999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Comprehensive multi-omics analysis identified core molecular processes in esophageal cancer and revealed GNGT2 as a potential prognostic marker

2019-02-12 12:58:34GuoMinLiuXuanJiTianChengLuLiWeiDuanWenYuanJiaYunLiuMaoLeiSunYunGangLuo
World Journal of Gastroenterology 2019年48期

Guo-Min Liu, Xuan Ji, Tian-Cheng Lu, Li-Wei Duan, Wen-Yuan Jia, Yun Liu, Mao-Lei Sun, Yun-Gang Luo

Abstract

Key words: Esophageal cancer; Molecular pathogenesis; Enrichment analysis; Gene interaction module; Regulatory factors; GNGT2

INTRODUCTION

Esophageal cancer is one of the world's most common cancers with poor diagnosis and high mortality because of invasiveness and a fast growth rate[1]. From a therapeutic point of view, esophageal cancer can be divided into early esophageal cancer, locally advanced resectable esophageal cancer, locally advanced unresectable esophageal cancer, and metastatic esophageal cancer. Because of the anatomical features of esophageal cancer, esophageal cancer is usually detected in the late stage,which vitally affects the treatment options and prognosis of patients[2].

During the development of esophageal cancer, the rs11473 polymorphism of the miR-483-5p binding site plays a vital role in the 3'-untranslated region of the basigin gene[3]. Single nucleotide polymorphisms in telomerase reverse transcriptase may be associated with susceptibility to esophageal cancer and contribute to the development of esophageal cancer[4]. MiR-20b may play an essential role in the tumorigenesis of esophageal cancer by regulating phosphatase and tensin homolog expression, which may be a potential therapeutic target for the treatment of esophageal cancer[5].Growing evidence has revealed molecular targets for diagnosis and prognosis using bioinformatic analysis in the field of oncology[6-16]. These findings have deepened our understanding of the pathogenesis of esophageal cancer and have guided the direction of our research. However, the molecular pathogenesis of the disease is still elusive.

To explore comprehensively the molecular processes and potential therapeutic targets of esophageal cancer progression, we conducted a systematic module analysis.Overall, our work details the role of multifactorial mediated dysfunction modules in the growth of esophageal cancer and identifies essential genes and related biological processes, finding potential molecular mechanisms and therapeutic targets [G protein subunit gamma transducin 2 (GNGT2)] for esophageal cancer.

MATERIALS AND METHODS

Patient samples and cell lines

All esophageal cancer analyses in this study involving human participants were in accordance with the ethical standards of the Second Hospital of Jilin University and with the Declaration of Helsinki. A total of 40 esophageal cancer patients and healthy control volunteers, who matched for age and sex, were involved in this study.Informed consent was obtained from all participants. The esophageal cancer cell lines EC109 and KYSE70 were kindly provided by Laboratory in The Second Hospital of Jilin University. The cells were maintained in RPMI-1640 medium containing 10%fetal bovine serum.

Quantitative real-time PCR and cell proliferation experiment

Total RNA was extracted from case/control group using TRIzol. The quantitative real time-polymerase chain reaction (PCR) experiment was conducted in a real-time PCR detection system using SYBR Green qPCR Master Mix. Primers were designed and synthesized by Novogene (Beijing, China). Glyceraldehyde 3-phosphate dehydrogenase was used as an internal control. Cell counting kit-8 assay was used to measure cell proliferation. Transfected cells were cultured for 0-96 h and incubated at 37 °C for 2 h. A spectrophotometer (450 nm) was used to quantitate samples.

Data resource

The Cancer Genome Atlas (TCGA) is a joint project of the National Cancer Institute and the American Human Genome Research Institute. High-throughput genomic analysis technology is a useful tool for people to understand better cancer, and it improves their abilities to prevent, diagnose, and treat disease. We downloaded esophageal cancer RNA-Seq data from the TCGA database and screened non-coding RNA (ncRNA)-mRNA interaction pairs with a score ≥ 0.5 from RNA Associated Interaction Database v2.0[17], including 431937 interacting pairs involving 5431 ncRNAs. All human transcription factor target data were downloaded and used in the general database-Transcriptional Regulatory Relationships Unraveled by Sentencebased Text mining v2 database for transcriptional studies, including 2492 transcription factors and 9396 interaction pairs.

Differential expression analysis

In order to explore the molecular process of esophageal cancer staging, we selected four stages of esophageal cancer and normal samples for differential expression analysis, including healthy tissue samplesvsstage 1 disease samples, stage 1 disease samplesvsstage 2 disease samples, stage 2 disease samplesvsstage 3 disease samples,and stage 3 disease samplesvsstage 4 disease samples. We used the limma package for analysis[18-20]. Using the Correct background function, we performed background correction and normalization on the data. The normalize Between Arrays function quantile normalization method can filter out the control probe and the low expression probe. The differentially expressed genes of the data set were identified based on the lmFit and eBayes functions (P< 0.01) using default parameters.

Establishing a protein interaction network to identify esophageal cancer related functional modules

A protein-protein interaction system was constructed based on Search Tool for the Retrieval of Interacting Genes/Proteins database data (score > 500). The gene module of more than 30 nodes was screened throughout the network using the ClusterONE plug-in[18]of the Cytoscape software[19]. We use the Cytoscape plugin CytoHubba[20]to identify hub genes in the module subnet, while CytoHubba contains 12 methods for identifying hub genes. We obtained the top 10 genes and then screened the repeat genes in the 12 sets of genes for survival analysis.

Enrichment analysis

The study of the functions and signal transduction pathways involved in genes contributes to our understanding of the molecular mechanisms of disease. Gene ontology function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed using the R language Cluster profiler package[21].The Cluster profiler is a bioconductor software package that provides statistical analysis of functional clustering of gene sets.

Predictive transcriptional factors and ncRNAs for significant regulatory modules

The transcription and post-transcriptional regulation of genes are often dominated by the regulation of transcription factors (TF) and ncRNA. Therefore, we have scientifically predicted its role in the esophageal cancer dysfunction module. If the regulatory effect between the regulator and the module exceeds 2, and the number of organizational relationships between the regulator and the module is essential(hypergeometric test,Pvalue < 0.01), it can be confirmed that it is a regulator of the critical regulatory module.

RESULTS

Identifying the expression of dysregulated molecules in esophageal cancer

Biologists have conducted many experiments and studies on the pathogenesis of esophageal cancer and have thus identified potential pathogenic genes for the deterioration of esophageal cancer. To observe molecular changes in the progression of esophageal cancer, we performed differential expression analysis based on RNASeq data from four stages of esophageal cancer in the TCGA database. Based on analysis of phase 1 disease samples of normal tissue samples and esophageal cancer,analysis of phase 1 disease samples and stage 2 disease samples, analysis of stage 2 disease samples and phase 3 disease samples, and analysis of stage 3 disease samples and stage 4 disease samples, we obtained differential expression genes (DEGs)associated with each stage of esophageal cancer. A total of 7457 differentially expressed genes were received (Figure 1B). We believe that the presence of these differentially expressed genes is closely related to the development of various stages of esophageal cancer. Of the 7457 DEGs, there were 13 common genes (Table 1). The genes that were continuously down-regulated areCPLX2, DPEP1, EPHA5, SCGB1A1,ST18. The genes that were continuously up-regulated areFGF14, KCNH6,LOC100506136, RGS7, SH3GL2, THBS4(Figure 1A).

Identify functional esophageal cancer staging related modules

Gene module analysis helps us to study the complex collaborative relationships between multiple genes. Based on the protein interaction data of the STING database,the interaction network of differentially expressed genes was constructed, and 14 functional barrier modules were explored. Using the 12 methods in Cyto-hubba, a total of 758 hub genes were identified in the interaction sub-network of the module genes, including the geneSH3GL2, which is continuously up-regulated in Module 8.Further, 23 hub genes shared by the top10 gene set in 12 methods were screened for survival analysis. The results show thatGNGT2in module 6 is the related gene (P=0.014) (Figure 2A). A decrease in survival rate accompanied the high expression ofGNGT2gene, and the expression level ofGNGT2gene was negatively correlated with survival rate. Function and pathway are essential mediators of the physiological response of the disease. We performed GC enrichment analysis on 14 module genes(Figure 2B) and KEGG (Figure 2C). The main biological processes include positive regulation of protein transport, gastric acid secretion, and insulin-like growth factor receptor binding. The main signal transduction pathways involved are the p53 signal transduction, the epidermal growth factor signal transduction, and the epidermal growth factor receptor signal transduction pathways. These pathways play crucial roles in the dysfunctional module for the functions and pathways involved in multiple genes.

TFs and ncRNAs that drive esophageal cancer progression

From the perspective of systems biology and systems genetics, transcription and posttranscriptional regulation of genes have long been recognized as crucial regulators of disease development, while transcription factors and ncRNAs are universal regulators of expression and function. Although the role of TFs and ncRNA regulation of esophageal cancer progression has been evaluated by many biologists, few studies have focused on their overall global effect on dysfunctional mechanisms and the role they play in development. Therefore, in this study, based on the targeted regulationrelationship between TF and ncRNA on the module gene, we performed a pivotal analysis of the conventional module to explore the crucial regulator that regulates the progression of esophageal cancer. The results showed that a total of 54 transcription factors involved 54 TF-module target pairs and 853 ncRNAs involved 944 ncRNA-module regulatory pairs. Statistical analysis revealed that TF HIF1A and ncRNA CRNDE regulate the most dysfunctional modules. These crucial transcription factors and ncRNAs may influence the development and progression of esophageal cancer by mediating dysfunctional modules. Thus, we identified these potential factors as regulators of dysfunction in esophageal cancer. Notably, hsa-miR-330-3p up-regulates the differentially expressed geneSH3GL2throughout the esophageal cancer process,suggesting that hsa-miR-330-3p plays a crucial role in four stages of esophageal cancer.

Table 1 Differential expression of 13 common genes in four different stages of esophageal cancer

GNGT2 expression is upregulated in the esophageal epithelial cells of esophageal cancer and cell lines

To investigate changes inGNGT2expression during esophageal cancer development,samples from esophageal cancer patients (n= 20) and esophagus controls (n= 20)were subjected to quantitative real time-PCR analysis. As shown in Figure 3A,expression ofGNGT2gene was significantly upregulated in the esophageal epithelial cells of esophageal cancer patients. The experiment in esophageal cancer cell lines(EC109 and KYSE70) showed consistent results (Figure 3B) (P< 0.05).

GNGT2 could promote the proliferation of esophageal cancer cell lines

To explore further the role of GNGT2 in the proliferation of EC109 and KYSE70 cells,cells were transfected withGNGT2siRNA. As shown in Figure 3C,GNGT2mRNA expression level was significantly decreased in EC109 and KYSE70 cells. Moreover,the proliferation ofGNGT2transfected group was significantly lower than that of the control group (Figure 3D). Taken together, the above results demonstrated that GNGT2 could promote the proliferation of esophageal cancer cell lines.

DISCUSSION

Figure 1 Synergistic expression of differential genes in four samples of esophageal cancer in patient samples. A: Continuous regulation of common genes in differentially expressed genes in four stages; B: Expression heat map of common genes in samples of differentially expressed genes in four stages.

Esophageal cancer is one of the most deadly cancers, mainly because it is extremely aggressive and has a poor survival rate. Its 5-year survival rate is about 15%-25%[1].The underlying cause of this disappointing low survival rate is that most patients have reached the late stage of disease at the time of detection. For patients with metastatic and unresectable disease, their chances of survival are limited[22]. In the present study, we collected RNA-Seq data from TCGA esophageal cancer and selected four stages of esophageal cancer disease samples and normal samples for differential analysis, and obtained four sets of time series differentially expressed genes. After screening, we found 13 common genes in four groups of DEGs. Komatsuet al[23]studied clinical biomarkers of pulmonary neuroendocrine tumors (LNET) and found that CPLX2 was strongly positive in 16.3% of the examination groups. Importantly,positive CPLX2 expression is associated with lymphatic invasion, pathological staging, and adverse disease-specific survival in LNET patients. It was concluded that CPLX2 is a novel clinical biomarker for LNET[23]. In the study of breast cancer diagnostic markers, Fuet al[24]found that changes in gene expression, such as DPEP1,may lead to cancer progression. DPEP1 has been identified as a prognostic gene for colorectal cancer (CRC). We found thatDPEP1is overexpressed in CRC. After knocking out theDPEP1gene, cells (SW480 and HCT116) exhibited increased apoptosis and attenuated cell proliferation and cell invasion[25]. In the study of CRC,Eisenach[26]found that the expression of DPEP1 was increased in CRC tissues compared with normal mucosa. Zhanget al[27]also noted the DPEP1 gene in the study of pancreatic ductal adenocarcinoma and found that its gene expression was negatively correlated with histological grade and that lower expression ofDPEP1in tumors was associated with poor survival. Chenet al[28]analyzed the gastric cancerassociated Gene Expression Omnibus data and found that thrombospondin 4 (THBS4)was up-regulated in patients with recurrent gastric cancer and was positively correlated with the pathological stage and poor prognosis of gastric cancer. THBS4 stimulates the proliferation of gastric cancer cells. The breast-related gene explored by Huanget al[29]contains the geneTHBS4, which is up-regulated in breast cancer. In the study of hepatocellular carcinoma, Suet al[30]found that knockdown of THBS4 inhibited migration and invasion of hepatocellular carcinoma cells as well as hemangiocarcinoma-induced angiogenesis. THBS4 as a target is very promising for the treatment of advanced liver cancer. Both of the above genes were present in the differential genes of the four stages of esophageal cancer in this study and were continuously down-regulated. Moreover, THBS4 was identified as a clinical biomarker gene and a therapeutic target gene in various cancers. Therefore, we can reasonably speculate that this gene plays an important role in the occurrence and development of esophageal cancer, providing a reasonable direction for further study of esophageal cancer.

Figure 2 Dysfunctional modules. A: Survival analysis of G protein subunit gamma transducin 2; B and C: Module gene function and pathway enrichment analysis.The larger the circle, the greater the proportion of the gene in the Gene Ontology/Kyoto Encyclopedia of Genes and Genomes. GNGT2: G protein subunit gamma transducin 2; MAPK: Mitogen-activated protein kinase; ERBB: Epidermal growth factor.

The results of the methylation test showed that theSSTgene was up-regulated extensively, which may be a key gene involved in methylation modification to regulate the progression of esophageal cancer. Jinet al[31]found that hypermethylation of theSSTpromoter is common and is associated with early tumor progression in Barrett's esophagus. TheSH3GL2gene is up-regulated. The gene is not only the common DEGs of the four-stage time series but also the Hub gene in module 6. It also may play an important role in the regulation of esophageal cancer by methylation modification. Ghoshet al[32]studied the effect of SH3GL2 methylation on the pathogenesis of head and neck squamous cell carcinoma, and abnormalSH3GL2is an independent pathway for early developmental abnormalities of the head and neck.

Figure 3 Molecular mechanism and expression of G protein subunit gamma transducin 2 in esophageal cancer. A and B: The expression of G protein subunit gamma transducin 2 (GNGT2) in esophageal cancer patients and cell lines; C: Transfected of EC109 and KYSE70 cells; D: GNGT2 promote the proliferation of esophageal cancer cells.

ARTICLE HIGHLIGHTS

Overall, our work describes in detail the role of multifactor-mediated dysfunction module in the whole process of esophageal cancer, identifying key genes for staging and related biological processes, which may help to identify potential molecular mechanisms and therapeutic targets for the deterioration of esophageal cancer.

Research perspectives

This work not only helps us to reveal the potential regulatory factors involved in the development of disease but also deepen our understanding of its deterioration mechanism.

主站蜘蛛池模板: 欧美一区国产| 亚洲一区免费看| 人妻精品久久久无码区色视| www.亚洲天堂| 超清无码熟妇人妻AV在线绿巨人| 国产微拍精品| 中国美女**毛片录像在线| 欧美一区福利| 一本大道无码日韩精品影视| 精品丝袜美腿国产一区| 国产精品成人久久| 午夜视频免费一区二区在线看| 91久久天天躁狠狠躁夜夜| 亚洲一区国色天香| 国产精品久久久久无码网站| 国产成人午夜福利免费无码r| 欧美视频免费一区二区三区| 国产AV毛片| 国产 在线视频无码| 久久免费精品琪琪| www.youjizz.com久久| 国产成人综合久久精品下载| 亚洲av成人无码网站在线观看| 无码免费视频| 91无码视频在线观看| 国产视频 第一页| 国产成人在线无码免费视频| 精品偷拍一区二区| 久久亚洲国产一区二区| 久久精品无码一区二区国产区| 亚洲第一中文字幕| 国产精品网址你懂的| 亚洲第一网站男人都懂| 亚洲成人77777| 色吊丝av中文字幕| 无码AV日韩一二三区| 漂亮人妻被中出中文字幕久久| 中文字幕人成乱码熟女免费| 亚洲美女视频一区| 国产成人8x视频一区二区| 67194亚洲无码| 一级毛片在线播放| 精品成人免费自拍视频| 欧美日韩精品一区二区视频| 国产精品久久自在自线观看| 澳门av无码| 色综合a怡红院怡红院首页| 精品伊人久久久香线蕉| 日韩资源站| 国产91麻豆视频| 成人免费黄色小视频| 亚洲无码视频喷水| 青青草原国产| 五月天天天色| 中文字幕伦视频| 欧美三级视频网站| 91免费观看视频| 国产精品自拍合集| 亚洲日韩高清在线亚洲专区| 亚欧美国产综合| 白浆免费视频国产精品视频| 手机在线国产精品| 美女内射视频WWW网站午夜| 国产白浆视频| 国产屁屁影院| 2020国产免费久久精品99| 欧美性天天| 真人高潮娇喘嗯啊在线观看| 99re经典视频在线| 国产精品网址你懂的| 国产亚洲男人的天堂在线观看| 午夜性爽视频男人的天堂| 五月天久久婷婷| 日本国产精品| 午夜天堂视频| 999精品色在线观看| 亚洲国产精品一区二区第一页免| 国产微拍一区二区三区四区| 国产精品第一区在线观看| 国产午夜精品一区二区三区软件| 亚洲国产系列| 亚州AV秘 一区二区三区|