999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

STRONG COMPARISON PRINCIPLES FOR SOME NONLINEAR DEGENERATE ELLIPTIC EQUATIONS?

2018-11-22 09:24:04YanyanLI李巖巖

Yanyan LI(李巖巖)

School of Mathematical Sciences,Beijing Normal University,Beijing 100875,China;

Department of Mathematics,Rutgers University,110 Frelinghuysen Rd,Piscataway,NJ 08854,USA

E-mail:yyli@math.rutgers.edu

Bo WANG(王博)

Corresponding author.School of Mathematics and Statistics,Beijing Institute of Technology,Beijing 100081,China

E-mail:wangbo89630@bit.edu.cn

Abstract In this paper,we obtain the strong comparison principle and Hopf Lemma for locally Lipschitz viscosity solutions to a class of nonlinear degenerate elliptic operators of the form ?2ψ+L(x,?ψ),including the conformal hessian operator.

Key words Hopf lemma;strong comparison principle;degenerate ellipticity;conformal invariance.

1 Introduction

In this paper,we establish the strong comparison principle and Hopf Lemma for locally Lipschitz viscosity solutions to a class of nonlinear degenerate elliptic operators.

For a positive integer n ≥ 2,let ? be an open connected bounded subset of Rn,the ndimensional euclidean space.For any C2function u in ?,we consider a symmetric matrix function

One such matrix operator is the conformal hessian operator(see e.g.[21,27]and the references therein),that is,

where I denotes the n×n identity matrix,and for p,q∈Rn,p?q denotes the n×n matrix with entries(p ? q)ij=piqj,i,j=1,···,n.Some comparison principles for this matrix operator have been studied in[22–25].Comparison principles for other classes of(degenerate)elliptic operators are available in the literature.See[1–5,7–20,26]and the references therein.

Let U be an open subset of Sn×n,satisfying

where P is the set of all non-negative matrices.Furthermore,in order to conclude that the strong comparison principle holds,we assume Condition Uν,as introduced in[25],for some unit vector ν in Rn:there exists μ = μ(ν)>0 such that

Here Cμ(ν):={t(ν ? ν +A):A ∈ Sn×n,kAk< μ,t>0}.Some counter examples for the strong maximum principle were given in[25]to show that the condition(1.3)cannot be simply dropped.

Remark 1.1If U satis fies(1.2),

where O(n)denotes the set of n×n orthogonal matrices,then it is easy to see that U satis fies(1.3).

in the viscosity sense,if for any x0∈ ?,? ∈ C2(?),(? ?u)(x0)=0((? ?v)(x0)=0)and

We have the following strong comparison principle and Hopf Lemma.

Theorem 1.2(strong comparison principle) Let ? be an open connected subset of Rn,n ≥ 2,U be an open subset of Sn×n,satisfying(1.2)and Condition Uνfor every unit vector ν in Rn,and F be of the form(1.1)with(1.4)in the viscosity sense,u ≥ v in ?.Then either u>v in ? or u ≡ v in ?.

Theorem 1.3(Hopf lemma) Let ? be an open connected subset of Rn,n ≥ 2,?? be C2near a pointand U be an open subset of Sn×n,satisfying(1.2)and Condition Uνforthe interior unit normal of?? at?x,and F be of the form(1.1)withAssume that u,vsatisfy(1.4)in the viscosity sense,u>v in ? andThen we have

Remark 1.4If u and v∈C2,then Theorems 1.2 and 1.3 were proved in[25].

2 Proof of Theorem 1.2

Proof of Theorem 1.2We argue by contradiction.Suppose the conclusion is false.Sinceis non-negative,the set{x ∈ ? :u=v}is closed.Then there exists an open ball B(x0,R)??? centered at x0∈? with radius R>0 such that

Indeed,the first part of(2.6)follows from the de finitions of u?and v?,and the fact that.Now we prove the second part of(2.6).By theorem 5.1(a)in[6],we have that

It follows that for any M>0,there exists ?0(M)>0 such that

for any 0

It follows from(2.6)that there existssuch that for any η∈(0,ˉη),there existssuch that

And by lemma 3.5 in[6],we have

which implies that the Lebesgue measure ofis positive.Then there exists x?,η∈such that both of v?and u?are punctually second order di ff erentiable at

where C1and C2are two universal positive constant independent of ? and η.

Since u?is punctually second order di ff erentiable at x?,η,we have

By the de finition of u?,we have

and therefore,in view of(2.13),

We can firstly fix the value of small δ>0 and a large α >1,then fix the value of small0,and lastly fix the value of small ? and η>0 such that

whereμis obtained from condition(1.3).

Therefore,by(1.3)and(2.21),we have that

which is a contradiction with(2.16).Theorem 1.2 is proved.

3 Proof of Theorem 1.3

Proof of Theorem 1.3Since?? is C2near,there exists an open ball B(x0,R)??such that

Once the claim is proved,then we have that

Therefore,in order to finish the proof of Theorem 1.3,we only need to prove the above claim.Suppose the contrary,that is,

Now we can follow the argument as in the proof of Theorem 1.2 to get a contradiction.Theorem 1.3 is proved.

主站蜘蛛池模板: 一区二区三区毛片无码| 国产毛片网站| hezyo加勒比一区二区三区| 免费国产一级 片内射老| 亚洲一区国色天香| 免费av一区二区三区在线| 日韩福利在线观看| 亚洲国产亚洲综合在线尤物| 欧美精品v欧洲精品| 亚洲经典在线中文字幕| 久久精品中文字幕免费| 岛国精品一区免费视频在线观看| 亚洲日韩高清无码| 无码视频国产精品一区二区| 精品人妻系列无码专区久久| 国产午夜不卡| 国产小视频免费| 欧美精品亚洲精品日韩专区va| 国产午夜精品一区二区三| 天堂va亚洲va欧美va国产| 男女性午夜福利网站| 亚洲国产欧美目韩成人综合| 国产尤物jk自慰制服喷水| 免费国产高清精品一区在线| 日韩二区三区无| 欧美成人综合在线| 中文字幕人成乱码熟女免费| 亚洲精品在线影院| 中国一级特黄视频| 亚洲Av激情网五月天| 992Tv视频国产精品| 韩国v欧美v亚洲v日本v| 综合社区亚洲熟妇p| 久久无码免费束人妻| 伊人久久大香线蕉影院| 国产后式a一视频| 99久久国产自偷自偷免费一区| 久久国产精品娇妻素人| 手机在线看片不卡中文字幕| 国产成人精品免费av| a毛片在线免费观看| 亚洲精品福利网站| 亚欧美国产综合| 精品无码国产一区二区三区AV| 国产xx在线观看| 色悠久久久久久久综合网伊人| 精品一区二区三区自慰喷水| 伊人中文网| 亚洲人成在线精品| 亚洲综合一区国产精品| 伦精品一区二区三区视频| 欧美特级AAAAAA视频免费观看| 亚洲无码免费黄色网址| 91免费国产高清观看| 婷婷色狠狠干| 多人乱p欧美在线观看| 久久人搡人人玩人妻精品| 国产第三区| 国产精品熟女亚洲AV麻豆| 亚洲欧美成人在线视频| 六月婷婷激情综合| 国产午夜无码专区喷水| 久久精品波多野结衣| 午夜人性色福利无码视频在线观看| 国产小视频网站| 亚洲精选高清无码| 手机永久AV在线播放| 萌白酱国产一区二区| 无码网站免费观看| 人人91人人澡人人妻人人爽| 国产欧美视频综合二区 | 91精品综合| 亚洲熟女中文字幕男人总站| 福利视频久久| 亚洲天堂久久| 91在线一9|永久视频在线| 国产精品美女在线| 免费在线a视频| 狠狠v日韩v欧美v| 综1合AV在线播放| 亚洲国产精品人久久电影| 中文字幕在线不卡视频|