李慧芳,王修慧,郭秭君,錢才富
(北京化工大學 機電工程學院,北京 100029)
螺栓法蘭墊片接頭是常用的靜密封連接形式。目前廣泛使用的設計計算方法是ASMEⅧ-1附錄2推薦的計算規則[1]。該方法是通過引入墊片系數m和y來保證強度,從而間接保證其密封性[2]。盡管該方法在使用中沒有出現過大的問題,但是,對于密封性要求高的容器,法蘭按照該規范計算不能保證嚴密性。因此,美國 ASME鍋爐和壓力容器委員會提出基于泄漏率準則的設計方法[3]。按照不同工藝對接頭泄漏的要求,將泄漏率定義為單位時間通過單位密封長度的質量,按其緊密程度分級為經濟、標準、緊密、嚴密和極密,不同的緊密程度規定了不同的泄漏率。本文從控制泄漏率的角度對目前關于泄漏率計算的各種模型,泄漏失效預測的模型進行了概述,并分析影響泄漏率的關鍵因素,為今后更好地優化模型以及更好地控制泄漏量的大小提供參考。
計算泄漏率的關鍵是要分析影響泄漏率的關鍵因素,提出合適的泄漏率計算模型來計算接頭的泄漏率。本節介紹了工程上常見的幾種泄漏率計算模型,并對各種模型的優缺點進行了評述。
顧伯勤根據多孔介質中氣體的流動來描述墊片的泄漏,通過圖算法來預測螺栓法蘭墊片接頭的泄漏率[4]。該方法可以方便直觀地通過工作壓力、介質粘度等已知參數得到泄漏率,在工程上具有一定的意義。但是,該方法并沒有考慮溫度變化對墊片性能的影響[4],也沒有考慮多孔介質在工作壓力作用下流道的變化。 因此,其計算結果只在一定范圍內適用。
劉麟等以墊片應力的徑向分布規律為基礎,提出基于墊片有效密封寬度的泄漏率計算方法[5]。該方法得到的泄漏率較文獻[4]中的預測方法更為精確。其原因是文獻[4]中采用墊片平均應力對接頭泄漏率進行計算,沒有考慮不均勻分布的墊片徑向應力。研究認為,接頭的泄漏率對墊片外緣的最大應力更為敏感,但文中沒有給出墊片最大應力與泄漏率的關系[6]。
李國蒙采用單因素分析法系統分析了影響螺栓法蘭接頭密封的各種因素,得到了泄漏率隨不同影響因素之間的變化關系[7]。但是,分析中未考慮這些因素的綜合影響。研究還針對墊片蠕變性能和壓縮回彈性能,提出了基于時間的泄漏率模型[7],補充了文獻[4]中未考慮溫度變化的不足。 研究認為泄漏率與時間成冪指數關系,泄漏率隨時間的增加逐步增大,當時間達到一定程度后,泄漏率趨于穩定[7]。
馮秀等從理論[8]和實驗[9]均證實密封表面分形維數對螺栓法蘭接頭的密封有直接的影響,并給出了泄漏率與密封表面形貌的關系[8]。研究認為接頭的泄漏隨分形維數增大而減小,該研究可以指導金屬墊片密封表面的加工[8];或已知泄漏率對密封連接進行設計[9]。但是,該模型在推導過程中假定法蘭沒有偏轉[8],這與實際情況不太相符。研究者在隨后的研究中推導了法蘭偏轉導致截面變化的變截面泄漏率計算式[10]。但文獻[8-10]模型中包含了大量基于試驗數據的經驗回歸系數,工程上應用不太方便[11]。
黃曉明等從泄漏的物理本質出發,提出了金屬墊片泄漏率計算模型[11]。該模型以滲流力學與分形接觸力學為基礎,可以實現不同密封介質、密封材料和工況條件之間的換算,為墊片密封泄漏率分析提供依據[11-13],大大擴大了模型的使用范圍。
莊法坤等以靜力學分析為基礎,并耦合接頭螺栓力,得到了石墨纏繞墊片法蘭接頭的泄漏率[14]。研究認為,泄漏率同總螺栓力之間呈對數線性關系,該研究可以在已知螺栓力的情況下估算泄漏率的大小,為工程實際提供了方便。
Arghavani等提出基于模糊決策系統的泄漏率計算模型,該模型的思想和實現基于推理的組合規則,考慮了氣體壓力、墊片偏斜和泄漏率等因素,可以用于墊片選型[15-16]。文獻還提出了在給定的操作條件下(例如施加的負載、氣體壓力和泄漏率)下選擇墊片的方法[16]。
沈軼等對法蘭接頭故障樹底事件的結構重要度進行了分析,根據重要度大小研究了造成法蘭密封失效的主要原因[17]。孫振國等建立了接頭泄漏失效為頂事件的故障樹,將模糊重要度中值法引入螺栓法蘭接頭的故障樹分析中,得到影響泄漏失效的主要因素,并給出相應的泄漏預防措施[18-19]。王堃基于故障樹方法,確定了與泄漏事故有關的各種因素,建立了螺栓法蘭接頭泄漏的故障樹模型,給出其泄漏失效概率的計算方法[20]。
王程龍采用用蒙特卡洛法,應用Matlab對隨機變量進行隨機抽樣,計算法蘭泄漏的概率[21]。該方法可以用來有效評價壓力容器管道的安全。
3.1.1 墊片形式
墊片對于螺栓法蘭接頭的泄漏有較大影響。安源勝等對非線性墊片的螺栓法蘭接頭進行了分析,得到了相同厚度不同寬度墊片連接中法蘭的應力分布[22]。研究認為,在相同螺栓預緊力下窄面墊片較寬墊片和平墊片有較好的密封性能[22]。
梁立軍等研究了柔性石墨纏繞墊的密封性能,分析了非線性墊片應力回彈曲線拐點應力與泄漏率的關系[23]。研究認為,墊片的拐點應力和變形與墊片的尺寸和墊片材料性能有關。范淑玲等研究了石墨密封墊片的高溫力學性能[24]。研究認為,石墨墊片的壓縮量和回彈量隨溫度的變化呈現不同的變化規律,壓縮量隨溫度升高而增大,回彈量隨溫度升高而減小;研究者還實驗研究了墊片接觸應力與溫度的關系,為接頭的密封設計提供了參考[24]。
3.1.2 墊片應力
蔡仁良等分析了墊片應力、墊片系數和不同標準設計準則的關系,確定了基于容許泄漏率的墊片最小工作應力,為安裝法蘭接頭的密封安全性提供了保證[25]。蔡暖妹等分析了影響墊片應力的各種因素,認為墊片應力在預緊和工作過程中經歷一個逐漸衰減的過程,要維持法蘭接頭的密封性能,安裝墊片應力在材料允許的范圍內應盡可能大[26]。
陳圓等采用有限元法對螺栓法蘭接頭進行了靜力學分析和熱分析,研究了在內壓作用下墊片平均應力的變化,以及墊片應力隨溫度的變化[27]。該研究結果可為螺栓法蘭接頭完整性評價提供參考。
Murali Krishna等采用有限元方法研究了石棉填充、石墨填充和聚四氟乙烯纏繞式墊片的密封性能。研究結果表明,不同的墊片類型和法蘭盤厚度會導致墊片徑向應力分布不均勻性的差異[28]。進一步研究發現,即使法蘭旋轉遠低于 ASME規范規定的0.3°,法蘭接頭也可能發生泄漏,該研究說明保持最小接觸應力的重要性,該研究結果與文獻[25-26]一致。
3.2.1 螺栓預緊方式
對法蘭密封而言均勻的螺栓載荷是十分必要的。喻健良等對接頭的螺栓加載方式進行了實驗研究,比較了LEGACY法加載和JIS B 2251法加載對法蘭密封的影響[29]。研究認為不同的加載方式都可以達到較為平均的螺栓載荷,但LEGACY法與JIS B 2251法相比,加載繁瑣,操作中易出錯[29]。試驗發現以扭矩增量全順次加載可以獲得較為均勻的螺栓載荷,但沒有給出加載次數對密封性能的影響。王璐等采用星形螺栓加載方式,分析了加載過程中螺栓載荷和墊片應力的變化,認為按照星形螺栓加載方式會產生較大的螺栓載荷分散性,從而使墊片接觸應力的分布不均勻[30]。張志明分析了順序加載和兩種不同的星形加載方式對螺栓載荷和墊片應力的影響,并給出了不同加載方式達到目標螺栓載荷的加載步數[31]。
3.2.2 螺栓安裝載荷
安裝不當也是引起法蘭失效的主要原因。蔡仁良等給出了最小螺栓載荷,最大允許螺栓載荷,最大可用螺栓載荷和安裝螺栓載荷之間的關系[32],給工程設計人員提供了參考[33]。蔣小文等對螺栓法蘭連接中螺栓的加載方式、加載順序以及螺栓預緊力大小確定進行了分析,提出了一種將壓力及溫度加載考慮在內的螺栓預緊力確定方法[33],并針對工程實例比較了不同螺栓預緊力的確定方法[34]。
3.3.1 法蘭形式和選用
法蘭密封失效的另外一個原因是由于法蘭剛度不足引起的[35]。Abid等使用有限元法對金屬與金屬接觸法蘭進行了參數化研究,分析了壓力容器法蘭在內壓下的應力和位移值,在分析過程中采用單因素分析法,分析了法蘭厚度、螺栓預應力和法蘭錐角的影響。此外,作者還將法蘭表面無錐角法蘭幾何結構的結果與根據 ASME、 PD5500和 EN13445第3部分得出的預測結果進行了比較,給出了無泄漏條件下的最佳法蘭形式和尺寸[36]。應道宴等系統分析了法蘭的設計選用規則并對法蘭承載能力進行了評估[37]。
3.3.2 法蘭密封面
廖建敏等采用有限元法研究了四種密封面結構的密封接觸壓力。研究給出了在不同工況下不同密封面的密封效果。環形密封的密封面較凹凸面密封、榫槽面密封和凸面密封有較好的密封效果;其中,環形密封與凹凸面密封結構與突面密封與榫槽面密封相比對軸向力作用不敏感。因此,密封面的接觸壓力不易出現削弱[38]。
3.3.3 法蘭剛度和轉角
法蘭由于剛性不足引起墊片的預緊應力在操作過程中下降會引起接頭的泄漏失效[24,35,38]。匡良明等采用解析法推導了法蘭剛度與偏轉角的關系,給出了不同法蘭偏轉角計算式,對不同法蘭偏轉角極限值的確定提供了參考[39-40]。冉振等分別研究了法蘭密封環尺寸、螺栓預緊力和法蘭剛度對其密封性能的影響;結果表明,密封環外徑對法蘭密封環的應力分布均勻性有顯著影響,而法蘭剛度和螺栓預緊力對法蘭密封環的應力分布均勻性無明顯影響[41]。
螺栓法蘭墊片接頭是常用的靜密封連接形式。本文對螺栓法蘭墊片接頭密封性能進行了文獻綜述,所得主要結論如下:
(1)文獻中給出了7種泄漏率計算模型,分別為基于平均應力計算模型、基于墊片有限寬度計算模型、基于時間計算模型、基于螺栓力計算模型、基于分形參數的金屬墊片計算模型、基于滲流力學計算模型和基于模糊決策支持系統的計算模型。
(2)文獻中給出了2種密封泄漏失效預測模型,分別基于故障樹的泄漏預測概率模型和基于蒙特卡洛法的泄漏概率預測模型。
(3)螺栓法蘭接頭泄漏的關鍵影響因素為墊片的形式、墊片應力、螺栓預緊方式、螺栓安裝載荷、法蘭形式以及法蘭剛度等。