翟 浩,李曉軍,余賢美,王海波,馬亞男
(山東省果樹研究所,山東泰安 271000)
植物真菌病害可造成巨大的產量損失,且一直威脅全球的食品安全[1-2]。培育和種植抗病品種是控制植物真菌病害較為有效且環保的方法[3]。目前,從分子和遺傳學角度對植物病原真菌進行了較為深入的研究,揭示了大量真菌的分子致病機理[4-5]。
蘋果炭疽葉枯病(Glomerellaleaf spot,GLS)是由刺盤孢屬(Colletotrichum)真菌引起的蘋果部分栽培品種的葉部病害,近年來該病害在我國各蘋果產區普遍發生,可造成蘋果樹葉片大量脫落和果實腐爛,進而削弱樹勢,引起次年果實減產甚至絕產,嚴重制約了蘋果產業的健康可持續發展[6]。深入研究蘋果炭疽葉枯病菌的分子致病機理,有助于分析蘋果炭疽葉枯病發展迅速、危害嚴重的原因,為針對該病害的藥劑研發和果園管理措施優化提供參考,同時為研究其他病原菌與植物的互作機制提供理論依據。
蘋果炭疽葉枯病是我國近年來新發現的一種流行性病害,主要危害嘎啦和金冠系列蘋果品種。Wang 等[7]對我國蘋果炭疽葉枯病的癥狀和病原進行了首次報道。目前,該病害逐漸蔓延,在山東、陜西、遼寧、河南和河北等主要蘋果生產省份已普遍發生[6]。
蘋果炭疽葉枯病最初被認為由圍小叢殼(Glomerellacingulata,無性態為膠孢炭疽菌C.gloeosporioides)引起[8]。后經研究發現,尖胞炭疽菌(C.acutatum)[9]和喀斯特炭疽菌(C.karstii)[10]也可引起蘋果炭疽葉枯病。王薇等[11]根據新的刺盤孢分類系統[12],利用形態學、培養特性、多基因系統發育及致病性等特征,明確了河南省和陜西省部分蘋果產區蘋果炭疽葉枯病的病原為果生刺盤孢(C.fructicola)和隱秘刺盤孢(C.aenigma)2種。通過對山東省蘋果主產區蘋果炭疽葉枯病病原的形態學研究和多基因系統發育分析,認為引起該地區蘋果炭疽葉枯病的病原為果生刺盤孢(C.fructicola)。
近年來,國內外對于蘋果炭疽葉枯病的研究集中于病原群體結構、病原侵染機制、病害發生規律和藥劑防治等。符丹丹等[13]利用優化后的ISSR-PCR反應體系對蘋果炭疽葉枯病菌遺傳多樣性進行分析。任斌等[14]利用光學顯微鏡和掃描電鏡對圍小叢殼(G.cingulata)在嘎啦蘋果葉片上的侵染過程進行了研究,認為該菌發育和侵染過程中的一些特點可能是造成病害暴發的原因。王冰等[15-16]檢測了6種藥劑對圍小叢殼的內吸治療效果和8種藥劑的保護效果,并測試了溫度、濕度和光照對該菌產生分生孢子和子囊孢子的影響。王海艷等[17]和張俊祥等[18]建立并優化了農桿菌介導的圍小叢殼的遺傳轉化體系,吳建圓等[19]利用農桿菌介導的轉化技術將nptⅡ(新霉素磷酸轉移酶基因)基因盒整合到圍小叢殼基因組中,韓小路等[20]建立了聚乙二醇介導的果生刺盤孢(C.fructicola)原生質體的轉化體系。
目前,從分子角度對蘋果炭疽葉枯病菌與寄主互作機制的研究相對較少。Perfect等[21]認為刺盤孢屬(Colletotrichum)真菌是研究植物病原真菌與寄主互作非常理想的模式菌之一。Sygmund等[22-23]對圍小叢殼的一個依賴于FAD的葡萄糖脫氫酶基因進行了真核和原核表達,該酶被認為可以抑制植物漆酶、酚氧化酶和過氧化氫酶的活性,在侵染植物過程中可能起促進作用。Seman等[24]利用畢赤酵母對圍小叢殼的角質酶基因進行了高效表達。Wang等[25-26]研究認為,茉莉酸、脫落酸和一些芳香揮發物的協同作用在葡萄果實抵御圍小叢殼的侵染過程中發揮著重要作用。Velho等[27]研究發現果生刺盤孢可以通過抑制植物的氧化防衛反應來達到在蘋果葉片上成功定殖和侵染的目的。雖然這些研究均為蘋果炭疽葉枯病菌的研究奠定了一定基礎,但對于蘋果炭疽葉枯病菌-蘋果葉片這個病害系統,病原表達在互作過程中發揮關鍵作用的蛋白質分子尚未做出明確判斷和功能驗證。因此,從互作蛋白著手,探討蘋果炭疽葉枯病的分子致病機理,從根本上解析該病害發展迅速、危害嚴重的原因是十分必要的。
植物的先天免疫反應包含2個層面[28],其中第1個層面是由病原相關分子模式(pathogen-associated molecular patterns,PAMPs)觸發的免疫反應(PAMPs triggered immunity,PTI)。PTI通過植物跨膜的模式識別受體(pattern-recognition receptors,PRRs)來實現,PRRs可以識別保守的病原相關分子模式,激活寄主植物的第一層免疫反應來抵御入侵微生物的定殖[3,29-30]。植物的PRRs感知PAMPs,會快速啟動與PTI相關的一系列反應,包括絲裂原活性蛋白的級聯、防衛反應相關基因的響應和細胞死亡等[5,31-32]。植物先天免疫系統的第2個層面是以高度多樣化的抗性蛋白(R蛋白)為基礎,這些R蛋白可以識別各種病原效應蛋白(effector),激活植物的免疫反應,即蛋白觸發的免疫反應(effector-triggered immunity,ETI)[33-34]。ETI大多在細胞內進行,往往十分迅速和強烈,常會伴隨著植物的過敏性壞死反應(hypersensitive reaction,HR)[3]。不同種類炭疽菌的體外基因敲出和回補課題的開展促進了對這類模式病原物的研究和利用[21],目前已對可侵染模式植物擬南芥(Arabidopsisthaliana)和十字花科蔬菜的菜炭疽菌(C.higginsianum)[35-37]和可侵染本氏煙(Nicotianabenthamiana)和煙草(N.tabacum)以及西瓜炭疽菌(C.orbiculare)[38]進行了深入研究。然而,對重要經濟作物炭疽病菌的PAMPs和效應蛋白的研究,還遠滯后于對這些真菌的次生代謝分析等生物化學方面,到目前為止僅少數幾種效應蛋白得到驗證[39-42]。
PAMPs能在植物組織表面、植物細胞間隙或植物細胞內起作用[43-44],通過與寄主細胞的靶蛋白結合,刺激植物快速產生Ca2+、NO和H2O2等早期免疫防御反應信號分子[45],這些信號分子通過復雜的信號網絡進行逐級傳遞放大,產生乙烯、水楊酸、吲哚乙酸、茉莉酸、植保素和病程相關蛋白等,最終使植物獲得系統抗病性[46]。PAMPs與植物靶蛋白的結合在誘導植物抗病信號轉導途徑中發揮著重要作用,是揭示激發子誘導植物抗病分子機制的關鍵環節。研究發現,植物病原真菌的一個內切纖維素酶,具有PAMPs功能,可以誘導植物的防衛反應(植物細胞過敏性壞死反應、植物防衛反應基因表達、活性氧產生、培養基堿化、鈣離子積累、乙烯合成等),并其激發活性與催化活性不相關[32]。具有激發子功能的真菌木聚糖酶、果膠酶和內切纖維素酶等被稱為PAMPs分子[5,47-49]。PAMPs涉及各種結構的分子,并在病原種屬間保守。較為典型的PAMPs有細菌中的鞭毛蛋白、延伸因子EF-Tu、肽聚糖和脂多糖等,真菌中有細胞壁多聚糖和幾丁質等,卵菌中有葡聚糖[50-52]。一般認為PAMPs在微生物適應與生存過程中發揮重要作用[53]。
效應蛋白方面,目前研究證實可以利用病原效應蛋白作為分子探針,篩選鑒定寄主的感病基因(S基因)[54]。感病基因編碼蛋白被病原真菌識別,引起病原菌擴散并最終導致植物組織病害。如果使植物感病基因失活,則可以降低病原菌的致病能力,誘導寄主產生持久的抗病性[55]。近10年來,多項研究也證實了這一點,以植物感病基因對病原真菌效應蛋白的識別為基礎產生的免疫反應,可以抵御多種病原菌的侵染[54]。
包括蘋果炭疽葉枯病菌在內的植物病原真菌都會在侵染寄主過程中表達分泌互作蛋白,尤其是PAMPa和效應蛋白。期望通過對蘋果炭疽葉枯病菌-蘋果葉片這個病害系統中互作蛋白的篩選與功能驗證,尋找保守的PAMPs和效應蛋白分子,分析和討論蘋果炭疽葉枯病菌的分子致病機理。
我國是世界蘋果生產大國,種植面積和產量均居世界前列。近年來,蘋果炭疽葉枯病在全國各蘋果產區大范圍暴發,嚴重影響了果實的產量和品質,制約了蘋果產業的健康可持續發展。目前對蘋果炭疽葉枯病菌分子致病機理和蘋果抗病機理的研究尚不充分。以蘋果炭疽葉枯病菌為研究對象,從病原-寄主互作蛋白著手,闡述該病菌的分子致病機理,可以為防控藥劑研發和管理措施優化提供參考,為該病害防治及抗病品種培育提供新思路。
[1] PENNISI E.Armed and dangerous[J].Science,2010,327(5970):804-805.
[2] FISHER M C,HENK D A,BRIGGS C J,et al.Emerging fungal threats to animal,plant and ecosystem health[J].Nature,2012,484(7393):186-194.
[3] DODDS P N,RATHJEN J P.Plant immunity:Towards an integrated view of plant-pathogen interactions[J].Nature reviews genetics,2010,11(8):539-548.
[4] BOLLER T,FELIX G.A renaissance of elicitors:Perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors[J].Annual review of plant biology,2009,60(1):379-406.
[5] BOLLER T,HE S Y.Innate immunity in plants:An arms race between pattern recognition receptors in plants and effectors in microbial pathogens[J].Science,2009,324(5928):742-744.
[6] 李保華,王彩霞,董向麗.我國蘋果主要病害研究進展與病害防治中的問題[J].植物保護,2013,39(5):46-54.
[7] WANG C X,ZHANG Z F,LI B H,et al.First report ofGlomerellaleaf spot of apple caused byGlomerellacingulatain China[J].Plant disease,2012,96(6):912.
[8] SUTTON T B,SANHUEZA R M.Necrotic leaf blotch of Golden Delicious-Glomerellaleaf spot:A resolution of common names[J].Plant disease,1998,82(3):267-268.
[10] VELHO A C,STADNIK M J,CASANOVA L,et al.First report ofColletotrichumkarstiicausing glomerella leaf spot on apple in Santa Catarina State,Brazil[J].Plant disease,2014,98(1):157.
[11] 王薇,符丹丹,張榮,等.蘋果炭疽葉枯病病原學研究[J].菌物學報,2015,34(1):13-25.
[12] CANNON P F,DAMM U,JOHNSTON P R,et al.Colletotrichum-current status and future directions[J].Studies in mycology,2012,73(1):181-213.
[13] 符丹丹,莊杰麗,張榮,等.蘋果炭疽病病原菌ISSR-PCR反應體系的優化及遺傳多樣性分析[J].植物保護學報,2013,40(3):231-236.
[14] 任斌,高小寧,韓青梅,等.蘋果炭疽葉枯病病原Glomerellacingulata及其侵染過程[J].植物保護學報,2014,41(5):608-614.
[15] 王冰,王彩霞,史祥鵬,等.不同殺菌劑對蘋果炭疽葉枯病的防治效果[J].植物保護,2014,40(6):176-180.
[16] 王冰,張路,李保華,等.溫度、濕度和光照對蘋果炭疽葉枯病菌(Glomerellacingulata)產孢的影響[J].植物病理學報,2015,45(5):530-540.
[17] 王海艷,李保華,張清明,等.農桿菌介導蘋果炭疽病菌的遺傳轉化及轉化子鑒定[J].中國農業科學,2013,46(9):1799-1807.
[18] 張俊祥,吳建圓,冀志蕊,等.農桿菌介導的蘋果炭疽葉枯病菌遺傳轉化及插入突變體的篩選[J].基因組學與應用生物學,2014,33(6):1261-1267.
[19] 吳建圓,冀志蕊,李壯,等.nptII基因真菌表達載體的構建及在蘋果炭疽葉枯病菌遺傳轉化中的應用[J].基因組學與應用生物學,2015,34(10):2156-2160.
[20] 韓小路,白靜科,張瑋,等.PEG介導的蘋果果生刺盤孢Colletotrichumfructicola原生質體轉化[J].西北農業學報,2016,25(3):442-449.
[21] PERFECT S E,HUGHES H B,O'CONNELL R J,et al.Colletotrichum:A model genus for studies on pathology and fungal-plant interactions[J].Fungal genetics and biology,1999,27(2/3):186-198.
[22] SYGMUND C,STAUDIGL P,KLAUSBERGER M,et al.Heterologous overexpression ofGlomerellacingulataFAD-dependent glucose dehydrogenase inEscherichiacoliandPichiapastoris[J].Microbial cell factories,2011,10(1):1-9.
[23] SYGMUND C,KLAUSBERGER M,FELICE A K,et al.Reduction of quinones and phenoxy radicals by extracellular glucose dehydrogenase fromGlomerellacingulatasuggests a role in plant pathogenicity[J].Microbiology,2011,157(Pt11):3203-3212.
[24] SEMAN W M,BAKAR S A,BUKHARI N A,et al.High level expression ofGlomerellacingulatacutinase in dense cultures ofPichiapastorisgrown under fed-batch conditions[J].Journal of biotechnology,2014,184:219-228.
[25] WANG S S,SAITO T,OHKAWA K.α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid,jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerellacingulata)[J].Journal of plant hysiology,2016,192:90-97.
[26] WANG S S,TAKAHASHI H,SAITO T,et al.Jasmonate application influences endogenous abscisic acid,jasmonic acid and aroma volatiles in grapes infected by a pathogen (Glomerellacingulata)[J].Scientia horticulturae,2015,192:166-172.
[27] VELHO A C,ROCKENBACH M F,MONDINO P,et al.Modulation of oxidative responses by a virulent isolate ofColletotrichumfructicolain apple leaves[J].Fungal biology ,2016,120(10):1184-1193.
[28] SCHWESSINGER B,RONALD P C.Plant innate immunity:Perception of conserved microbial signatures[J].Annual review of plant biology,2012,63(3):451-482.
[29] JONES J D,DANGL J L.The plant immune system[J].Nature,2006,444(7117):323-329.
[30] ZIPFEL C.Pattern-recognition receptors in plant innate immunity[J].Current opinion in immunology,2008,20(1):10-16.
[31] ALTENBACH D,ROBATZEK S.Pattern recognition receptors:From the cell surface to intracellular dynamics[J].Molecular plant-microbe interactions,2007,20(20):1031-1039.
[32] ZIPFEL C.Early molecular events in PAMP-triggered immunity[J].Current opinion in plant biology,2009,12(4):414-420.
[33] ABRAMOVITCH R B,ANDERSON J C,MARTIN G B,et al.Bacterial elicitation and evasion of plant innate immunity[J].Nature reviews molecular cell biology,2006,7:601-611.
[34] CHISHOLM S T,COAKER G,DAY B,et al.Host-microbe interactions:Shaping the evolution of the plant immune response[J].Cell,2006,124(4):803-814.
[35] NARUSAKA Y,NARUSAKA M,PARK P,et al.RCH1,a locus inArabidopsisthat confers resistance to the hemibiotrophic fungal pathogenColletotrichumhigginsianum[J].Molecular plant-microbe interactions,2004,17:749-762.
[36] NARUSAKA M,SHIRASU K,NOUTOSHI Y,et al.RRS1 andRPS4 provide a dualResistance-gene system against fungal and bacterial pathogens[J].Plant journal,2009,60(2):218-226.
[37] O’CONNELL R,HERBERT C,SREENIVASAPRASAD S,et al.A novelArabidopsis-Colletotrichumpathosystem for the molecular dissection of plant-fungal interactions[J].Molecular plant-microbe interactions,2004,17:272-282.
[38] SHEN S,GOODWIN P H,HSIANG T.Infection ofNicotianaspecies by the anthracnose fungus,Colletotrichumorbiculare[J].European journal of plant pathology,2001,107:767-773.
[39] KIM Y K,LIU Z M,LI D,et al.Two novel genes induced by hard-surface contact ofColletotrichumgloeosporioidesconidia[J].Journal of bacteriology,2000,182:4688-4695.
[40] STEPHENSON S A,HATFIELD J,RUSU A G,et al.CgDN3:An essential pathogenicity gene ofColletotrichumgloeosporioidesnecessary to avert a hypersensitive-like response in the hostStylosanthesguianensis[J].Molecular plant-microbe interactions,2000,13:929-941.
[41] KLEEMANN J,RINCON-RIVERA L J,TAKAHARA H,et al.Sequential delivery of host-induced virulence effectors by appressoria and intracellular hyphae of the phytopathogenColletotrichumhigginsianum[J].PLoS Pathogens,2012,8(4):1-15.
[42] YOSHINO K,IRIEDA H,SUGIMOTO F,et al.Cell death ofNicotianabenthamianais induced by secreted protein NIS1 ofColletotrichumorbiculareand is suppressed by a homologue of CgDN3[J].Molecular plant-microbe interactions,2012,25:625-636.
[43] HOGENHOUT S A,VAN DER HOORN R A L,TERAUCHI R,et al.Emerging concepts in effector biology of plant-associated organisms[J].Molecular plant-microbe interactions,2009,22(2):115-122.
[44] LIU J L,WANG X J,MITCHELL T,et al.Recent progress and understanding of the molecular mechanisms of the rice-Magnaportheoryzaeinteraction[J].Molecular plant pathology,2010,11(3):419-427.
[45] GARCIABRUGGER A,LAMOTTE O,VANDELLE E,et al.Early signaling events induced by elicitors of plant defenses[J].Molecular plant-microbe interactions,2006,19(7):711-724.
[46] OLIVA R,WIN J,RAFFAELE S,et al.Recent developments in effector biology of filamentous plant pathogens[J].Cellular microbiology,2010,12(6):705-715.
[47] MA Y N,HAN C,CHEN J Y,et al.Fungal cellulase is an elicitor but its enzymatic activity is not required for its elicitor activity[J].Molecular plant pathology,2015,16(1):14-26.
[48] POSTEL S,KEMMERLING B.Plant systems for recognition of pathogenassociated molecular patterns[J].Seminars in cell & developmental biology,2009,20(9):1025-1031.
[49] ZHANG L H,KARS I,ESSENSTAM B,et al.Fungal endopolygalacturonases are recognized as MAMPs by theArabidopsisreceptor-like protein RBPG1[J].Plant physiology,2013,164:352-364.
[50] FELIX G,DURAN J D,VOLKO S,et al.Plants have a sensitive perception system for the most conserved domain of bacterial flagellin[J].The plant journal,1999,18(3):265-276.
[51] DOW M,NEWMAN M A,ROEPENACK E.The induction and modulation of plant defense responses by bacterial lipopolysaccharides[J].Annual review of phytopathology,2000,38:241-261.
[52] ERBS G,SILIPO A,ASLAM S,et al.Peptidoglycan and muropeptides from pathogensAgrobacteriumandXanthomonaselicit plant innate immunity:Structure and activity[J].Chemistry & biology,2008,15(5):438-448.
[53] THOMMA B P,NURNBERGER T,JOOSTEN M H.Of PAMPs and effectors:The blurred PTI-ETI dichotomy[J].Plant cell,2011,23(1):4-15.
[54] GAWEHNS F,CORNELISSEN B J C,TAKKEN F L W.The potential of effector-target genes in breeding for plant innate immunity[J].Microb biotechnol,2013,6:223-229.
[55] PAVAN S,JACOBSEN E,VISSER R G F,et al.Loss of susceptibility as a novel breeding strategy for durable and broad-spectrum resistance[J].Molecular breeding,2010,25:1-12.