廖宜濤,廖慶喜,王 磊,鄭 娟,高麗萍
?
氣力式小粒徑種子精量排種器吸種效果影響因素研究
廖宜濤1,2,廖慶喜1,2,王 磊1,鄭 娟1,高麗萍1
(1. 華中農業大學工學院,武漢 430070; 2. 農業部長江中下游農業裝備重點實驗室,武漢 430070)
針對油菜、青菜等類球形小粒徑種子粒徑小、質量輕,通過排種合格指數、漏播指數等指標研究吸種環節影響機制易受后續卸種、導種等串聯環節影響的問題,以正負氣壓組合式小粒徑種子精量排種器為研究對象,通過吸種運移狀態圖像拍攝試驗,確定型孔漏吸、單粒吸種及重吸發生概率,開展吸種環節研究。吸種狀態分析發現小粒徑種子質量輕,?200 Pa時即可被吸附,在負壓絕對值較大時會出現4~6粒重吸;型孔單粒吸種發生概率與種子千粒質量、排種盤轉速、型孔直徑、工作負壓等因素相關性極顯著(<0.01);排種器存在穩定吸種臨界負壓,當工作負壓在臨界負壓1~2倍范圍內,型孔單粒吸種概率高于0.92,漏吸與重吸發生概率均低于0.04;結合吸種過程受力分析可知排種盤轉速變化造成單粒吸種概率變化的主要機制是影響型孔與種子吸附作用時間,進而影響單粒吸種可靠性;當轉速增加,實現穩定吸種的臨界負壓絕對值增大,吸種負壓計算的可靠性系數應增大;以漏吸概率0.02及單粒吸種概率0.92的工作負壓為參考值,建立了可靠性系數與排種盤工作轉速及型孔直徑相關的數學模型,利用該模型計算排種器吸種可靠性系數,進而確定吸種負壓臨界值,可使排種器漏吸發生概率小于0.04,單粒吸種概率大于0.92,排種器穩定工作。研究明確了正負氣壓組合式小粒徑種子精量排種器吸種環節影響機制和用于計算吸種臨界負壓的可靠性系數模型,為氣吸式排種器設計與性能提升提供了參考。
農業機械;農作物;優化;排種器;吸種負壓;吸種可靠性;小粒徑種子
氣吸式精量排種器通過負壓氣流將種子吸附在排種盤型孔上,運移至卸種區后隔斷負壓使種子在重力作用下卸種,使種子群轉變為單粒等間隔種子流,具有品種適應性強、傷種率低、易實現單粒排種等特點,得到廣泛研究與應用[1-4]。油菜、青菜、大白菜等作物種子直徑在3 mm以下,粒徑小、質量輕,氣吸式排種采用的吸種型孔直徑小,靠自身質量難以及時卸種,采用強制卸種裝置易損傷種子、堵塞型孔,在氣吸式排種器卸種區設計與吸種負壓氣室隔離的正壓氣室,利用正壓氣吹適時卸種,有效克服了該難題[5-8]。
吸種負壓是影響排種器性能的關鍵參數[9-10]。型孔處吸附力由工作負壓和型孔結構決定;吸附力小,容易發生漏吸,導致排種器漏播指數增大;吸附力過大會使重吸增加,導致重播指數增大[11-14]。排種過程屬于多環節串聯,吸種效果受充種環節影響。充種室內種子數量過多,會增加吸種時被吸附籽粒與種群的摩擦力,使吸附籽粒脫落,出現漏吸;流動性差的種子充種不充分會降低種群與型孔接觸的概率,造成漏吸;排種盤轉速增大會導致被吸附種子的離心力增加,種子所需吸附力增大;同時轉速增大導致型孔與種子群接觸時間變短,會使吸種過程不充分,進而造成漏吸;適當增大工作負壓可以提高型孔吸附力,加強型孔從籽粒群中攫取種子的能力,降低漏吸,改善排種性能[15-19]。
由種子吸種環節受力情況分析可建立與型孔直徑、排種盤型孔處線速度、種子質量、粒徑大小、自然休止角等參數相關的吸種負壓計算公式,但需要根據經驗選取吸種可靠性系數和外界條件系數等參數[20-21]。通過排種器性能試驗,以排種合格指數較高時的吸種負壓值為因變量,種子千粒質量、投影面積、球形度等為自變量,采用多元回歸分析建立吸種負壓預測數學模型可確定不同種子對象的最優工作負壓,但建模過程未考慮型孔大小、排種盤轉速對吸種性能的影響[22];根據排種器在不同工作負壓、工作轉速及型孔大小等條件下的合格指數、重播指數及漏播指數,通過優化求解確定最佳參數組合,提升排種性能,但結果僅適應試驗種子對象[23-26];而且試驗研究以排種性能指數為評價指標,忽略了排種串聯過程中卸種與導種環節對排種性能的影響[27-29]。
小粒徑種子粒徑小、質量輕,吸種效果對排種型孔大小、吸種負壓變化敏感,卸種、導種過程更易受擾動,因此需要針對吸種環節進行研究,以明確吸種性能影響機制。本文以正負氣壓組合式小粒徑種子精量排種器為研究對象,試驗拍攝排種盤型孔的吸種運移狀態圖像,通過分析不同試驗因素水平下型孔單粒吸種、漏吸和多粒重吸發生概率的變化規律,明確吸種過程影響因素和影響程度,建立類球形小粒徑種子吸種可靠性系數數學模型,確定排種器穩定工作負壓范圍,為類球形小粒徑種子氣吸式排種器設計與性能優化提供參考。
為獲得不同粒徑大小和千粒質量的種子對象,試驗選用“快綠236”(白菜)、“四月慢”(青菜)、“華油雜62”(油菜)、“中雙11”(油菜)等4種作物商品化種子,采用10~14目標準分級篩進行篩選分組。分組的種子利用游標卡尺測定種子長、寬、高三軸尺寸,由全自動數粒儀(浙江托普)和電子感量天平測量千粒質量;其中三軸尺寸每組測量100粒,千粒質量每組重復5次,統計其長寬高三軸尺寸的平均值、顆粒平均粒徑、顆粒尺寸范圍、千粒質量、球形度等參數。
試驗在JPS-12型排種試驗臺上進行;所用氣力式排種器通過負壓吸種、正壓氣吹卸種,工作時排種鏈輪帶動排種盤轉動,種子在充種區被負壓吸附到排種盤型孔上,隨排種盤一起轉動至正壓區后,在正壓和自身重力作用下脫離型孔進入卸種口,完成排種過程[30]。
拍攝的排種器吸種運移狀態圖像如圖1所示,為便于吸種運移過程型孔吸種狀態判別,去除排種器罩殼上半部分。篩分的種子裝入種箱,持續供給充種倉;充種倉種子被負壓吸附后隨排種盤運移至卸種區;排種盤上半部分圓環形區域為型孔吸種狀態觀測區域。

1.充種區 2.種箱 3.氣室殼體 4.負壓出氣口 5.排種盤 6.吸種狀態觀測區 7.被吸附種子 8.充種卸種分隔板 9.傳動鏈條 10.負壓氣室區域 11.正壓氣室區域 12.正壓進氣口 13.卸種口
采用全交互試驗,試驗因素包括分組種子、排種盤型孔直徑、排種盤工作轉速及排種器工作負壓。其中篩分獲得的5組種子,千粒質量分別為5.40、4.67、3.81、2.99和2.65 g;4組排種盤,型孔直徑0.9~1.2 mm,試驗水平間隔0.1 mm;排種盤轉速10~30 r/min,試驗水平間隔2 r/min;負壓?200~?3 000 Pa,試驗水平間隔200 Pa。試驗時卸種正壓設置為200 Pa。
試驗用數碼相機為Canon EOS 7D,拍攝參數為:光圈值f/10,曝光時間1/320 s,ISO-400,0曝光補償,無閃光模式,焦距100 mm,圖像分辨率為1 800萬像素(5 184×3 456 pixel)。每次圖像拍攝后及時觀察型孔堵塞情況,如發生堵塞,記錄堵塞情況、清理型孔,再重復拍攝。為減少誤差影響,每個因素組合重復拍攝10次,獲得10幅吸種運移狀態圖像,統計型孔吸附情況概率用于分析。
圖像由人工觀察確定型孔吸附的籽粒數量,計算不同試驗條件下型孔漏吸、單粒吸種、多粒重吸的概率,用于吸種過程影響機制分析,概率計算公式為

式中為型孔上吸附籽粒數;為自然數;1為試驗用篩分種子千粒質量,g;2為排種盤型孔直徑,mm;3為排種盤轉速,r/min;4為氣室負壓,Pa;N為當前試驗條件下吸種效果觀測區內型孔上吸附籽種子的型孔數,為0即是漏吸,為1即是單粒吸種,大于1是多粒重吸。
第二,企業應建立授權制。財務工作數據化后,數據很容易復制刻錄、企業存款轉賬極易操作,企業人員應建立資金輸出文件或報告需授權的制度,確保資金的合理使用。比如,企業經營過程中需要較大額的支出時,除需要企業管理層進行簽字審批之外,還需要在財務軟件中設立兩個以上需要授權登錄批準后才可操作的授權制度。與資金相關的重要文件也盡可能地減少輸出。
篩分獲得5組種子,按千粒質量大小排序,進行球度、幾何尺寸等測量統計,用于吸種運移狀態拍攝試驗。第1、2組分別為“華油雜62”、“中雙11”2種種子由10目標準篩篩下、12目標準篩篩上獲得;第3、4、5組種子為“華油雜62”、“快綠236”、“四月慢”等3種種子由12目標準篩篩下、14目標準篩篩上獲得。
5組種子長寬高平均值、平均粒徑等物理特性如表1所示。其中“華油雜62”商品化種子由不同規格標準篩篩分出的2組種子千粒質量差距接近15%;不同品種種子以相同標準篩篩分,各組種子千粒質量、平均粒徑等指標出現10%以上差異;同一組內種子粒徑最小尺寸與平均尺寸相差20%以上。
對比第1~2組種子的長、寬、高三軸尺寸概率分布可知:“華油雜62”種子的長度分布為1.62~2.42 mm,寬度分布為1.50~2.23 mm,高度分布為1.45~2.09 mm;中雙11種子長度分布為1.75~2.16 mm,寬度分布為1.71~2.14 mm,高度分布為1.63~2.14 mm。兩種類球形種子雖處在同一篩分規格內,但因為“中雙11”種子球形度更高,篩分后的種子尺寸分布更加集中,更接近于標準正態分布;“華油雜62”種子球形度低,篩分后的種子尺寸分布跨度更大;第3~5組種子尺寸分布也符合該規律。

表1 分組種子物理特性統計
注:長為100粒種子3個方位測量最大尺寸值的平均值;寬為100粒種子3個方位測量居中尺寸值的平均值;高為100粒種子3個方位測量最小尺寸值的平均值。
Note: Length is the mean of the maximum values of the measured 100 seeds on the orientation of orthogonal three axis; width is the mean of the mediate values of the measured 100 seeds on the orientation of orthogonal three axis; Height is the mean of the minimum values of the measured 100 seeds on the orientation of orthogonal three axis.
種子物理特性分析表明小粒徑類球形種子雖然粒徑小、質量輕,但個體之間球度、三軸尺寸、質量等均存在差異;種子球形度越高,篩分分級的種子尺寸分布更集中,千粒質量更小,尺寸分布更近似于標準正態分布。
試驗觀察到型孔的吸種狀態包括漏吸、單粒吸種、多粒重吸等3種,如圖2所示。

1.漏吸 2.單粒吸種 3.多粒重吸
因種子質量輕,在?200 Pa時即能觀察到種子被吸附在型孔上,在?800 Pa時觀察到有重吸現象。吸種過程是型孔與充種倉種子群的隨機作用過程,因此在?2 800 Pa也能觀察到型孔漏吸現象,而觀測區的型孔可能會出現漏吸、單粒吸種、多粒重吸同時存在的現象。與文獻[20]所述大粒徑種子氣吸式排種情況不同,類球形小粒徑種子因所需吸附負壓值較低,在工作負壓值較高情況下會出現型孔吸附4~6粒種子的現象。在排種試驗臺上測試排種性能,吸種階段型孔漏吸會導致排種器漏播指數相應增加,2粒重吸會導致重播指數相應增加,而型孔3粒以上重吸會導致排種器重播指數急劇增加。因此為避免后續串聯過程中卸種與導種環節的影響,需要針對吸種運移環節分析排排種盤工作轉速、型孔直徑、氣室負壓等因素對排種性能的影響機制。
試驗中未發現種子破損情況,但在第4組種子采用1.2 mm型孔直徑排種盤時現了型孔堵塞情況。堵塞主要原因是型孔吸附到粒徑偏小的種子,部分嵌入型孔中不能吹落,轉過卸種區后在充種卸種分隔板的擠壓下將型孔完全堵塞。因此在使用氣吸式排種器播種小粒徑種子時,必須對種子進行篩分處理,去除粒徑較小的籽粒,為降低型孔堵塞風險,建議使用的排種盤型孔直徑與播種種子最小粒徑之比小于0.9。
統計不同排種盤轉速、不同型孔直徑、不同工作負壓下排種盤型孔吸附各組種子時型孔發生漏吸、單粒吸種、多粒重吸的概率,以吸孔吸附狀態發生概率為因變量,種子千粒質量1;型孔直徑2;為排種盤轉速3;氣室負壓4等因素為自變量,開展多因數方差分析和多重比較。方差分析結果如表2所示:單粒吸種、漏吸及多粒重吸發生概率受籽粒千粒質量1、排種盤型孔大小2、工作轉速3及吸種負壓4影響極顯著;但排種盤型孔大小2和吸種負壓4的交互作用對多粒重吸發生概率影響不顯著、排種盤轉速3和吸種負壓4的交互作用對多粒重吸發生概率影響不顯著。

表2 吸種效果影響多因素方差分析
注:1為種子千粒質量,g;2為排種盤型孔直徑,mm;3為排種盤轉速,r·min-1;4為氣室負壓,Pa。**<0.01,極顯著。
Note:1is thousand seeds weight, g;2is hole diameter of seeding disc, mm;3is rotate speed of seeding plate, r·min-1;4is negative pressure of air chamber, Pa. **<0.01, extreme significant.
多重比較得單因素多個水平之間的排種器吸種狀態概率平均值差異如圖3所示。單粒吸種的發生概率與種子千粒質量大小呈線性遞減關系,與排種盤型孔大小呈非線性遞增關系,與排種盤轉速大小呈線性遞減關系;漏吸發生概率與種子千粒質量大小呈線性遞增關系,與排種盤型孔大小呈非線性遞減關系,與排種盤轉速大小呈線性遞增關系。從整體趨勢看,千粒質量大時多粒重吸發生概率小,排種盤型孔小時多粒重吸發生概率小,排種盤轉速高時重吸概率小;但千粒質量、排種盤型孔、轉速等因素與重吸發生概率均值為非單調函數關系,表明重吸發生概率存在隨機性波動。由多個負壓水平之間的吸種效果發生概率均值差異可知當負壓值在?200~?1 400 Pa范圍內,隨著負壓絕對值增加,單粒吸種概率單調遞增,漏吸概率單調遞減;在?1 600~?3 000 Pa范圍內,隨著負壓絕對值增加,漏吸發生概率均值差異不明顯;在?1 600~?2 800 Pa范圍內,隨著負壓絕對值增加,單粒吸種與重吸發生概率均值差異不明顯;達到?3 000 Pa時單粒吸種概率下降,重吸發生概率增大。

圖3 影響排種器吸種狀態概率的各因素多重比較結果
排種盤型孔單粒吸種,漏吸及多粒重吸發生概率隨工作負壓(4?200~?3 000 Pa)和轉速(310~30 r/min)變化而變化的等高線圖如圖4所示(第1組種子,千粒質量1=5.40 g;排種盤型孔直徑2=0.9 mm)。由圖4可知類球形小粒徑種子氣吸式排種存在穩定吸種臨界氣壓0;且排種器工作轉速越大,實現穩定吸種的臨界氣壓0絕對值越大。當工作負壓|4|<|0|,由排種器單粒吸種及漏吸的發生概率受排種盤工作轉速的影響明顯,重吸發生概率小于0.02,屬于小概率偶然事件;當|4|≥|0|時,單粒吸種概率穩定在0.92以上,漏吸概率穩定在0.04以下,重吸發生概率在0.04以下,吸種狀態發生概率受轉速影響不明顯,重吸與漏吸具有一定隨機性;而|4|繼續增加,重吸發生概率有增加趨勢。
圖4中,排種器轉速10 r/min時,圖4a顯示單粒吸種概率大于0.92、圖4b與4c顯示漏吸重吸概率小于0.04,對應0約為?1 200 Pa;14 r/min時,對應0約為?1 400 Pa;30 r/min時,對應0約為?2 400 Pa。以排種器工作負壓為4=?1 400 Pa為例,當排種器轉速10 r/min時,|4|>|0|,此時圖4a中單粒吸種概率大于0.92,圖4b中漏吸概率小于0.04,圖4c中多粒重吸概率小于0.04;當排種器轉速14 r/min時,|4|=|0|,此時圖4a中單粒吸種概率等于0.92,圖4b中漏吸概率等于0.04,圖4c中多粒重吸概率小于0.04;當排種器轉速30 r/min時,|4|<|0|,此時圖4a中單粒吸種概率小于0.90,圖4b中漏吸概率大于0.10,圖4c中多粒重吸出現概率小于0.02。當排種器轉速14 r/min時,排種器工作負壓4達到?2 800 Pa,|4|≈2|0|,此時圖4c顯示排種器重吸發生概率增大到0.08;結合型孔吸種情況方差分析多重比較結果可知排種器合理的工作負壓范圍為|0|≤|4|≤2|0|。

注:試驗對象是第1組種子,千粒質量x1=5.40 g;排種盤型孔直徑x2=0.9 mm。
根據種子在排種盤上的受力情況分析,氣吸室所需負壓計算公式為[20]

式中為氣吸室負壓,Pa;為種子重心與排種盤間距,cm;為一粒種子的質量,kg;為排種盤吸孔中心處的線速度,m/s;為型孔直徑,m;為排種盤吸孔處的轉動半徑,m;為重力加速度,m/s2;為種子的摩擦阻力綜合系數,=(6~10)tan,為種子自然休止角;1為吸種可靠性系數;2為工作穩定可靠性系數。
由式(2)可知氣吸室所需負壓與種子千粒質量、排種盤型孔大小、排種盤轉速等相關,轉速越低、排種盤型孔越大、種子千粒質量越小,穩定吸種所需要的|0|越小。
在理想條件下,即=0、1=1、2=1時,試驗用種子吸種負壓在?20~?160 Pa,因此試驗觀察到負壓?200 Pa時有種子被吸附,但因種子間摩擦阻力影響,且吸種可靠性和工作穩定可靠性較低,漏吸現象發生概率大。油菜、青菜等類球形小粒徑種子自然休止角=26.7[31],種子流動性好,充種區種子量較少,摩擦阻力綜合系數=6tan;試驗中外界振動及沖擊影響較小,取2=1.6;排種器的排種盤吸種處轉動半徑=0.057 5 m。
排種盤轉速去試驗最高轉速30 r/min時,式(2)中種子運動離心力系數2/=0.058,遠小于種子重力和種子之間內摩擦阻力影響系數(1+),說明類球形小粒徑種子采用的排種盤直徑小,轉速變化引起的離心力變化較小,對所需負壓吸附力變化影響較小。而排種器在臨界負壓以下,漏吸概率和單粒吸種概率均受排種盤轉速影響明顯,表明吸種負壓低于臨界負壓時,排種器轉速影響型孔與充種區種子的接觸時間,進而影響吸種可靠性。轉速越高,型孔與種子吸附作用的時間越短,相同吸種負壓條件下型孔吸附種子的可靠性就越差,種子被型孔吸附的概率越低,漏吸概率越大;轉速越高,實現穩定吸種的臨界負壓絕對值就越大。因此吸種可靠性系數1與排種器工作轉速密切相關。
根據排種器穩定吸種狀態下單粒穩定吸種與漏吸概率變化情況,取排種盤吸種狀態概率等高線圖中單粒吸種概率0.92及漏吸概率0.02的等高線坐標值為對應轉速下穩定吸種壓臨界負參考值ref,以種子平均粒徑、千粒質量、排種盤型孔與轉速為因變量,對應臨界負壓參考值為自變量,根據式(2)通過非線性擬合計算確定吸種可靠性系數1。其中第1、3、5組種子為校正集,第2、4組種子為驗證集。
設吸種可靠系數1與排種盤工作轉速3線性相關(方案I),即
K
1
=
a
x
3
+
b
(3)
計算得:1=0.0643+0.638。
設1與排種盤工作轉速3及排種盤型孔直徑2線性相關(方案II),即
K
1
=
a
1
x
3
+
b
1
x
2
+
c
1
(4)
計算得:1=0.0643+1.7072?1.032。
根據2種方案確定1,由式(2)計算校正集和驗證集各組種子在不同型孔、不同轉速下的單粒穩定吸種臨界負壓值與參考值相關性如圖5中所示。由圖5可知雖然方案I與方案II的校正集決定系數接近,均大于0.82,但因未考慮型孔直徑變化對吸種可靠性系數1影響,其驗證集決定系數低于方案II。

圖5 臨界負壓計算值與參考值比較
排種器工作在臨界負壓計算值cal條件下單粒吸種、漏吸概率如圖6所示(第1、2組種子,千粒質量1=5.40、4.67 g;排種盤型孔直徑2=0.9、1.0、1.1、1.2 mm)。由圖6可知,排種所需的單粒穩定吸種臨界負壓cal絕對值隨種子千粒質量1增大而增大,隨型孔直徑2增大而減小,隨工作轉速增大3而增大。型孔直徑0.9 mm時,方案I確定的cal絕對值高于方案II;型孔直徑1.0 mm,方案I與方案II的cal絕對值接近;型孔直徑1.1、1.2 mm時,方案I確定的cal絕對值低于方案II。結合單粒吸種概率和漏播概率等高線分布可知,方案I確定型孔直徑0.9 mm的cal絕對值偏大,型孔直徑1.1、1.2 mm的cal絕對值偏小;型孔直徑1.2 mm時,排種器工作在cal條件下單粒吸種概率小于0.90、漏吸概率大于0.04,工作負壓偏低,處于非穩定吸種狀態。方案II考慮型孔影響,排種器工作在cal條件下,排種器的漏吸發生概率小于0.04,單粒吸種概率大于0.92,處于穩定工作狀態。由計算結果對比可知,方案II優于方案I,即排種器吸種可靠系數1與排種器工作轉速及型孔大小相關。

1)油菜、白菜、青菜等類球形小粒徑種子,球度在90%以上,種子個體之間球度、三軸尺寸、質量等均存在差異;為避免型孔堵塞,小粒徑種子氣吸式排種的型孔直徑與種子群最小顆粒粒徑之比應小于0.9;種子在工作負壓值較高時會出現型孔吸附4~6粒種子的現象,通過型孔漏吸、單粒吸種及重吸發生概率開展吸種環節研究可有效避免后續卸種、導種等串聯環節的影響。
2)型孔吸種狀態發生概率分析表明排種器存在穩定吸種臨界氣壓0,當排種器工作負壓范圍為0~20時,排種器處于穩定工作狀態;穩定吸種臨界氣壓與種子千粒質量、型孔直徑、排種盤轉速、吸種可靠性系數、工作穩定可靠性系數等參數密切相關;結合吸種過程受力分析明確排種盤工作轉速對型孔吸種狀態的主要影響機制是影響型孔與充種區種子的接觸時間,進而影響吸種可靠性;排種器工作轉速越高,達到穩定吸種的臨界氣壓絕對值|0|就越高,要求臨界負壓計算選取的可靠性系數越大。
3)以排種盤型孔吸種狀態概率等高線圖中漏吸概率0.02以及單粒吸種概率0.92的等高線坐標值為對應轉速下穩定吸種壓臨界負參考值,通過非線性擬合建立了吸種可靠性系數與型孔直徑、排種盤轉速的函數關系,研究結果為氣吸式排種器設計與性能提升提供了參考。
本文通過臺架試驗研究了排種器吸種過程的影響機制,確定了小粒徑種子氣吸式排種器吸種負壓計算的可靠性系數計算公式。播種機田間作業條件下排種器的吸種狀態影響及吸種負壓計算的工作穩定可靠性系數確定有待進一步研究。
[1] 廖慶喜,雷小龍,廖宜濤,等. 菜精量播種技術研究進展[J]. 農業機械學報,2017,48(9):1-16.
Liao Qingxi, Lei Xiaolong, Liao Yitao, et al. Research progress of precision seeding for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(9): 1-16. (in Chinese with English abstract)
[2] Li Y, Bingxin Y, Tao C, et al. Global overview of research progress and development of precision maize planters[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(1): 9-26.
[3] St Jack D, Hesterman D C, Guzzomi A L. Precision metering of(Australian Sandalwood) seeds[J]. Biosystems Engineering, 2013, 115(2): 171-183.
[4] Kachman S D, Smith J A. Alternative measures of accuracy in plant spacing for planters using single seed metering[J]. Transactions of the ASAE, 1995, 38(2): 379-387.
[5] 田波平,廖慶喜,黃海東,等. 2BFQ-6型油菜精量聯合直播機的設計[J]. 農業機械學報,2008,39(10):211-213.
Tian Boping, Liao Qingxi, Huang Haidong, et al. Design of 2BFQ-6 combined precision seeder for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10): 211-213. (in Chinese with English abstract)
[6] 李明,劉曉輝,廖宜濤,等. 氣力滾筒式油菜精量集排器[J]. 農業機械學報,2013,44(12):68-73.
Li Ming, Liu Xiaohui, Liao Yitao, et al.Pneumatic cylinder-type centralized precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(12): 68-73. (in Chinese with English abstract)
[7] Li Yitao, Wei Lei, Li Qingxi. Design and test of an inside-filling pneumatic precision centralized seed-metering device for rapeseed[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(2): 56-62.
[8] 顏秋艷,廖宜濤,廖慶喜. 油麥氣力式一器雙行兼用型排種器的設計與功能分析[J]. 華中農業大學學報,2014,33(3):109-114.
Yan Qiuyan, Liao Yitao, Liao Qingxi. Design and function analysis of dual-purpose rape-wheat pneumatic double-row metering device[J]. Journal of Huazhong Agricultural University, 2014, 33(3): 109-114. (in Chinese with English abstract)
[9] 廖宜濤,舒彩霞,廖慶喜,等. 油菜精量直播機氣力式排種系統穩壓控制方法與試驗[J]. 農業工程學報,2017,33(15):49-56.
Liao Yitao, Shu Caixia, Liao Qingxi, et al. Air pressure stabilizing method and experiment of pneumatic seed-metering system of precision rapeseed planter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 49-56. (in Chinese with English abstract)
[10] 舒彩霞,韋躍培,廖宜濤,等. 油菜氣力式排種系統參數對其負壓特性的影響及風機選型[J]. 農業工程學報,2016,32(10):26-33.
Shu Caixia, Wei Yuepei, Liao Yitao, et al. Influence of air blower parameters of pneumatic seed-metering system for rapeseed on negative pressure characteristics and air blower selection[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(10): 26-33. (in Chinese with English abstract)
[11] 楊明金,邱兵,楊玲,等. 振動氣吸式精密穴播機的排種性能[J]. 農業工程學報,2010,26(9):139-143.
Yang Mingjin, Qiu Bing, Yang Ling, et al. Metering performance of the vibrational vacuum precision tray seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 139-143. (in Chinese with English abstract)
[12] 陳海濤,李桐輝,王洪飛,等. 氣吸滾筒式壟上三行大豆密植排種器設計與參數優化[J]. 農業工程學報,2018,34(17):16-24.
Chen Haitao, Li Tonghui, Wang Hongfei, et al. Design and parameter optimization of pneumatic cylinder ridge three-row close-planting seed-metering device for soybean[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 16-24. (in Chinese with English abstract)
[13] 楊松,廖宜濤,廖慶喜. 2BFQ-6型油菜精量聯合直播機氣力式排種系統試驗研究[J]. 農業工程學報,2012,28(17):57-62.
Yang Song, Liao Yitao, Liao Qingxi. Experimental study on pneumatic seed-metering system of 2BFQ-6 precision planter for rapeseed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 57-62. (in Chinese with English abstract)
[14] 廖宜濤,黃海東,李旭,等. 浸種預處理對油菜籽氣力精量排種性能的影響[J]. 農業機械學報,2013,44(增刊1):72-76.
Liao Yitao, Huang Haidong, Li Xu, et al. Effects of seed pre-soaking on sowing performance by pneumatic precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(Supp.1): 72-76. (in Chinese with English abstract)
[15] 張靜,李志偉,劉皞春,等. 氣力滾筒式排種器種子吸附邊界模型及驗證[J]. 農業工程學報,2016,32(23):12-20.
Zhang Jing, Li Zhiwei, Liu Haochun, et al. Mathematical modeling and validation of seeder’s suction-boundary on pneumatic-roller type metering[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 12-20. (in Chinese with English abstract)
[16] 賴慶輝,馬文鵬,劉素,等. 氣吸圓盤式微型薯排種器充種性能模擬與試驗[J]. 農業機械學報,2017,48(5):44-53.
Lai Qinghui, Ma Wenpeng, Liu Su, et al. Simulation and experiment on seed-filling performance of pneumatic disc seed-metering device for mini-tuber[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(5): 44-53. (in Chinese with English abstract)
[17] 史嵩,張東興,楊麗,等. 基于EDEM軟件的氣壓組合孔式排種器充種性能模擬與驗證[J]. 農業工程學報,2015,31(3):62-69.
Shi Song, Zhang Dongxing, Yang Li, et al. Simulation and verification of seed-filling performance of pneumatic-combined holes maize precision [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(3): 62-69. (in Chinese with English abstract)
[18] 顏丙新,張東興,崔濤,等. 排種盤和負壓腔室同步旋轉氣吸式玉米精量排種器設計[J]. 農業工程學報,2017,33(23):15-23.
Yan Bingxin, Zhang Dongxing, Cui Tao, et al. Design of pneumatic maize precision seed-metering device with synchronous rotating seed plate and vacuum chamber[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 15-23. (in Chinese with English abstract)
[19] 賈洪雷,陳玉龍,趙佳樂,等. 氣吸機械復合式大豆精密排種器設計與試驗[J]. 農業機械學報,2018,49(4):75-86,139.
Jia Honglei, Chen Yulong, Zhao Jiale, et al. Design and experiment of pneumatic-mechanical combined precision metering device for soybean[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(4): 75-86, 139. (in Chinese with English abstract)
[20] 李林. 氣吸式排種器理論及試驗的初步研究[J]. 農業機械學報,1979,10(3):56-63.
Li Lin. A preliminary study on the theory and experimentation of the suction-type metering device for precision drill[J]. Transactions of the Chinese Society for Agricultural Machinery, 1979, 10(3): 56-63. (in Chinese with English abstract)
[21] 劉文忠,趙滿全,王文明,等. 氣吸式排種裝置排種性能理論分析與試驗[J]. 農業工程學報,2010,26(9):133-138.
Liu Wenzhong, Zhao Manquan, Wang Wenming, et al. Theoretical analysis and experiments of metering performance of the pheumatic seed metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(9): 133-138. (in Chinese with English abstract)
[22] Karayel D, Barut Z B, ?zmerzi A. Mathematical modelling of vacuum pressure on a precision seeder[J]. Biosystems Engineering, 2004, 87(4): 437-444.
[23] Arzu Yazgi, Adnan Degirmencioglu. Optimisation of the seed spacing uniformity performance of a vacuum-type precision seeder using response surface methodology[J]. Biosystems Engineering, 2007, 97(3): 347-356.
[24] 高筱鈞,周金華,賴慶輝. 中草藥三七氣吸滾筒式精密排種器的設計與試驗[J]. 農業工程學報,2016,32(2):20-28.
Gao Xiaojun, Zhou Jinhua, Lai Qinghui. Design and experiment of pneumatic cylinder precision seed-metering device for panax notoginseng[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(2): 20-28. (in Chinese with English abstract)
[25] 趙佳樂,賈洪雷,姜鑫銘,等. 大豆播種機偏置雙圓盤氣吸式排種器[J]. 農業機械學報,2013,44(8):78-83.
Zhao Jiale, Jia Honglei, Jiang Xinming, et al. Suction type offset double disc seed metering device of soybean seeder[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(8): 78-83. (in Chinese with English abstract)
[26] 叢錦玲,余佳佳,曹秀英,等. 油菜小麥兼用型氣力式精量排種器[J]. 農業機械學報,2014,45(1):46-52.
Cong Jinling, Yu Jiajia, Cao Xiuying. Design of dual-purpose pneumatic precision metering device for rape and wheat[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(1): 46-52. (in Chinese with English abstract)
[27] 陳學庚,鐘陸明. 氣吸式排種器帶式導種裝置的設計與試驗[J]. 農業工程學報,2012,28(22):8-15.
Chen Xuegeng, Zhong Luming. Design and test on belt-type seed delivery of air-suction metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 8-15. (in Chinese with English abstract)
[28] 邢赫,臧英,曹曉曼,等. 水稻氣力式排種器投種軌跡試驗與分析[J]. 農業工程學報,2015,31(12):23-30.
Xing He, Zang Ying, Cao Xiaoman, et al. Experiment and analysis of dropping trajectory on rice pneumatic metering device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 23-30. (in Chinese with English abstract)
[29] Yazgi A. Effect of seed tubes on corn planter performance[J]. Applied Engineering in Agriculture, 2016, 32(6): 783-790.
[30] 廖慶喜,李繼波,覃國良. 氣力式油菜精量排種器試驗[J]. 農業機械學報,2009,40(8):44-48.
Liao Qingxi, Li Jibo, Qin Guoliang. Experiment of pneumatic precision metering device for rapeseed[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(8): 44-48. (in Chinese with English abstract)
[31] 叢錦玲,廖慶喜,曹秀英,等. 油菜小麥兼用排種盤的排種器充種性能[J]. 農業工程學報,2014,30(8):30-39.
Cong Jinling, Liao Qingxi, Cao Xiuying, et al. Seed filling performance of dual-purpose seed plate in metering device for both rapeseed & wheat seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 30-39. (in Chinese with English abstract)
Investigation on vacuum singulating effect influencing factors of pneumatic precision seed metering device for small particle size of seeds
Liao Yitao1,2, Liao Qingxi1,2, Wang Lei1, Zheng Juan1, Gao Liping1
(1.430070,; 2.430070,)
Accurately separating a single seed from the seed population by vacuum suction precision is the core advantage for a precision pneumatic seed metering device. For spherical small particle size seeds such as rapeseed, vegetable seed, investigating on the influence mechanism of vacuum singulation process of pneumatic seed metering device through the qualified index and missing index is susceptible to subsequent seed discharging and seed guiding processes. The purpose of this research was to explore the vacuum singulation process of a precision pneumatic seed metering device which was innovated specifically for spherical small particle size seeds by employing negative vacuum and positive pressure to singulate and discharge the seed respectively. With different parameter combinations of grouped seeds, hole diameter, seeding disc rotate speed and negative pressure, the photos of seed suction and migration state on seed metering device were photographed. It were statistics and analysis that the probabilities of the holes no seed holding, single seed holding and multiple seeds holding in the seeding disc. 5 sets of seeds with different thousand seeds weight were obtained by seed screening pretreatment. The analysis of seed physical properties showed that there were large relative differences although these small-sized seeds had small particle size and light weight. The experiment revealed that small particle size seeds could be held by the hole at -200 Pa because they were light in weight, 4-6 multi-seeds holding would occur when the absolute value of negative pressure was too large. The analysis showed that the probability of single-seed holding was a highly significant correlation with factors such as thousand seeds weight, the hole diameter of seeding disc, the rotate speed of the seeding disc and negative pressure. There was an applicable negative pressure range as 1-2 times of the critical negative pressure to ensure the seed metering device to separate a single seed accurately, by which the single seed holding probability of the device was higher than 0.92, and the probabilities of no seed holding and multiple seeds holding were less than 0.04. Force analysis of the suction process showed that the critical negative pressure was related to mechanical and physical properties of seeds, hole diameter, rotate speed of seeding disc and suction reliability. The main mechanism of the variation of seeding disk rotate speed affecting the seed holding was that the fast rotation speed reduced the effective time of the hole and the seed, thereby degraded the single seed holding reliability. When the rotate speed was faster, the absolute value of the critical negative pressure to accurately separate a single seed should increase. Therefore, the reliability coefficient to calculate the negative pressure should be increased. In order to quantify the reliability coefficient of seed holding by vacuum, a nonlinear fitting calculation method was applied. The 1st, 3rd, and 5th set seeds were divided into the correction set for the fitting calculation and the 2nd and 4th set seeds were divided into the verification set. The working negative pressure with no seed holding probability 0.02 and single seed holding probability 0.92 were selected as the reference value. A mathematical model of the reliability coefficient was established with rotate speed of seeding disc and hole diameter as dependent variables. The determination coefficient of the calibration set and the verification set of the mode were both greater than 0.82, which proved the reliability coefficient could be determined by using this model. Then the critical value of negative pressure could be worked out, by which the no seed holding probability kept less than 0.04, the single seed holding probability kept more than 0.92 and the seed metering device worked at optimal status. The research clarifies the influence mechanism of positive and negative pressure combined precision metering device for small particle seed accurately separating process and provides a reference for design and performance improvement of pneumatic seed metering device.
agricultural machinery; crops; optimization; seed metering device; negative pressure of seed holding; seed holding reliability; small particle size seed
廖宜濤,廖慶喜,王 磊,鄭 娟,高麗萍. 氣力式小粒徑種子精量排種器吸種效果影響因素研究[J]. 農業工程學報,2018,34(24):10-17.doi: 10.11975/j.issn.1002-6819.2018.24.002 http://www.tcsae.org
Liao Yitao, Liao Qingxi, Wang Lei, Zheng Juan, Gao Liping. Investigation on vacuum singulating effect influencing factors of pneumatic precision seed metering device for small particle size of seeds[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(24): 10-17. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.24.002 http://www.tcsae.org
2018-08-19
2018-12-10
國家自然科學基金資助項目(51405180,51875229);國家重點研發計劃資助項目(2017YFD0700702);國家油菜產業體系專項資助項目(CARS-12)
廖宜濤,博士,副教授,主要從事現代農業裝備設計與測控研究。Email:liaoetao@mail.hzau.edu.cn
10.11975/j.issn.1002-6819.2018.24.002
S223.2
A
1002-6819(2018)-24-0010-08