999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

具有n-4個(gè)懸掛點(diǎn)的三圈圖補(bǔ)圖的最小特征值

2019-01-14 02:46:56劇宏娟雷英杰

劇宏娟 雷英杰

摘 要:為了討論給定階數(shù)為n且具有n-4個(gè)懸掛點(diǎn)的三圈圖補(bǔ)圖圖類中鄰接矩陣的最小特征值,刻畫其最小特征值達(dá)到極小的唯一圖。在只考慮簡(jiǎn)單無向連通圖的基礎(chǔ)上,從補(bǔ)圖的結(jié)構(gòu)出發(fā)研究圖的最小特征值,通過運(yùn)用相關(guān)知識(shí)點(diǎn)分析論證了當(dāng)值為λ(G((n-4)/2,(n-4)/2)C)時(shí),給定階數(shù)為n且具有n-4個(gè)懸掛點(diǎn)的三圈圖補(bǔ)圖圖類中鄰接矩陣的最小特征值達(dá)到極小的唯一圖。結(jié)果表明:結(jié)合圖鄰接矩陣是表示頂點(diǎn)之間相鄰關(guān)系的矩陣,它的最小特征值為圖的最小特征值,較好地刻畫圖的本質(zhì)性質(zhì)。研究得出的具有n-4個(gè)懸掛點(diǎn)的三圈圖補(bǔ)圖的最小特征值達(dá)到極小的唯一圖,為后續(xù)進(jìn)一步研究補(bǔ)圖圖類中鄰接矩陣的最小特征值提供了一定的借鑒價(jià)值。

關(guān)鍵詞:圖論;三圈圖;鄰接矩陣;最小特征值;懸掛點(diǎn);補(bǔ)圖

中圖分類號(hào):O157.5 ? 文獻(xiàn)標(biāo)志碼:A ? doi:10.7535/hbkd.2019yx06004

Abstract:In order to discuss the minimum eigenvalue of adjacency matrix in the class of complementary graphs of the tricyclic graph with a given order of n and n-4 pendent vertexes, the unique graph whose minimum eigenvalue reaches the minimum is characterized. Based on the simple undirected connected graph,the minimum eigenvalue of the graph is studied from the structure of the complement graph, and the minimum eigenvalue of the adjacency matrix in the complement graph class of the tricyclic graph with a given order of n and n-4 pendent vertexes reaches the minimum unique graph when the value is λ(G((n-4)/2,(n-4)/2)C). The result shows that the associative graph adjacency matrix is a matrix which represents the adjacency between vertices, and its minimum eigenvalue is the minimum eigenvalue of graph, which can describe the essential properties of graph well. The conclusion from this research shows that the minimum eigenvalue of the complement graph of the tricyclic graph with a given order of n and n-4 pendent vertexes reaches the minimum eigenvalue, which provides certain reference for further study of the minimum eigenvalue of the adjacency matrix in the complement graph class.

Keywords:graph theory; tricyclic graph; adjacency matrix; the minimum eigenvalue; pendent vertexes; complement graph

3 結(jié) 論

本文討論了給定階數(shù)為n且具有n-4個(gè)懸掛點(diǎn)三圈圖補(bǔ)圖圖類中鄰接矩陣的最小特征值,在只考慮簡(jiǎn)單無向連通圖的基礎(chǔ)上,從補(bǔ)圖的結(jié)構(gòu)出發(fā)研究圖的最小特征值,從而刻畫了當(dāng)給定階數(shù)為n且具有n-4個(gè)懸掛點(diǎn)的三圈圖補(bǔ)圖圖類中鄰接矩陣的最小特征值為λ(G((n-4)/2,(n-4)/2)C)時(shí),其鄰接矩陣的最小特征值達(dá)到極小的唯一圖,并為研究此類圖最小特征值達(dá)到極小的唯一圖和后續(xù)補(bǔ)圖圖類中鄰接矩陣的最小特征征值提供了一定的理論依據(jù)。

參考文獻(xiàn)/References:

[1] BELL F K, CVETKOVIC D, ROWLINSON P, et al. Graphs for which the least eigenvalues is minimal, I[J]. Linear Algebra and Its Applications, 2008, 429(2): 234-241.

[2] BELL F K, CVETKOVIC D, ROWLINSON P, et al. Graphs for which the least eigenvalues is minimal, II [J]. Linear Algebra and Its Applications, 2008, 429(8/9): 2168-2176.

[3] FAN Yizheng, WANG Yi, GAO Yubin. Minimizing the least eigenvalues of unicyclic graphs with application to spectral spread[J]. Linear Algebra and Its Applications, 2008, 429: 577-588.

[4] HAEMERS W H. Interlacing eigenvalues and graphs[J]. Linear Algebra and Its Applications, 1995, 226(95): 593-616.

[5] TAN Yingying, FAN Yizheng. The vertex(edge) independence number, vertex(edge) cover number and the least eigenvalue of a graph[J]. Linear Algebra and Its Applications, 2010, 433 (4): 790-795.

[6] FAN Yizheng,ZHANG Feifei,WANG Yi.The least eigenvalue of the complements of trees[J]. Linear Algebra and Its Applications, 2011, 435(9):2150-2155.

[7] WANG Yi, FAN Yizheng, LI Xixin, et al. The least eigenvalue of graphs whose complements are unicyclic[J]. Discussiones Mathematics Graph Theory, 2013, 35(2):1375-1379.

[8] YU Guidong, FAN Yizheng, WANG Yi. The least eigenvalue of graphs[J]. Journal of Mathematical Research with Applications, 2012, 32(6): 659-665.

[9] HOU Xiaohua, QU Hui. The least eigenvalue for unicyclic graphs with given independence number[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2015, 48(4): 73-79.

[10] FAN Dandan, CHEN Ya, MAMATABDULLA A,et al. Tricyclic graph whose least eigenvalue is minimum[J]. Journal of Qufu Normal University, 2018, 44(1): 11-16.

[11] YE Miaolin, FAN Yizheng, LIANG Dong. The least eigenvalue of graphs with given connectivity[J]. Linear Algebra and Its Applications, 2009, 430(4): 1375-1379.

[12] ?YU Guidong, FAN Yizheng, WANG Yi. Quadratic forms on graphs with application to minimizing the least eigenvalue of signless Laplacian over bicyclic graphs[J]. Electronic Journal of Linear Algebra, 2014, 27(2): 213-236.

[13] ?YU Guidong, FAN Yizheng. The least eigenvalue of graphs whose complements are 2-vertex or 2-edge connected[J]. Operations Research Transactions, 2013, 17(2):81-88.

[14] ?YU Guidong, FAN Yizheng, YE Miaolin. The least signless Laplacian eigenvalue of the complements of unicyclic graphs[J]. Applied Mathematics and Computation, 2017, 306(1):13-21.

[15] ?LI Shuchao, WANG Shujing. The least eigenvalue of the signless Laplacian of the complements of trees[J]. Linear Algebra and Its Applications, 2012, 436(7): 2398-2405.

[16] ?PETROVIC M, BOROVICANIN B, ALEKSIC T. Bicyclic graphs for which the least eigenvalue is minimum[J]. Linear Algebra and Its Applications, 2009, 430(4):1328-1335.

[17] ?李雨,薛婷婷,孫威,等. 一種特殊補(bǔ)圖的最小特征值研究[J].廊坊師范學(xué)院學(xué)報(bào)(自然科學(xué)版),2017,17(2):5-12.

LI Yu, XUE Tingting, SUN Wei,et al. Study on the minimum eigenvalue of a special complement graph[J]. Journal of Langfang Teachers University (Natural Science Edition), 2017, 17(2): 5-12.

[18] 王禮想,蘆興庭.具有n-3個(gè)懸掛點(diǎn)的單圈圖補(bǔ)圖的最小特征值[J].安慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,23(4):22-24.

WANG Lixiang, LU Xingting. Least eigenvalue of the complement of unicyclic graphs with n-3 pendent vertexes[J]. Journal of Anqing Normal University (Natural Science Edition), 2017, 23(4): 22-24.

[19] 蘆興庭,余桂東,嚴(yán)亞偉,等.補(bǔ)圖是獨(dú)立數(shù)為n-2的雙圈圖的最小特征值[J].安慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,24(1):8-11.

LU Xingting, YU Guidong, YAN Yawei, et al. Least eignvalue of graphs whose complements are bicyclic graphs with independence number n-2 [J].Journal of Anqing Normal University (Natural Science Edition), 2018,24(1): 8-11.

[20] ?孫威,余桂東,蘆興庭,等.一類特殊圖的最小特征值[J].安慶師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,23(3):32-34.

SUN Wei, YU Guidong, LU Xingting, et al. The least eignvalue of the special graphs[J]. Journal of Anqing Normal University (Natural Science Edition), 2017, 23(3): 32-34.

[21] 余桂東,孫威,蘆興庭.補(bǔ)圖具有懸掛點(diǎn)且連通的圖的最小特征值[J].運(yùn)籌學(xué)學(xué)學(xué)報(bào),2019,23(1):90-96.

YU Guidong, SUN Wei, LU Xingting. The least eigenvalue of the graphs whose complement are connected and have pendant vertices[J]. Operations Research Transactions, 2019, 23(1): 90-96.

主站蜘蛛池模板: 亚洲第一成年网| 午夜视频在线观看区二区| 色天堂无毒不卡| 国产精品成人AⅤ在线一二三四| 国产亚洲精品va在线| 国产成+人+综合+亚洲欧美| 国产精品蜜芽在线观看| 亚洲AV人人澡人人双人| 91精品国产自产91精品资源| 国产精品网曝门免费视频| 无码福利视频| 色婷婷亚洲综合五月| 亚洲国产精品一区二区第一页免| 欧美精品一二三区| 在线欧美一区| 亚洲日韩精品伊甸| 女同国产精品一区二区| a亚洲天堂| 呦女精品网站| 日韩成人在线一区二区| 亚洲中文字幕手机在线第一页| 国产人在线成免费视频| 国产精品久久精品| 亚洲成人在线网| 亚洲香蕉久久| 91久久精品日日躁夜夜躁欧美| 国产免费久久精品99re丫丫一| 蜜桃视频一区二区三区| 一区二区三区四区在线| 精品久久777| 国产精品99久久久久久董美香 | 无码福利日韩神码福利片| 白浆视频在线观看| 国产精品成人第一区| 综1合AV在线播放| 亚洲第一极品精品无码| 欧美精品1区| 国产精品成人一区二区不卡| 四虎影视库国产精品一区| 2021国产v亚洲v天堂无码| 成年午夜精品久久精品| 亚洲一区二区无码视频| 这里只有精品在线播放| 国产成人免费手机在线观看视频| 色综合日本| 中文字幕2区| 国产极品嫩模在线观看91| 精品久久国产综合精麻豆| 美女被操91视频| 黄片在线永久| 蜜桃臀无码内射一区二区三区| 日本少妇又色又爽又高潮| 国产精品专区第1页| 91国语视频| 97超碰精品成人国产| 国产69精品久久久久妇女| 欧美成人在线免费| 亚洲无码视频图片| 国产一区二区三区在线精品专区| 亚洲美女久久| 91小视频在线观看免费版高清| 亚洲天堂在线免费| 在线免费观看a视频| 亚洲国产午夜精华无码福利| 中文字幕久久亚洲一区| 白浆视频在线观看| 亚洲天堂视频在线播放| 欧美日本中文| 一级黄色片网| 99精品久久精品| 国产大片黄在线观看| 欧美中文字幕在线视频| 激情爆乳一区二区| 久久综合婷婷| 这里只有精品在线播放| 在线高清亚洲精品二区| 国产一区二区精品高清在线观看| 91人妻日韩人妻无码专区精品| 久久久精品无码一二三区| 国产三级毛片| 国产精品美乳| 又黄又爽视频好爽视频|