆肥進程和增加氮損失,因此綜合而言,添加FeSO4、KAl(SO4)2、沸石和蛭石是鈍化糞肥中磷素,降低糞肥磷素污染環境風險較好的材料。
[1] Lewandowski J, Schauser I, Hupfer M. Long-term effects of phosphorus precipitations with alum in hypereutrophic Lake Susser See (Germany)[J]. Water Research, 2003, 37(13): 3194-3204.
[2] Bergstr?m L, Kirchmann H, Djodjic F, et al. Turnover and losses of phosphorus in Swedish agricultural soils: Long-term changes, leaching trends, and mitigation measures[J]. Journal of Environmental Quality, 2015, 44(2): 512-523.
[3] 馬林,王方浩,劉東,等. 河北省畜禽糞尿養分資源分布及其污染潛力分析[J]. 河北農業大學學報,2006,29(6):99-103.
Ma Lin, Wang Fanghao, Liu Dong, et al. Assessment of the production of animal manure and its pollution potential in Hebei province[J]. Journal of Agricultural University of Hebei, 2006, 29(6): 99-103. (in Chinese with English abstract)
[4] 嚴正娟. 施用糞肥對設施菜田土壤磷素形態與移動性的影響[D]. 北京:中國農業大學,2015.
Yan Zhengjuan. Effects of Manure Application on the Form and Mobility of Soil Phosphorus in Vegetable Greenhouse[D]. Beijing: China Agricultural University, 2015. (in Chinese with English abstract)
[5] Koopmans G F, Chardon W J, Mcdowell R W. Phosphorus movement and speciation in a sandy soil profile after long-term animal manure applications[J]. Journal of Environmental Quality, 2007, 36(1): 305-315.
[6] 陳安磊,王凱榮,謝小立,等. 不同施肥模式下稻田土壤微生物生物量磷對土壤有機碳和磷素變化的響應[J]. 應用生態學報,2007,18(12):2733-2738.
Chen Anlei, Wang Kairong, Xie Xiaoli, et al. Responses of microbial biomass P to the changes of organic C and P in paddy soils under different fertilization systems[J]. Chinese Journal of Applied Ecology, 2007, 18(12): 2733-2738. (in Chinese with English abstract)
[7] Moore P A, Miller D M. Decreasing phosphorus solubility in poultry litter with aluminum, calcium, and iron amendments[J]. Journal of Environmental Quality, 1994, 23(2): 325-330.
[8] Shreve B R, Moore P A, Daniel T C, et al. Reduction of phosphorus in runoff from field-applied poultry litter using chemical amendments[J]. Journal of Environmental Quality, 1995, 24(1): 106-111.
[9] Moore P A, Daniel T C, Edwards D R, et al. Effect of chemical amendments on ammonia volatilization from poultry litter[J]. Journal of Environmental Quality, 1995, 24(2): 293-300.
[10] 楊宇,魏源送,劉俊新. 鎂鹽添加對豬糞堆肥過程中氮、磷養分保留的影響[J]. 環境科學,2008,29(9):2672-2677.
Yang Yu, Wei Yuansong, Liu Junxin. Effect of magnesium malt addition on nutrients conservation during swine manure composting[J]. Environmental Science, 2008, 29(9): 2672-2677. (in Chinese with English abstract)
[11] 鄭易安,王愛勤. 不同方式處理蛭石對磷吸附性能研究[J]. 應用化工,2010,39(2):204-208.
Zheng Yian, Wang Aiqin. Phosphate adsorption using vermiculite with different treatment methods[J]. Applied Chemical Industry, 2010, 39(2): 204-208. (in Chinese with English abstract)
[12] 吳鵬,陸爽君,徐樂中,等. 改性沸石濕地脫氮除磷效能及機制[J]. 環境科學,2017,38(2):580-588.
Wu Peng, Lu Shuangjun, Xu Lezhong, et al. Efficiency and mechanism of nitrogen and phosphorus removal in modified zeolite wetland[J]. Environmental Science, 2017, 38(2): 580-588. (in Chinese with English abstract)
[13] 陳琳荔,鄒華. 改性麥飯石對水中氮磷的去除[J]. 食品與生物技術學報,2015,34(3):283-290.
Chen Linli, Zhou Hua. Experimental study on removal of ammonium and phosphate in simulation river water by modified medical stone[J]. Journal of Food Science and Biotechnology, 2015, 34(3): 283-290. (in Chinese with English abstract)
[14] 聶錦旭,唐文廣,劉汨,等. 有機-無機復合膨潤土的制備及其對磷吸附特性研究[J]. 環境工程學報,2011,5(7):1572-1575.
Nie Jinxu, Tang Wenguang, Liu Mi, et al. Study on adsorption properties of phosphor with inorganic-organic composite modified bentonite in wastewater[J]. Chinese Journal of Environmental Engineering, 2011, 5(7): 1572-1575. (in Chinese with English abstract)
[15] Turan N G. Nitrogen availability in composted poultry litter using natural amendments[J]. Waste Management & Research: the Journal of the International Solid Wastes & Public Cleansing Association, ISWA, 2009, 27(1): 19-24.
[16] 鄭瑞生,封輝,李延. 沸石在豬糞堆肥過程中保氮效果研究[J]. 環境科學學報,2010,30(5):1017-1022.
Zheng Ruisheng, Feng Hui, Li Yan. Nitrogen conservation in swine manure compost with zeolite usage[J]. Acta Scientiae Circumstantiae, 2010, 30(5): 1017-1022. (in Chinese with English Abstract)
[17] Quan W, Zhen W, Awasthi M K, et al. Evaluation of medical stone amendment for the reduction of nitrogen loss and bioavailability of heavy metals during pig manure composting[J]. Bioresource Technology, 2016, 220: 297-304.
[18] 姜繼韶. 豬糞秸稈高溫堆肥添加劑的選擇及其保氮機理的研究[D]. 楊凌:西北農林科技大學,2012.
Jiang Jishao. Study on Selection and Mechanism of Nitrogen Conservation Additives During Swine Manure-Straw Composting[D]. Yangling: Northwest A&F University, 2012. (in Chinese with English abstract)
[19] Anderson K R, Moore P A, Miller D M, et al. Phosphorus leaching from soil cores from a twenty-year study evaluating alum treatment of poultry litter[J]. Journal of Environmental Quality, 2018, 47(3): 530-537.
[20] Huang L, Moore P A, Kleinman P J, et al. Reducing phosphorus runoff and leaching from poultry litter with alum: Twenty-year small plot and paired-watershed studies[J]. Journal of Environmental Quality, 2016, 45(4): 1413-1420.
[21] Brennan R B, Wall D P, Fenton O, et al. Impact of chemical amendment of dairy cattle slurry on soil phosphorus dynamics following application to five soils[J]. Communications in Soil Science & Plant Analysis, 2014, 45(16): 2215-2233.
[22] Kleinman P, Sullivan D, Wolf A, et al. Selection of a water-extractable phosphorus test for manures and biosolids as an indicator of runoff loss potential[J]. Journal of Environmental Quality, 2007, 36(5):1357-1367.
[23] He Z, Senwo Z N, Mankolo R N, et al. Phosphorus fractions in poultry litter characterized by sequential fractionation coupled with phosphatase hydrolysis[J]. International Journal of Food Agriculture & Environment, 2006, 4: 304-312.
[24] Pagliari P H, Laboski C A. Investigation of the inorganic and organic phosphorus forms in animal manure[J]. Journal of Environmental Quality, 2012, 41: 901-910.
[25] Wang Q, Li R, Cai H, et al. Improving pig manure composting efficiency employing Ca-bentonite[J]. Ecological Engineering, 2016, 87: 157-161.
[26] Hsu P H. Comparison of iron(III) and aluminum in precipitation of phosphate from solution[J]. Water Research, 1976, 10(10): 903-907.
[27] 陳小光,張萌,厲帥,等. 磷酸鈣鹽結晶除磷工藝性能研究[J]. 環境工程學報,2013,7(7):2552-2556.
Chen Xiaoguang, Zhang Meng, Li Shuai, et al. Performance of calcium phosphates crystallization process for phosphorus removal[J]. Chinese Journal of Environmental Engineering, 2013, 7(7): 2552-2556. (in Chinese with English abstract)
[28] 王鑄,杜兵,劉寅. 羥基磷酸鈣結晶除磷研究進展[J]. 環境工程,2015,33(11):16-20.
Wang Zhu, Du Bing, Liu Yin. Research advances in phosphorus removal by hydroxyapatite crystallization[J]. Environmental Engineering, 2015, 33(11): 16-20. (in Chinese with English abstract)
[29] Rahman M M, Liu Y H, Kwag J H, et al. Recovery of struvite from animal wastewater and its nutrient leaching loss in soil[J]. Journal of Hazardous Materials, 2011, 186(2/3): 2026-2030.
[30] 張冬梅,程麗華,郭小慧,等. 鳥糞石沉淀法用于養豬場污水前處理的影響因素研究[J]. 華南師范大學學報:自然科學,2012,44(2):99-102.
Zhang Dongmei, Cheng Lihua, Guo Xiaohui, et al. Optimizing conditions for struvite precipitation as pre-treatment of swine wastewater[J]. Journal of South China Normal University: Natural Science Edition, 2012, 44(2): 99-102. (in Chinese with English Abstract)
[31] 胡雨彤,時連輝,劉登明,等. 添加硫酸對牛糞堆肥過程及其養分變化的影響[J]. 植物營養與肥料學報,2014(3):718-725.
Hu Yutong, Shi Lianhui, Liu Dengming, et al. Effects of adding sulphuric acid on composting process of cattle manure and changes of main nutrients[J]. Journal of Plant Nutrition and Fertilizer, 2014(3): 718-725. (in Chinese with English Abstract)
[32] 徐同寶,李呂木,甄長豐,等. 不同微生物對豬糞堆肥過程及其養分狀況的影響[J]. 農業工程學報,2008,24(11):217-221.
Xu Tongbao, Li Lümu, Zhen Changfeng, et al. Effects of different microorganism consortiums on composting process of pig manures and their nutrient status[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(11): 217-221. (in Chinese with English abstract)
[33] Kleinman P J A, Sharpley A N, Wolf A M, et al. Measuring water-extractable phosphorus in manure as an indicator of phosphorus in runoff[J]. Soil Science Society of America Journal, 2002, 66(6): 2009-2015.
[34] Li H, Wang Y, Shi L Q, et al. Distribution and fractions of phosphorus and nitrogen in surface sediments from Dianchi Lake, China[J]. International Journal of Environmental Research, 2012, 6(1): 195-208.
[35] Forbes M G, Dickson K L, Farida Saleh A, et al. Recovery and fractionation of phosphorus retained by lightweight expanded shale and masonry sand used as media in subsurface flow treatment wetlands[J]. Environmental Science & Technology, 2005, 39(12): 4621-4627.
[36] Ripley P G. Nutrition removal-an American experience[J]. Water Pollut, Control Fed, 1974, 46: 406-416.
[37] Gonzálezponce R, Lópezdesá E G, Plaza C. Lettuce response to phosphorus fertilization with struvite recovered from municipal wastewater[J]. Hortscience A Publication of the American Society for Horticultural Science, 2009, 44(2): 426-430.
[38] Cooke G D, Welch E B, Peterson S A. Lake and Reservoir Restoration[M]. Freshwater Science, 1986.
[39] Gérard F. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils: A myth revisited[J]. Geoderma, 2016, 262: 213-226.
[40] Hedley M J, Stewart J W B, Chauhan B S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations[J]. Journal of the Soil Science Society of America, 1982, 46(5): 970-976.
[41] Peak D, Sims J T, Sparks D L. Solid-state speciation of natural and alum-amended poultry litter using XANES spectroscopy[J]. Environmental Science & Technology, 2002, 36(20): 4253-4261.
[42] Hunger S, Cho H, Sims J T, et al. Direct speciation of phosphorus in alum-amended poultry litter: Solid-state 31P NMR investigation[J]. Environmental Science & Technology, 2004, 38(3): 674-681.
[43] 袁東海,高士祥,景麗潔,等. 幾種粘土礦物和粘土對溶液中磷的吸附效果[J]. 生態與農村環境學報,2004,20(4):60-63.
Yuan Donghai, Gao Shixiang, Jing Lijie, et al. Phosphorus adsorption of some clay minerals and soils[J]. Journal of Ecology and Rural Environment, 2004, 20(4):60-63. (in Chinese with English abstract)
[44] 袁東海,張孟群,高士祥,等. 幾種粘土礦物和粘粒土壤吸附凈化磷素的性能和機理[J]. 環境化學,2005,24(1):7-11.
Yuan Donghai, Zhang Mengqun, Gao Shixiang, et al. The abilities and mechanisms of adsorption phosphorus in some clay minerals and soils[J]. Environmental Chemistry, 2005, 24(1): 7-11. (in Chinese with English abstract)
Effects of chemical and clay mineral additives on phosphorus transformation during cow manure and corn stover composting
Gao Binbin1, Wang Xuan2, Wang Jue1, Fan Bingqian1, Chang Ruixue1, Chen Qing1※
(1.,,,100193,; 2.,;,;-,050021,)
Although livestock manure is an excellent fertilizer and its composting can become into more stable and nutritional organic fertilizer, it typically has a low N/P ratio compared with crop requirements. The overuse of manures leads to serious phosphorus (P) accumulation in soil, especially in vegetable and fruit production process that increased the potential of P loss in runoff making it became one of the major P sources to eutrophic water bodies. In order to decrease the risk of P runoff from fields with organic fertilizer input, several kinds of additives in organic fertilizer were studied in recent years. In current study, two kinds of additives, chemical substances (calcium oxide (CaO), magnesium oxide (MgO), ferrous sulfate (FeSO4·7H2O), alum (KAl(SO4)2·12H2O),) and clay mineral (vermiculite, zeolite, medical stone, bentonite), were chosen to study their potential effects on P stabilization, forms and transformation during cow manures and corn stalk composting. The addition ratio of additives was 2.5% of the dry weight of the compost material in different treatments. The evolution of total phosphorus (TP) and phosphorus speciation of compost were analyzed during the 35 days’ composting process, while the solid samples were taken at various stages (the 0, 3rd, 7th, 10th, 14th, 21st, 28th, 35thday) of composting. Furthermore, the P contents and fractionation in composted products on 35thday were analyzed using Hedley P fractionation method, and were sequentially extracted by deionized water (H2O-P), NaHCO3(NaHCO3-P), NaOH (NaOH-P), HCl (HCl-P) and H2SO4-H2O2(Residual-P). The results showed that compared with the control treatment, the addition of CaO, MgO, FeSO4and KAl(SO4)2significantly decreased the percentage of water extracted phosphorus (WEP) in TP by 38.0%, 60.2%, 58.8% and 28.9% after 35 days composting, respectively. Adding the vermiculite and zeolite decreased the percentage of WEP in TP by 11.7%, 17.3%, respectively. The results of Hedley P fractionation showed that the addition of CaO and MgO mainly decreased the proportion of H2O-Pi, whereas increased the proportion of NaHCO3-Pi, HCl-Piand HCl-Po, residual-P. The addition of FeSO4and KAl(SO4)2mainly decreased the proportion of H2O-Pi, whereas increased the proportion of NaOH-Piand NaOH-Po, residual-P. For the addition of clay minerals, we all observed a slight decrease in H2O-Piand NaHCO3-Pi, and a slight rise in HCl-Pi. The addition of MgO greatly increased the pH value, which may delay the composting process and increase ammonia volatilization, while the other additives had little effect on pH value changing. Therefore, FeSO4, KAl(SO4)2, zeolite and vermiculite had relative better performance for stabilizing P during cow manure composting.
manures; composting; phosphorus; passivation; chemical amendments; clay mineral amendments
10.11975/j.issn.1002-6819.2019.02.031
S141.4
A
1002-6819(2019)-02-0242-08
2018-04-25
2019-01-11
國家重點研發計劃“京津冀設施農業面源和重金屬污染防控技術示范”(2016YFD0801006);國家重點研發計劃“黃淮海集約化奶牛養殖污染防治技術模式研究與示范”(2017YFD0801404);河北省農業關鍵共性技術攻關專項(18226607D);河北現代農業產業技術體系奶牛產業創新團隊(HBCT2018120206);河北現代農業產業技術體系蛋肉雞產業創新團隊(HBCT2018150209)
郜斌斌,研究方向:固體廢棄物處理與資源化利用,土壤污染修復。Email:binbgao@126.com
陳 清,博士,教授,博士生導師,研究方向:設施土壤修復與面源污染防控,廢棄物資源肥料化利用。Email:qchen@cau.edu.cn
郜斌斌,王 選,王 玨,樊秉乾,常瑞雪,陳 清. 化學和黏土礦物鈍化劑對牛糞秸稈堆肥磷形態轉化的影響[J]. 農業工程學報,2019,35(2):242-249. doi:10.11975/j.issn.1002-6819.2019.02.031 http://www.tcsae.org
Gao Binbin, Wang Xuan, Wang Jue, Fan Bingqian, Chang Ruixue, Chen Qing. Effects of chemical and clay mineral additives on phosphorus transformation during cow manure and corn stover composting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(2): 242-249. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2019.02.031 http://www.tcsae.org