繆 宏,楊 錚,王 蒙,陳學(xué)好,張瑞宏,劉思幸
?
螺帶-螺桿式攪拌好氧堆肥反應(yīng)器研制及應(yīng)用效果
繆 宏1,2,楊 錚1,王 蒙1,陳學(xué)好3,張瑞宏1,劉思幸1
(1. 揚州大學(xué)機械工程學(xué)院,揚州 225000;2. 農(nóng)業(yè)部現(xiàn)代農(nóng)業(yè)裝備重點實驗室,南京 210014; 3. 揚州大學(xué)園藝與植物保護學(xué)院,揚州 225000)
針對目前堆肥反應(yīng)器存在的原料呈壓實塊狀、通氣性能差、通風(fēng)阻力大、產(chǎn)品難以均質(zhì)化等問題,設(shè)計了螺帶-螺桿式好氧堆肥反應(yīng)試驗裝置,采用計算流體力學(xué)方法對螺帶-螺桿攪拌作用的攪拌流場進行了數(shù)值模擬分析,并進行了好氧堆肥性能試驗。通過流場的數(shù)值模擬,揭示了螺桿-螺帶式攪拌葉片對物料具有很好的攪拌及軸向流動性能,堆肥試驗結(jié)果表明:上、中、下3層的50 ℃以上的時間分別為7.3、6.8、5.5 d,反應(yīng)過程中氧氣體積分數(shù)均大于8%,各層堆料的最終碳氮比介于15~20之間,發(fā)芽指數(shù)均大于88%,重金屬含量符合農(nóng)用標準的要求,因此該反應(yīng)器可以實現(xiàn)好氧堆肥的無害化、均質(zhì)化。
堆肥;裝備;性能試驗;螺帶-螺桿;反應(yīng)器
近年來,隨著中國禽畜養(yǎng)殖業(yè)的快速發(fā)展,對生態(tài)環(huán)境造成了巨大挑戰(zhàn)。據(jù)統(tǒng)計,目前中國的禽畜糞便產(chǎn)量約為38億t,居全國重點污染排放領(lǐng)域之首[1]。利用好氧堆肥可實現(xiàn)這些有機固體廢棄物的減量化、資源化和無害化處理[2-5],其可以分為包括靜態(tài)堆肥、槽式堆肥、條垛式堆肥、反應(yīng)器堆肥[6-7]等,其中,反應(yīng)器的堆肥方式因其具有堆肥周期短、占地面積小、作業(yè)環(huán)境好等優(yōu)點成為目前研究熱點,具有良好的應(yīng)用前景[8-10]。
目前國內(nèi)外立式堆肥反應(yīng)器發(fā)展較為成熟,好氧堆肥反應(yīng)是一個“質(zhì)量-熱量-動量”的復(fù)雜傳遞過程[11-14],對于堆肥反應(yīng)機理的基礎(chǔ)研究尚不夠深入,而目前可用于實驗室模擬堆肥反應(yīng)的試驗裝置如韓魯佳、張安琪等研發(fā)的實驗室小型堆肥反應(yīng)裝置[15-16]、Guillermo Vidriales-Escobar等研發(fā)的管狀堆肥反應(yīng)器[17]、Naoto Shimizu等研發(fā)處理牛糞堆肥的強制通風(fēng)反應(yīng)器[18]、Lashermes等設(shè)計的小型智能好氧堆肥反應(yīng)器系統(tǒng)[19]等這些立式反應(yīng)器結(jié)構(gòu)簡單,有效縮短堆肥反應(yīng)時間,改善堆肥反應(yīng)環(huán)境,但由于物料重力堆積作用,存在著原料呈壓實塊狀、通氣性能差、通風(fēng)阻力大、產(chǎn)品難以均質(zhì)化等缺點。
針對這些問題,本文研制螺帶-螺桿式好氧堆肥反應(yīng)器,較為詳細地探討了該反應(yīng)裝置的結(jié)構(gòu)特點及其運行性能。
根據(jù)好氧堆肥過程的工藝特點設(shè)計試驗裝置,如圖1所示,主要包括反應(yīng)器物料艙、排氣口、螺帶-螺桿翻堆裝置、傳感器通道等部分組成。堆肥物料由入料口進入物料艙,在艙體內(nèi)進行好氧堆肥反應(yīng),通過螺帶-螺桿翻堆裝置及曝氣系統(tǒng)使物料與氧氣充分接觸,強化好氧堆肥反應(yīng)的均勻性。

1.排氣口 2.螺帶-螺桿翻堆裝置 3.補水口 4.入料口 5.溫度傳感器接口 6.物料艙 7.氧濃度傳感器接口 8.可視觀測口 9.出料口 10.曝氣通道 11.支架
堆肥裝置維持堆體溫度的必要條件是[20]


確定設(shè)計參數(shù)為:當堆料中干基質(zhì)為0時,環(huán)境溫度為25 ℃,堆體的最高溫度為55 ℃,物料的初始含水率M為60%,有機物質(zhì)量比0.97 g/g,有機質(zhì)含量降解率為35%,固體堆料比熱容,1.05 kJ/( kg·℃)。引用參考文獻[21-22]的相關(guān)公式計算得出堆料質(zhì)量與有效表面積之比應(yīng)滿足o/>2.07。
由于該反應(yīng)器是基于理論試驗研究設(shè)計的,考慮堆肥實際過程、徑高比、制造成本等因素,確定反應(yīng)器有效容積為100 L。參考常見攪拌容器常用裝料高徑比[23-24],其內(nèi)徑為500 mm,高度L為600 mm,全部采用304不銹鋼材質(zhì),并在其外圍加一層厚度為20 mm的聚氨酯保溫材料。在罐體表面距離底部150,300及450 mm位置處安裝連接控制面板的溫度傳感器(PT100,北京九純健科技有限公司)和氧濃度傳感器(FDM700,北京九純健科技有限公司)用于監(jiān)測溫度及氧濃度的變化。
對于堆體物料的攪拌操作,其主要目的為混合、分散和流動,促進物質(zhì)的移動和熱交換。堆肥物料黏度高,在堆肥反應(yīng)過程中,不同部位的堆體物料由于反應(yīng)進程的不一致,存在著微生物數(shù)量和活性的差異[23],因此堆體存在著軸向的溫差,影響反應(yīng)速率。
本裝置采用螺帶-螺桿攪拌系統(tǒng),如圖2所示,螺帶-螺桿的螺旋方向相反,具有很好的軸向流動作用。參考文獻[24],容器內(nèi)徑與外螺帶直徑之比/D=0.95,考慮溫度及氧濃度傳感器的伸入量,確定主要參數(shù)如圖2所示。

圖2 螺帶-螺桿攪拌葉片結(jié)構(gòu)示意圖
好氧堆肥反應(yīng)主要參與的有機物可以分為含氮有機物(C12H16O6N)和非含氮有機物(C2H3O)[21],其反應(yīng)式為


假設(shè)含氮有機物占非含氮有機物的20%,可知每千克揮發(fā)性固體需要氧氣的質(zhì)量為1.498 kg。堆肥試驗過程中反應(yīng)罐體裝滿4/5時,物料為44 kg,初試含水率為60%,有機質(zhì)含量降解率35%,空氣中氧氣的質(zhì)量分數(shù)為23.2%,標準狀態(tài)下空氣密度為1.207 kg/m3。
理論通風(fēng)量air[15]為

式中M為反應(yīng)器內(nèi)的初始含水率,%;m為反應(yīng)器內(nèi)的堆料質(zhì)量,kg;M為堆肥物料有機質(zhì)含量,%;V為有機質(zhì)降解率,%;o為空氣中氧氣的質(zhì)量分數(shù),%;a為空氣的密度,kg/m3。
經(jīng)計算air為23.06 m3,由于曝氣系統(tǒng)采用間歇式通風(fēng)模式,由于經(jīng)折合計算,可得風(fēng)機實際通風(fēng)時間累計為12 d。計算得該階段通風(fēng)流量為1.33 L/min。
通風(fēng)的另一功能是去除多余水分,通過計算出氣口與進氣口空氣的濕度與水分蒸發(fā)量,由此得到去除水分所需的空氣量。由文獻[18-21]可得,在初始含水率為60%的情況下,堆肥過程中去除水分質(zhì)量M為20.24 kg。因此每天的去除水分的量M為1.69 kg。由公式(5)計算去除水分所需的通風(fēng)量cs(L/min)[25]。

式中為風(fēng)機漏風(fēng)系數(shù);55為55 ℃飽和空氣密度,kg/m3;55為55 ℃飽和空氣含濕量,%;55為25 ℃飽和空氣密度,kg/m3;25為25 ℃飽和空氣含濕量,%。
計算可得,V為7.89 L/min,曝氣系統(tǒng)的曝氣量應(yīng)為好氧堆肥反應(yīng)需氧量和去除水分需氧量之和,即理論曝氣流量應(yīng)為9.22 L/min。
假設(shè)攪拌槽內(nèi)的堆肥物料在瞬態(tài)為不可壓縮流體的湍流流動,不考慮溫度的變化,其流動遵守質(zhì)量守恒和動量守恒,用N-S方程及標準-方程來描述,即


式中為速度,m/s;為壓力,Pa;為物料密度,kg/m3;為體積力,N;為堆肥物料黏度,Pa·s。
方程通過離散化處理后再定義邊界條件,即可求解。
反應(yīng)器內(nèi)部流場模型的三維實體建模通過Soildworks造型設(shè)計完成,采用多重參考系法(multiple reference frame)來處理靜止的反應(yīng)器內(nèi)壁和運動的攪拌葉片的相互作用[26],如圖3所示,將計算區(qū)域分為互不重疊的3個部分,即區(qū)域1、區(qū)域2和區(qū)域3。計算時,區(qū)域1和區(qū)域3采用旋轉(zhuǎn)坐標系,區(qū)域2采用靜止坐標系,網(wǎng)格劃分時,采用四面體結(jié)構(gòu)化網(wǎng)格,其中區(qū)域1、區(qū)域2和區(qū)域3的網(wǎng)格總數(shù)分別為:136 846 8、132 492 8、890 270。

圖3 區(qū)域1、區(qū)域2、區(qū)域3反應(yīng)器網(wǎng)格劃分情況
反應(yīng)器壁面為無滑移邊界條件,上端液面為自由液面,定義為對稱的邊界;螺帶、螺桿區(qū)域旋轉(zhuǎn)坐標系具有相同的角速度,對于立式好氧堆肥反應(yīng)器,轉(zhuǎn)速通常為20~60 r/min,而轉(zhuǎn)速過快將減緩對菌劑的生長產(chǎn)生抑制作用[27],因此該反應(yīng)器轉(zhuǎn)速為40 r/min,方向為順時針,攪拌槳葉相對于旋轉(zhuǎn)坐標系為靜止。設(shè)定反應(yīng)器內(nèi)部物料的黏度為32.5 Pa·s,密度為1 400 kg/m3。
=0截面上的速度場分布和速度矢量圖如圖4所示,螺帶與反應(yīng)器內(nèi)壁附近的流體一部分向反應(yīng)器底部方向運動,而一部分流體由于槳葉背面產(chǎn)生低壓的原因,出現(xiàn)了漩渦現(xiàn)象。在反應(yīng)器中心處,與螺帶相反旋向螺桿附近的流體形成了逆向的軸向流動,使堆肥物料有規(guī)律的循環(huán)流動,從而有助于增強了中心攪拌的能力,提高攪拌的均勻性和效率,實現(xiàn)堆肥物料的軸向循環(huán)。

圖4 速度場分布圖及速度矢量圖
以牛糞、麥秸稈為主要原料進行好氧堆肥試驗,調(diào)理劑采用蘑菇渣。鮮牛糞取自揚州大學(xué)實驗農(nóng)牧場,麥秸稈取自揚州市樸席鎮(zhèn)農(nóng)田。將麥秸稈粉碎至1~2 cm,將牛糞、麥秸稈、蘑菇渣按照4:1:1的質(zhì)量比混合,加入適當水分,將初始物料調(diào)至較優(yōu)范圍,堆肥原料及混合物料的理化特征表1所示。初始物料含水率為65.76%,碳氮比為28.53%,采用間歇式曝氣攪拌方式,每12 h曝氣攪拌1次。

表1 初始堆肥物料理化指標
堆肥反應(yīng)性能試驗主要通過堆肥過程中,堆體上、中、下3個高度下的堆體溫度、含氧量、含水率、全碳含量、全氮含量、碳氮比(C/N)、全磷含量、全鉀含量、重金屬總量和種子發(fā)芽指數(shù)(germination index,GI)來衡量堆肥反應(yīng)器的性能。測定方法如下:堆體溫度和氧濃度通過上、中、下傳感器進行測量,取每天的平均值;含水率的測量采用文獻[22]所用的常壓干燥法,每2 d測量1次;總碳與總氮的含量采用元素分析儀(Vario EL cube,德國Elementar公司)進行測量,并計算碳氮比(C/N),全磷含量采用鉬銻鈧比色法(721分光光度計,波長700 nm),全鉀含量采用火焰光度法[28],每兩天取樣1次;堆料的Cu、Zn、Cr、Pb、Cd重金屬總量的測定采用葛驍?shù)萚29]的方法;種子發(fā)芽指數(shù)(GI)采用張安琪等[15]的方法,選用大豆種子(奇農(nóng)1號,北京農(nóng)科院),每5 d取樣1次。
如圖5所示,反應(yīng)器上、中、下3層的溫度,從圖5中可看出,一開始堆體的溫度上升非常迅速,在第4天時,上、中、下層的最高溫度分別為65.9、63和62.1。隨后堆體各層溫度緩慢下降。上、中、下3層的50 ℃以上的時間分別為7.3、6.8、5.5 d,因此符合無害化堆肥處理[30]的要求,且各層差異較小。

圖5 堆肥過程中堆體溫度的變化曲線
堆體的氧氣濃度是衡量好氧堆肥發(fā)酵效果的重要參數(shù)[31],如圖6所示,在堆肥初始階段,氧氣濃度快速下降,這是因為在這階段好氧微生物呈現(xiàn)指數(shù)式增長,微生物的繁殖耗氧導(dǎo)致堆體中氧氣濃度快速下降[32]。而在第6~12天期間,高溫抑制了部分微生物的增長,氧氣濃度逐漸上升。在15 d以后,氧氣濃度趨于穩(wěn)定。整個過程堆體氧氣體積分數(shù)均大于8%,未形成厭氧區(qū)域,從而有助于抑制有害氣體的產(chǎn)生[32]。

圖6 堆肥過程中堆體含氧量的變化曲線
如圖7所示,反應(yīng)器上、中、下3層的物料含水率,在好氧堆肥過程中,前期,反應(yīng)器內(nèi)微生物數(shù)量不斷增加,消耗的水分量增大,使堆體內(nèi)含水率下降。到了中后期當微生物繁殖到一定數(shù)量后,微生物量會保持相對穩(wěn)定,消耗與合成的水分量也達到一種動態(tài)的平衡,物料含水率趨向于穩(wěn)定[22]。堆肥過程中,上、中、下3層的物料含水率分別從65.76%下降至42.5%, 42.1% and 41.7%。上、中、下3層含水率差異較小。

圖7 堆肥過程中堆體含水率的變化曲線
在好氧堆肥過程中,碳和氮是微生物生長繁殖必要元素。好氧堆肥的實質(zhì)是通過好氧微生物的生長代謝活動,使有機質(zhì)分解,因此碳含量處于不斷減少的過程中[33],如圖8a所示,在堆肥前、中期其下降的速率較快,說明微生物生長繁殖較快,活動頻繁,后期趨向于平穩(wěn)。堆肥過程中,上、中、下3層的物料碳質(zhì)量分數(shù)從39.3%下降至33.8%,33.6% and 33.5%。
牛糞和麥秸稈中的氮含量相對較少,隨著好氧堆肥的進行,微生物將氨態(tài)氮轉(zhuǎn)變?yōu)榉€(wěn)定的硝態(tài)氮或亞硝態(tài)氮。如圖8b所示,為全氮含量的變化曲線,上、中、下3層的物料分別從1.37%提高到2.01%、2.01%、2.03%。在堆肥過程中,隨著時間的推移,有機質(zhì)不斷分解成CO2和H2O而逐漸減少,總干物質(zhì)的下降幅度大于NH3的揮發(fā)所引起的下降幅度,最終導(dǎo)致總氮含量增加[28]。
碳氮比是衡量堆肥腐熟的重要指標,堆肥結(jié)束后,最終堆肥堆料C/N比值降為15~20時,初步認定堆肥腐熟[23]。由圖8c可以看出,上、中、下3層堆料的碳氮比在第14天以后降至20以下,最終的碳氮比分別為:16.8、16.7和16.5。
有圖8d、圖8e可以看出,全磷、全鉀含量呈上升趨勢,但增幅不是很明顯,這是因為在堆肥過程中,堆體中的P、K不可能通過揮發(fā)等形式損失[28]。堆肥過程中,上、中、下3層的物料全磷、全鉀分別從0.88% 提高到1.04%、1.03%、1.04%和從1.57%提高到1.74%,1.75%和1.73%。
種子發(fā)芽指數(shù)(GI)是判斷植物毒性最有效的方法,同時也是衡量好氧堆肥腐熟度的評價指標[34-35]。本試驗選第5、10、15、20、24天,上、中、下層堆體物料進行試驗,分別測量根長并統(tǒng)計發(fā)芽率,結(jié)果如圖9所示。各層堆料的最終種子發(fā)芽指數(shù)都大于88%,因此可以認定完全腐熟。

圖8 堆肥過程中全碳、全氮、碳氮比、全磷及全鉀的變化曲線

圖9 堆肥過程中發(fā)芽指數(shù)的變化曲線
好氧堆肥過程中,由于微生物分解有機質(zhì)為CO2、H2O和低分子揮發(fā)性有機物而損失,同時重金屬含量并不會損失或減少,導(dǎo)致堆肥中重金屬含量被相對濃縮而升高[36]。好氧堆肥前后Cu、Zn、Cr、Pb和Cd總量的變化如表2所示,均符合國家農(nóng)用標準[37]的要求。

表2 堆肥前后重金屬總量的變化
1)研制螺帶-螺桿式好氧堆肥反應(yīng)試驗裝置,反應(yīng)器有效容積為100 L,采用螺帶-螺桿式翻堆結(jié)構(gòu),促進物料軸向循環(huán),實現(xiàn)均質(zhì)化反應(yīng);
2)建立螺帶-螺桿翻堆攪拌模型,通過Fluent軟件對反應(yīng)器內(nèi)部流場進行數(shù)值模擬與分析,驗證內(nèi)部流場具有很好的軸向流動性能;
3)對反應(yīng)器進行好氧堆肥試驗,通過測量堆肥反應(yīng)過程中堆料上、中、下3層的溫度、氧氣濃度、全碳含量、全氮含量、碳氮比、全磷含量、全鉀含量、種子發(fā)芽指數(shù)和重金屬總量,試驗結(jié)果表明,上、中、下3層的50 ℃以上的時間分別為7.3、6.8、5.5 d,反應(yīng)過程中氧氣體積分數(shù)均大于8%,各層堆料的最終碳氮比介于15~20之間,發(fā)芽指數(shù)均大于88%,重金屬含量符合無害化堆肥的規(guī)定,各層的相關(guān)指標差異小,因此可進行無害化、均質(zhì)化好氧堆肥。
[1] Ma Shuangshuang, Fang Chen, Sun Xiaoxi, et al. Bacterial community succession during pig manure and wheat straw aerobic composting covered with a semi-permeable membrane under slight positive pressure[J]. Bioresource Technology, 2018, 259: 221-227.
[2] Mesa F, Torres J, Sierra O, et al. Enhanced production of compost from Andean wetland biomass using a bioreactor and photovoltaic system[J]. Biomass and Bioenergy, 2017, 106: 21-28.
[3] 朱新夢,董雯怡,王洪媛,等. 牛糞堆肥方式對溫室氣體和氨氣排放的影響[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(10):258-264.
Zhu Xinmeng, Dong Wenyi, Wang Hongyuan, et al. Effects of cattle manure composting methods on greenhouse gas and ammonia emissions[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(10): 258-264. (in Chinese with English abstract)
[4] 沈玉君,孟海波,張朋月,等. 豬糞堆肥揮發(fā)性有機物的產(chǎn)生規(guī)律與影響因素[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(5):211-216.
Shen Yujun, Meng Haibo, Zhang Mingyue, et al. Generation law and influencing factors of volatile organic compounds during pig manure composting[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2017, 33(5): 211-216. (in Chinese with English abstract)
[5] 鄧良偉,譚小琴,李建,等. 利用秸稈堆肥過程處理豬場廢水的研究[J]. 農(nóng)業(yè)工程學(xué)報,2004,20(6):255-259.
Deng Liangwei, Tan Xiaoqin, Li Jian, et al. Treatment and reuse of piggery wastewater by composting process of straw[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(6): 255-259. (in Chinese with English abstract)
[6] 孫曉曦,馬雙雙,韓魯佳,等. 智能型膜覆蓋好氧堆肥反應(yīng)器設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(12):240-245.
Sun Xiaoxi, Ma Shuangshuang, Han Lujia, et al. Design and test on lab-scale intelligent membrane-covered aerobic composting reactor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(12): 240-245. (in Chinese with English abstract)
[7] Edvaldo José Scoton, Rosane Aparecida Gomes Battistelle, Bezerra Barbara Stolte, et al. A sewage sludge co-composting process using respirometric monitoring method in hermetic rotary reactor[J]. Journal of Cleaner Production, 2016, 121: 169-175.
[8] Lu Li-An, Kumar Mathava, Tsai Jen-Chieh, et al. High-rate composting of barley dregs with sewage sludge in a pilot scale bioreactor[J]. Bioresource Technology, 2008, 99(7): 2210-2217.
[9] Osamu Watanabe, Satoru Isoda. Quantitative analysis of microbial biomass yield in aerobic bioreactor[J]. Journal of Environmental Sciences, 2013, 25(Supp.1): S155-S160.
[10] Damian Janczak, Micha? Marciniak, Andrzej Lewicki, et al. Bioreactor internet system for experimental data monitoring and measurement[J]. Procedia Technology, 2013, 8: 209-214.
[11] He Xueqin, Han Lujia, Ge Jinyi, et al. Modelling for reactor-style aerobic composting based on coupling theory of mass-heat-momentum transport and Contois equation[J]. Bioresource Technology, 2018, 253: 165-174.
[12] Zambra C E, Moraga N O. Heat and mass transfer in landfills: Simulation of the pile self-heating and of the soil contamination[J]. International Journal of Heat and Mass Transfer, 2013, 6: 324-333.
[13] Zambra C E, Mu?oz J F, Moraga N O. A 3D coupled model of turbulent forced convection and diffusion for heat and mass transfer in a bioleaching process[J]. International Journal of Heat and Mass Transfer, 2015, 85: 390-400.
[14] Zambra C E, Moraga N O, Rosales C, et al. Unsteady 3D heat and mass transfer diffusion coupled with turbulent forced convection for compost piles with chemical and biological reactions[J]. International Journal of Heat and Mass Transfer, 2012, 55(23/24): 6695-6704.
[15] 張安琪,黃光群,張紹英,等. 好氧堆肥反應(yīng)器試驗系統(tǒng)設(shè)計與性能試驗[J]. 農(nóng)業(yè)機械學(xué)報,2014,45(7):156-161.
Zhang Anqi, Huang Guangqun, Zhang Shaoying, et al. Design and test on an experimental aerobic composting reactor system[J].Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(7): 156-161. (in Chinese with English abstract)
[16] 呂黃珍,韓魯佳,張銳. 試驗室好氧堆肥反應(yīng)器系統(tǒng)性能試驗[J]. 農(nóng)業(yè)機械學(xué)報,2008,39(1):91-96.
Lü Huangzhen, Han Lujia, Zhang Rui. Experimental investigation on the performance of laboratory-scale aerobic composting reactor system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(1): 91-96. (in Chinese with English abstract)
[17] Guillermo Vidriales-Escobar, Raul Rentería-Tamayo, Felipe Alatriste-Mondragón, et al. Mathematical modeling of a composting process in a small-scale tubular bioreactor[J]. Chemical Engineering Research and Design, 2017, 120: 360-371.
[18] Naoto Shimizu, Joko Nugroho, Wahyu Karyadi, et al. Cattle manure composting in a packed-bed reactor with forced aeration strategy[J]. Engineering in Agriculture, Environment and Food, 2018, 11(2): 65-73.
[19] Lashermes G, Barriuso E, Le Villio-poit Renaud M, et al. Composting in small laboratory pilots[J]. Waste Management, 2012, 32(2): 271-277.
[20] 席北斗,劉鴻亮,孟偉,等. 翻轉(zhuǎn)式堆肥反應(yīng)裝置設(shè)計研究[J]. 環(huán)境污染治理技術(shù)與設(shè)備,2003,4(9):85-88.
Xi Beidou, Liu Hongliang, Meng Wei, et al. Research on the design of a rotation composting reactor for municipal solid waste composting[J]. Techniques and Equipment for Environmental Pollution Control, 2003, 4(9): 85-88. (in Chinese with English abstract)
[21] 戴芳,曾光明,袁興中,等. 新型堆肥裝置設(shè)計及其應(yīng)用研究[J]. 環(huán)境污染治理技術(shù)與設(shè)備,2005(2):24-28.
Dai Fang, Zeng Guangming, Yuan Xingzhong, et al.Design of a new type of composting device and its application[J]. Techniques and Equipment for Environmental Pollution Control, 2005(2): 24-28. (in Chinese with English abstract)
[22] 遲文慧. 梨形筒式好氧堆肥反應(yīng)器的開發(fā)與試驗研究[D]. 西安:西安建筑科技大學(xué),2012.
Chi Wenhui. Development and Application of a Pyriform Rotating Drum Reactor for Aerobic Composting in Pilot Scale[D]. Xi’an: Xi’an University of Architecture and Technology, 2012. (in Chinese with English abstract)
[23] 楊杰,鄭國香,趙欣,等. 強化堆料徑向流動好氧堆肥反應(yīng)器設(shè)計及性能[J]. 農(nóng)機化研究,2017,39(11):223-228.
Yang Jie, Zheng Guoxiang, Zhao Xin, et al. Design and performance assessment of an aerobic composting reactor for enhancing radially blending[J]. Journal of Agricultural Mechanization Research, 2017, 39(11): 223-228. (in Chinese with English abstract)
[24] 陳志平,章序文. 攪拌與混合設(shè)備設(shè)計選用手冊[M]. 北京:化學(xué)工業(yè)出版社,2004.
[25] 李星. C50堆肥反應(yīng)器的研究設(shè)計[D]. 北京:中國農(nóng)業(yè)機械化科學(xué)研究院,2015.
Li Xing. Design and Research of C50 Compost Bioreactor[D]. Beijing: Chinese Academy of Agricultural Mechanization Sciences, 2015. (in Chinese with English abstract)
[26] 張敏革,張呂鴻,姜斌,等. 雙螺帶-螺桿攪拌槳在不同流體中的攪拌流場特性[J]. 天津大學(xué)學(xué)報,2009,42(10):884-890.
Zhang Minge, Zhang Lühong, Jiang Bin, et al. Performance of flow field in different fluids stirred with double helical ribbon and screw impeller[J]. Journal of Tianjin University, 2009, 42(10): 884-890. (in Chinese with English abstract)
[27] 楊延梅. 有機固體廢物好氧堆肥反應(yīng)器的設(shè)計[J]. 重慶交通大學(xué)學(xué)報:自然科學(xué)版,2008,27(6):1155-1159.
Yang Yanmei. The design of the organic solid wastes compost equipment[J]. Journal of Chongqing Jiaotong University: Natural Science, 2008, 27(6): 1155-1159. (in Chinese with English abstract)
[28] 施寵,張小娥,沙依甫加瑪麗,等. 牛糞堆肥不同處理全N、P、K及有機質(zhì)含量的動態(tài)變化[J]. 中國牛業(yè)科學(xué),2010,36(4):26-29.
Shi Chong, Zhang Xiao’e, Shayifujiamali, et al. Dynamic changes of total N, P, K and organic matter by different treatments on cattle manure composting[J]. China Cattle Science, 2010, 36(4): 26-29. (in Chinese with English abstract)
[29] 葛驍,李買軍,張盛華,等. 調(diào)理劑對堆肥產(chǎn)品重金屬生物有效性的影響[J]. 環(huán)境工程學(xué)報,2014,8(7):3047-3052.
Ge Xiao, Li Maijun, Zhang Shenghua, et al. Effect of conditioners on bioavailability of heavy metals in sludge compost[J]. Chinese Journal of Environmental Engineering, 2014, 8(7): 3047-3052. (in Chinese with English abstract)
[30] 糞便無害化衛(wèi)生要求:GB 7959-2012[S].
[31] Zambra C E, Rosales C, Moraga N O, et al. Self-heating in a bioreactor: Coupling of heat and mass transfer with turbulent convection[J]. International Journal of Heat and Mass Transfer, 54(23/24): 5077-5086.
[32] Hamelers H V M. A Mathematical Model for Composting Kinetics[D]. Wageningen: Wageningen University, 2011.
[33] 王永江. 豬糞堆肥過程有機質(zhì)降解動力學(xué)模型研究[D]. 北京:中國農(nóng)業(yè)大學(xué),2014.
Wang Yongjiang. Study on Degarding Kinetic of Organic Matter for Composting Process of Swine Manure[D]. Beijing: China Agricultural University, 2014. (in Chinese with English abstract)
[34] Luo Yuan, Liang Jie, Zeng Guangmin, et al. Seed germination test for toxicity evaluation of compost: Its roles, problems and prospects [J]. Waste Management, 2018, 71: 109-111.
[35] Hiarhi Monda, Vincenza Cozzolino, Giovanni Vinci, et al.
Molecular characteristics of water-extractable organic matter from different composted biomasses and their effects on seed germination and early growth of maize[J]. Science of the Total Environment, 2017, 590/591: 40-49.
[36] Ciavatta C, Govi M, Simoni A, et al. Evaluation of heavy metals during stabilization of organic matter in compost produced with municipal solid wastes[J]. Bioresource Technology, 1993, 43(2): 147-153.
[37] 農(nóng)用污泥中污染物控制標準:GB4284-2018[S].
Development and its application effect of aerobic compost bioreactor with helical ribbon and screw impeller
Miao Hong1,2, Yang Zheng1, Wang Meng1, Chen Xuehao3, Zhang Ruihong1, Liu Sixing1
(1., 225000,; 2.210014,; 3.225000,)
In recent years, with the rapid development of the poultry industry in China, it has brought enormous challenges to the ecological environment. The reduction, recycling and innocuous treatment of these organic solid wastes can be achieved by aerobic composting. The vertical reactor has a simple structure, effectively shortens the compost reaction time and improves the composting reaction environment. Therefore, the aerobic compost reactor has good practical value. However, due to the gravity accumulation of the material, the reactor has some problems, such as compacted material, poor ventilation, high ventilation resistance, and difficulty in homogenizing the product. In order to solve these problems, spiral-belt-spiral-impeller aerobic compost bioreactor was designed with real-time monitoring of insulation, temperature and oxygen content. This reactor has a volume of 100 L. Computational fluid dynamics method was used to analyze the flow field within the reactor. The 3D solid modeling of the internal flow field model in the reactor was completed by Soildworks modeling, and the MRF(multiple reference frame) method was used to deal with the interaction between the stationary reactor inner wall and the moving stirring blade. The analysis of the velocity field distribution and velocity vector on the=0 section demonstrated that the reactor had good axial flow through the internal velocity distribution. The performance of the reactor was studied in aerobic composting test. The raw materials for composting were cow manures, wheat straw and mushroom residues, and the total reaction time was 24 days. The reaction was evaluated by measuring the temperature, oxygen concentration, total carbon, total nitrogen, C/N, total phosphorus, total potassium, germination index, total heavy metals and sensory indicators in the upper, middle and lower layers of the reactor. During the composting reaction process, the performance of aerobic composting test showed that the upper, middle and lower temperatures above 50℃ were 7.3, 6.8, 5.5 days, respectively, and the temperature first increased and then decreased. The oxygen concentration during the reaction was higher than 8%. The lowest value appeared around the fourth day. In the aerobic composting process, the moisture content and total carbon content showed a downward trend, while the total nitrogen content, total phosphorus content and total potassium content showed an upward trend. The moisture content gradually decreased from 65.76% to 42.5%, 42.1% and 41.7%, the carbon content decreased from 39.3% to 33.8%, 33.6% and 33.5%, the total nitrogen content increased from 1.37% to 2.01%, 2.01% and 2.03%, the total phosphorus content increased from 0.88% to 1.04%, 1.03% and 1.04%, the total potassium content increased from 1.57% to 1.74%, 1.75% and 1.73%, which were related to the law of microbial activity in the reactor. After composting, it has no obvious foul smell compared with the initial heap. The C/N of each layer was between 15 and 20, and the germination index was greater than 88%. The heavy metals such as Cu, Zn, Cr, Pb and Cd met the national standards. Therefore, the reactor could achieve harmless and uniform compost.
composting; equipment; performance test; helical ribbon and screw impeller; bioreactor
繆 宏,楊 錚,王 蒙,陳學(xué)好,張瑞宏,劉思幸. 螺帶-螺桿式攪拌好氧堆肥反應(yīng)器研制及應(yīng)用效果[J]. 農(nóng)業(yè)工程學(xué)報,2018,34(24):232-238. doi:10.11975/j.issn.1002-6819.2018.24.028 http://www.tcsae.org
Miao Hong, Yang Zheng, Wang Meng, Chen Xuehao, Zhang Ruihong, Liu Sixing. Development and its application effect of aerobic compost bioreactor with helical ribbon and screw impeller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 232-238. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.24.028 http://www.tcsae.org
2018-06-11
2018-10-02
江蘇省科技計劃項目(BE2016346);農(nóng)業(yè)部現(xiàn)代農(nóng)業(yè)裝備重點實驗室開放基金項目(HT20160359);江蘇省自然科學(xué)基金項目(20170500,18KJB460032);江蘇省農(nóng)業(yè)“三新工程”項目(NJ2018-07);揚州市科技項目(YZ2017052,YZ2017279);揚州大學(xué)科技創(chuàng)新基金項目(2017CXJ021)揚州大學(xué)研究生培養(yǎng)創(chuàng)新工程項目(XKYCX17_042)
繆 宏,副教授,博士,主要從事生物質(zhì)資源化利用技術(shù)、智能農(nóng)業(yè)方面的研究。Email:mh0514@163.com
10.11975/j.issn.1002-6819.2018.24.028
S491
A
1002-6819(2018)-24-0232-07