張 川,張亨年,閆浩芳,Samuel Joe Acquah,邢德科
?
微噴灌結合滴灌對溫室高溫環境和作物生長生理特性的影響
張 川1,張亨年1,閆浩芳2,Samuel Joe Acquah2,邢德科1
(1. 江蘇大學農業裝備工程學院,鎮江 212013; 2. 江蘇大學流體機械工程技術研究中心,鎮江 212013)
微噴灌結合滴灌是指在作物根區滴灌的基礎上對作物冠層進行微噴灌來改善作物生長環境的一種灌水方式。為了探明微噴灌結合滴灌(micro-sprinkler irrigation combined with drip irrigation,MSDI)和地表滴灌(surface drip irrigation,SDI)2種灌水方式下溫室高溫環境及作物生長生理特性的差異及響應規律,該研究以黃瓜為試驗對象,于2017年2-6月開展了2種灌水方式下溫室環境及黃瓜生長生理特性的觀測試驗。結果表明:在改變溫室環境方面,MSDI灌水方式較SDI可增加溫室內相對濕度,降低氣溫,同時降低葉片溫度約4℃;在作物生長生理特性方面,采用MSDI可增加黃瓜株高與莖粗,降低作物莖流速率,促進黃瓜生長;2種灌水方式下黃瓜最大光合效率幾乎一致,分別為0.74和0.77,但日平均實際光合效率差異明顯,分別為0.57和0.47,MSDI灌水方式下黃瓜葉片日平均氣孔導度和光合速率比SDI方式分別高182.8%和92.4%。該研究成果對于合理調控溫室高溫環境、提高溫室作物產量具有重要的指導意義。
灌溉;溫室;作物;微噴灌;地表滴灌;莖流速率;光合速率;光合效率
在人口增長和環境變化對傳統種植業的沖擊下,發展設施農業勢在必行,中國設施面積目前超過400萬hm2,是世界上設施栽培面積最大的國家[1-2]。主流溫室在設計和建造的過程中更多地強調了采光、蓄熱和保溫,因此,溫室內極易形成高溫環境[3],特別是在南方夏季高溫地區,溫室內氣溫常達40 ℃以上,許多大型溫室在7-9月份的高溫季節處于“停產”狀態,嚴重影響了溫室的利用效率,夏季溫室的降溫問題成為困擾現代大型溫室發展和應用的技術難題[4]。目前主要采用遮陽和濕簾風機系統兩種方法進行降溫,但是,在遮陽降溫的同時,也降低了光照強度,縮短了有效光合時間,影響蔬菜的生長發育和光合作用,如果遮陰時間過長,會嚴重影響果類蔬菜的開花坐果和產量的形成[5];濕簾-風機降溫系統雖然在中國北方地區有較好的效果,但該系統在潮濕的南方地區應用效果并不理想[6],并且在運行過程中存在能耗較高等問題[7]。
目前,科學合理的灌水方式逐漸成為改善作物生長環境和提高作物光合效率的重要手段,對于促進農業可持續發展具有重要意義[8-10],而微噴灌和滴灌作為設施農業中較為先進的2種灌水方式,受到較多學者的關注和研究[11-12]。劉海軍等[13-14]研究表明微噴灌可降低作物冠層周圍的溫度,改善作物生長環境,從而縮短作物葉片在高溫的中午發生光合“午休”現象的時間,實現作物快速生長[15-17],但僅采用微噴灌進行灌溉往往會造成溫室持續處于高濕的狀態,作物易受病菌感染[18]。滴灌因其不發生土壤深層滲漏和土壤表層溢水,較其他灌水方式可節約用水50%以上[19],Hebbar等[20-21]發現滴灌能顯著增加作物干物質積累,有利于作物的生長發育,但對于改善作物生長環境較為有限,難以解決夏季溫室高溫危害作物生長的問題。
因此,本研究以黃瓜為研究對象開展溫室試驗,通過觀測及對比分析微噴灌結合滴灌和地表滴灌2種灌溉方式下的溫室氣象環境(空氣溫度、相對濕度和葉溫)及黃瓜生長生理特性(株高、莖粗、莖流速率和光合速率等)的變化規律及差異,探討微噴灌結合滴灌對溫室高溫環境及黃瓜生長生理特性的影響機制。該研究成果不僅可以作為指導溫室黃瓜準確灌溉的依據,而且對于實現溫室高溫環境的合理調控具有重要意義。
試驗于2017年2-6月在江蘇大學Venlo型玻璃溫室內進行,試驗地位于江蘇省鎮江市(32°11′N、119°25′E,海拔23 m),溫室屋脊南北走向,長20 m,天溝高3.8 m,檐高4.4 m,跨度6.4 m,共兩跨,每跨2個小屋頂,覆蓋材料為4 mm厚的浮法玻璃,東北兩側設有側窗,高溫時開窗通風。土壤容重為1.35 g/cm3,表層土壤田間持水率為41.1%,土壤孔隙度為57.9%。
供試黃瓜為密刺黃瓜,品種為油亮3-2,采用土槽種植,土槽長65 cm,寬45 cm,深30 cm,南北走向,土槽四周均用水泥澆筑。試驗期為2017年2月21日-6月29日。黃瓜于2017年2月21日播種,4月6日移栽,移栽前施復合肥料(高濃度硫酸鉀型)作為底肥,種植密度為3.3株/m2。黃瓜生育期分為:苗期(4月6日-5月5日)、開花坐果期(5月6日-5月22日)及成熟采摘期(5月23日-6月29日)。試驗設置微噴灌結合滴灌(micro-sprinkler irrigation combined with drip irrigation,MSDI)和地表滴灌(surface drip irrigation,SDI)2種灌水方式,其中MSDI灌水方式是指在SDI基礎上結合倒掛式作物冠層微噴灌(噴頭與土槽一一對應,倒立懸掛于土槽上方,高2 m),每種灌水方式設置8個土槽作為重復。苗期由于溫室內氣溫適宜黃瓜生長,暫未開啟微噴灌,2種灌水方式均只采用滴灌進行灌水,灌水時間為每天早晨06:00,滴頭流量為140 mL/min,每株灌水5 min。5月6日黃瓜進入開花坐果期,溫室內最高溫度達到33℃,為降低作物冠層周圍空氣溫度和葉片溫度,提供適宜的生長環境,MSDI灌水方式為在滴灌的基礎上開啟微噴灌(陰雨天關閉),微噴灌時間為每日09:00、10:00、11:00和12:00,每次持續2 min。
1.3.1 氣象數據
溫室中安裝一套自動氣象監測系統,該系統包括溫濕度傳感器(HMP45C,Campbell)、太陽凈輻射儀(NR Lite2,Kipp&Zonen,Netherlands)、全球太陽短波輻射表(Decagon,USA)、長波輻射表(PRI-01,Prede,Japan)和風速儀(Wind Sonic,Gill)。所有數據均由CR1000數據采集系統(Campbell,USA)每10 min自動采集。另外,在作物冠層不同高度安裝3個溫濕度傳感器(U23-002,HOBO),安裝高度分別為0.8、1.3和1.8 m,探頭朝南,精度為±0.1 ℃。
1.3.2 株高及莖粗
每種灌水方式隨機挑選10株長勢良好無病害的植株進行標記,分別在黃瓜苗期、開花坐果期和成熟采摘期進行株高和莖粗的測定。株高采用直尺測量莖基部到莖尖端的高度,莖粗采用游標卡尺測量莖稈基部的直徑。
1.3.3 蒸騰速率
測定植株莖稈液流是獲取作物蒸騰速率的有效方法之一[22],采用包裹式莖流計(Flow32-1k system,Dynamax,USA)在黃瓜成熟采摘期內(6月12-18日)測定植株莖稈液流速率。每種灌水方式隨機挑選2株長勢良好無病害的植株,莖流計安裝在第5枝節,避免土壤熱反射的干擾。所選莖流計規格均滿足黃瓜莖稈直徑要求,確保莖流計與莖稈緊密接觸,設置CR1000數據采集器(Campbell,USA)每30 min自動采集數據。
1.3.4 葉綠素熒光及葉片溫度
本研究采用多通道調制熒光儀Monitoring-PAM(WALZ,Germany)在黃瓜成熟采摘期內(6月12-18日)連續監測植株的熒光參數和葉片溫度。每種灌水方式隨機挑選2株長勢良好無病害的植株,選取旗葉以下第5片功能葉,在自然光照條件下,測定實際光合效率(II),設置MONI-DA數據采集器每10 min自動采集數據。
1.3.5 光合速率
試驗采用GFS-3000便攜式光合測量儀(WALZ,Germany),在黃瓜成熟采摘期內選擇晴朗無云日測定葉片光合速率(photosynthetic rate)和氣孔導度(stomatal conductance)。每種灌水方式隨機挑選3株長勢良好無病害的植株,選取旗葉以下第5片功能葉測定其中部位置,每片葉片測量3次取平均值,觀測時間為08:00-18:00之間,每隔1.5~2 h測定一次。
本研究對溫室高溫環境進行連續監測,結果顯示不同日期空氣溫度和相對濕度的變化規律相似,因此以6月15日實測數據為例進行分析。MSDI灌水方式下溫室高溫環境變化規律如圖1所示,包括不同高度的冠層溫度(圖1a)和相對濕度(圖1b),夜間(18:00至次日06:00)不同高度(0.8、1.3和1.8 m)冠層溫濕度基本相同,之后隨太陽輻射增強,冠層間溫濕度開始產生差異,1.8 m處溫度最高,相對濕度最低,0.8 m處溫度最低,相對濕度最高,1.3 m處溫濕度均處于中間水平。在間斷開啟微噴灌后(如圖中箭頭所示),不同高度的冠層溫度均比下降,濕度均比增加,不同高度溫濕度變化規律相似,1.8 m處距離噴頭最近,溫濕度變化幅度大于0.8 m和1.3 m處。

注:圖中箭頭為開啟微噴灌時刻,MSDI 為微噴灌結合滴灌的灌水方式,下同。
2種灌水方式黃瓜葉片溫度日變化規律如圖2所示,未開啟微噴灌時段內,2種灌水方式葉片溫度基本相同。MSDI灌水方式在不同時刻開啟微噴灌后,葉片溫度較SDI方式下降約4 ℃,每次下降持續時間約10 min。停止微噴灌后約1~2 h,MSDI灌水方式下葉片溫度恢復到SDI灌水方式下葉溫水平。

注:SDI 為地表滴灌的灌水方式。
株高和莖粗反映不同生育時期作物的生長狀態[23-24]。2種灌水方式下黃瓜株高和莖粗的變化規律如圖3所示。苗期(4月6日-5月5日)未開啟微噴灌時,2種灌水方式下株高和莖粗基本相同。進入開花坐果期(5月6日)開啟微噴灌,5月8日對株高進行觀測,MSDI灌水方式下作物株高較SDI灌水方式顯著提高了22.5%(<0.05),隨著黃瓜的生長,MSDI灌水方式下黃瓜平均株高高于SDI灌水方式。由于黃瓜莖粗增長有限,整個生育期內2種灌水方式下黃瓜莖粗差異不顯著,MSDI相比SDI灌水方式可促進黃瓜更好的生長,促進作物干物質的形成。

注:不同大寫字母表示2種灌水方式在0.05水平上差異顯著。
選取黃瓜對水分敏感的成熟采摘期的莖流速率平均值進行對比分析。從圖4中可以看出,2種灌水方式下黃瓜莖流速率的日變化趨勢相似,都呈先增大,后減小的趨勢,但在MSDI灌水方式下,當開啟微噴灌后莖流速率下降明顯,每次持續下降約30 min,整個觀測時段內MSDI灌水方式下植株莖流速率始終高于SDI方式,其原因可能是MSDI灌水方式所選植株莖粗(6.55 mm)比SDI 灌水方式所選植株莖粗(5.97 mm)較大,植株長勢更好,造成莖流速率變大。

圖4 2種灌水方式下黃瓜莖流速率日變化規律
夏季高溫時時段,為防止莖流速率過大所導致的葉片失水嚴重,作物將關閉部分氣孔進行自我保護。莖流速率除受到氣孔導度等內因的影響,還受氣象因子等外因影響,不同氣象因子對莖流速率的影響程度不同,2種灌水方式下黃瓜莖流速率與氣象因子的相關性分析如表1所示。

表1 溫室環境2種灌水方式下黃瓜莖流速率與氣象因子的相關性分析
注:**分別表示在0.01 水平上顯著相關,=33;T為空氣溫度;RH為空氣相對濕度;SR為太陽輻射;R為太陽凈輻射。
Note: ** represents significantly correlated at 0.01 level, respectively,=33;Tis air temperature; RH is relative humidity; SR is solar radiation;Ris net radiation .
在MSDI和SDI灌水方式下,黃瓜莖流速率與溫室內氣象因子具有很高的相關性,其中莖流速率與空氣溫度(T)、太陽輻射(SR)和凈輻射(R)呈極顯著正相關(<0.01),與相對濕度(RH)呈極顯著負相關(<0.01),表明T、SR、R和RH是影響黃瓜莖流速率的主要因素。進一步對植株莖流速率與溫室氣象因子進行回歸分析,結果如表2所示。

表2 2種灌水方式下黃瓜莖流速率與氣象因子逐步回歸分析
經檢驗,回歸模型顯著性水平均小于0.01,其中,凈輻射(R)和氣溫(T)在MSDI和SDI灌水方式下均入選回歸方程,表明2種灌水方式下,R和T為影響黃瓜莖流速率的主要氣象因子,二者與莖流速率的回歸系數均為正值,莖流速率隨R和T的增大而增大。彭致功等[25-26]認為凈輻射(R)的影響作用最大,其次分別為RH和T,與本研究結果相似,其不同可能是本研究采用微噴改變了作物冠層周圍的空氣相對濕度所致。該結果表明采用MSDI灌水方式可通過降低T,增加RH,來減小黃瓜莖流速率。
圖5為2種灌水方式下黃瓜葉片氣孔導度和光合速率的日變化規律。2種灌水方式下黃瓜葉片氣孔導度均為先升高后降低的單峰型曲線,如圖5a。MSDI灌水方式下葉片氣孔導度在08:00-10:00急劇上升,而SDI灌水方式下上升較為緩慢,2種灌水方式葉片氣孔導度均在10:00達到最大值,隨后因溫室內氣溫升高,作物為防止葉片失水嚴重,會關閉部分氣孔進行自我保護,從而使得氣孔導度迅速下降[27]。氣孔的不均勻關閉降低了細胞間隙CO2濃度進而降低了植物的光合速率[28]。2種灌水方式下黃瓜葉片光合速率日變化規律如圖5b所示,葉片光合速率與氣孔導度變化規律相似,但略滯后于氣孔導度。MSDI灌水方式對提高黃瓜葉片氣孔導度和光合速率效果明顯,日平均氣孔導度和光合速率分別較SDI灌水方式提高了182.8%和92.4%。

圖5 2種灌水方式下黃瓜氣孔導度和光合速率日變化
夜間葉片處于黑暗環境,Monitoring PAM測得光系統II的最大光合效率,它反映了植株潛在最大光能轉換效率,在植株未受到任何脅迫條件下該參數變化很小且不受物種的影響,一般為0.8左右[29];白天葉片吸收太陽輻射進行光合作用,此階段測得光系統II的實際光合效率,反映了光合機構目前的實際光能轉換效率[30]。

圖6 2種灌水方式下黃瓜光系統Ⅱ光合效率的變化(2017-06-15)
從圖6可以看出,MSDI和SDI灌水方式下夜間(19:00至次日05:00)葉片最大光合效率分別約為0.74和0.77,2種灌水方式下葉片最大光合效率幾乎一致,接近正常值0.8,表明2種灌水方式下的葉片均沒有受到不可逆的高溫損害[29]。光系統II的實際光合效率在白天(05:00至19:00)迅速下降,在中午溫室內高溫時達到最低值。MSDI灌水方式下葉片實際光能轉換效率明顯大于SDI方式,MSDI灌水方式下黃瓜葉片日平均實際光合效率為0.57,SDI灌水方式下黃瓜葉片日平均實際光合效率為0.47,采用MSDI灌水方式可緩解溫室高溫對光系統II實際光能轉換效率的脅迫,改善葉肉細胞的光合能力。
黃瓜最適生長溫度為晝溫25 ℃,夜溫15 ℃,40 ℃以上高溫會引起作物萎蔫,50 ℃高溫會使作物枯萎[31]。夏季中午光照強,溫室內易形成高溫環境,氣溫常達到40 ℃以上,這一生長環境不利于黃瓜正常生長,在溫室高溫環境時,利用MSDI灌水方式調節溫室作物冠層高溫環境,降低氣溫,增加相對濕度,對于促進黃瓜生長效果明顯,其結果直接體現在黃瓜株高和莖粗上。有研究表明,當溫室內相對濕度持續高于80%~90%易產生病蟲害,造成作物減產等相關問題[32-33]。本研究結果顯示,溫室內夜間相對濕度最高且較為穩定,白天隨著太陽輻射的增強,相對濕度逐漸降低,于15:00點左右達到最低值,MSDI灌水方式開啟微噴灌時,溫室內相對濕度約45%~65%,開啟微噴灌后,相對濕度均比最大增幅約6%,微噴灌僅小幅提升了每日最低相對濕度,并不會造成溫室持續高濕環境。
光照過強、葉溫過高、水汽壓虧缺造成作物光合速率的下降,其中相對濕度的降低,部分氣孔關閉是導致光合速率降低的主要生態、生理因子[34]。本研究結果顯示,溫室內氣溫和葉溫達到全天最高值,相對濕度降至最低時,作物光合速率最低,且葉片氣孔導度處于最低的水平,造成氣孔部分關閉的原因是作物蒸騰速率過高,由于溫濕度是影響作物蒸騰速率的重要因素,因此,通過調節溫室內溫度和濕度可以降低作物蒸騰速率,減少氣孔關閉程度,進而減小其對作物光合速率的抑制。
葉綠素熒光可以從本質上反映作物光合作用過程的變化,高溫處理的葉片中由于CO2同化能力下降,造成對葉綠體中三磷酸腺苷(ATP)的需求減少,引起過剩光能增加,導致最大光合效率和實際光合效率明顯降低[35-36],同時,李建建等[37]研究表明42℃/27℃(晝/夜溫度)高溫脅迫下會導致光系統II結構在短期內不可恢復的傷害。本研究結果顯示,由于MSDI灌水方式可降低葉溫約4 ℃,葉片受高溫影響較小,該灌水方式光系統II的實際光轉換效率明顯高于SDI灌水方式。
綜上所述,MSDI灌水方式較SDI可降低溫室內氣溫,增加最低相對濕度,同時降低葉片溫度約4 ℃。此外,采用MSDI灌水方式可促進黃瓜生長,降低植株莖流速率,明顯提高日平均實際光合效率,其中,黃瓜葉片日平均氣孔導度和光合速率較SDI灌水方式下提高了182.8%和92.4%。
通過對比分析微噴灌結合滴灌(micro-sprinkler irrigation combined with drip irrigation,MSDI)和地表滴灌(surface drip irrigation,SDI)對溫室高溫環境及黃瓜生長生理特性方面的影響,得到以下結論:
1)采用MSDI灌水方式可增加溫室內相對濕度,降低氣溫,改善溫室高溫環境,同時可降低葉片溫度約4℃。
2)通過溫室內氣象因子與植株莖流速率的相關性分析及逐步回歸分析表明,凈輻射和氣溫是影響植株莖流速率的主要氣象因子,MSDI灌水方式通過降低氣溫,增加空氣相對濕度,使植株莖流速率下降。
3)MSDI灌水方式有效提高了黃瓜葉片氣孔導度和光合速率,日平均氣孔導度和光合速率分別較SDI灌水方式高182.8%和92.4%。
4)2種灌水方式夜間葉片最大光合效率幾乎一致,約為0.77,白天實際光能轉換效率MSDI灌水方式為0.57,SDI方式0.47。利用MSDI灌水方式可提高葉片實際光能轉換效率,改善葉肉細胞的光合能力。
[1] 李中華,王國占,齊飛,等. 我國設施農業發展現狀及發展思路[J]. 中國農機化,2012(1):7-10.
Li Zhonghua, Wang Guozhan, Qi Fei. Current situation and thinking of development of protected agriculture in China[J]. Chinese Agricultural Mechanization, 2012(1): 7-10. (in Chinese with English abstract)
[2] 王新坤,李紅. 我國溫室的研究現狀與發展趨勢[J]. 排灌機械工程學報,2010,28(2):179-184.
Wang Xinkun, Li Hong. Current research status and development trend of greenhouse in China[J]. Journal of Drainage and Irrigation Machinery Engineering, 2010, 28(2): 179-184. (in Chinese with Englishabstract)
[3] 孫維拓,陳曉麗,楊其長,等. 水墻封閉溫室夏季降溫特性[J]. 農業工程學報,2016,32(8):162-170.
Sun Weituo, Chen Xiaoli, Yang Qichang, et al. Cooling characteristics of closed greenhouse with water-walls in summer[J]. Transactions of the Chinese Society Agricultural Engineering (Transactions of the CSAE), 2016, 32(8): 162-170. (in Chinese with English abstract)
[4] 陳傳艷,趙純清,張繼元,等. 溫室吸濕劑噴淋除濕降溫系統的影響因子分析[J]. 農業工程學報,2012,28(10):202-207.
Chen Chuanyan, Zhao Chunqing, Zhang Jiyuan, et al. Anaysis of influencing factors of dehumidifying and cooling system with moisture absorbent spraying for greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(10): 202-207. (in Chinese with English abstract)
[5] 王玉彥,黨選民,朱國鵬. 南方溫室不同時段遮陽降溫效果及對甜椒生長發育和產量的影響[J]. 農業工程學報,2005(增刊2):64-66.
Wang Yuyan, Dang Xuanmin, Zhu Guopeng, et al.Sunshading and cooling effects of southern greenhouse under different periods and its influences on growth, development and yield of the sweet pepper[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005 (Suppl.2): 64-66. (in Chinese with English abstract)
[6] 劉佳,崔濤,王朝棟,等. 連棟溫室夏季降溫技術研究[J]. 農機化研究,2018,40(2):262-268.
Liu Jia, Cui Tao, Wang Chaodong, et al. Cooling technology of multi-span greenhousein summer[J]. Journal of Agricultural Mechanization Research, 2018, 40(2): 262-268. (in Chinese with English abstract)
[7] 趙杰強,趙云,吳偉雄. 塑料溫室中濕簾風機通風條件下降溫效果研究[J]. 農業工程,2012,2(10):13-15.
Zhao Jieqiang, Zhao Yun, Wu Weixiong. Cooling effects with fan pad ventilated in plastic greenhouse[J]. Agricultural Engineering, 2012, 2(10): 13-15. (in Chinese with English abstract)
[8] Lebourgeois V, Chopart J L, Begue A, et al. Towards using a thermal infrared index combined with water balance modelling to monitor sugarcane irrigation in a tropical environment[J]. Agricultural Water Management, 2010, 97: 75-82.
[9] 趙黎明,李明,鄭殿峰,等. 灌水方式與種植密度對寒地水稻產量及光合物質生產特性的影響[J]. 農業工程學報,2015,31(6):159-169.
Zhao Liming, Li Ming, Zheng Dianfeng, et al. Effects of irrigation methods and rice planting densities on yield and photosynthetic characteristics of matter production in cold area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(6): 159-169. (in Chinese with English abstract)
[10] Ravikumar V, Vijayakumar G, Simunekd J, et al. Evaluation of fertigation scheduling for sugarcane using a vadose zone flow and transport model[J]. Agricultural Water Management, 2011, 98: 1431-1440.
[11] 孔清華,李光永,王永紅,等. 地下滴灌施氮及灌水周期對青椒根系分布及產量的影響[J]. 農業工程學報,2009,25(增刊2):38-42.
Kong Qinghua, Li Guangyong, Wang Yonghong, et al. Effects of nitrogen application and irrigation cycle on bell pepper root distribution and yield under subsurface drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(Suppl.2): 38-42. (in Chinese with English abstract)
[12] 張航,李久生. 華北平原春玉米生長和產量對滴灌均勻系數及灌水量的響應[J]. 農業工程學報,2011,27(11):176-182.
Zhang Hang, Li Jiusheng. Response of growth and yield of spring corn to drip irrigation uniformity and amount in North China Plain[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 176-182. (in Chinese with English abstract)
[13] 劉海軍,康躍虎,劉士平. 噴灌對冬小麥生長環境的調節及其對水分利用效率影響的研究[J]. 農業工程學報,2003,19(6):46-51.
Liu Haijun, Kang Yuehu, Liu Shiping. Regulation of field environmental condition by sprinkler irrigation and its effect on water use efficiency of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(6): 46-51. (in Chinese with English abstract)
[14] 杜堯東,王建,劉作新,等. 春小麥田噴灌的水量分布及小氣候效應[J]. 應用生態學報,2001,12(3): 398-400.
Du Yaodong, Wang Jian, Liu Zuoxin, et al. Water distribution and microclimatic effects of sprinkler irrigation on spring wheat field[J]. Chinese Journal of Applied Ecology, 2001, 12(3): 398-400. (in Chinese with English abstract)
[15] 楊曉光,陳阜,宮飛,等. 噴灌條件下冬小麥生理特征及生態環境特點的試驗研究[J]. 農業工程學報,2000,16(3):35-37. Yang Xiaoguang, Chen Fu, Gong Fei, et al. Physiological and ecological characteristics of winter wheat on the condition of sprinkle irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2000, 16(3): 35-37. (in Chinese with English abstract)
[16] Tolk J A, Howell T A, Steiner J L, et al. Role of transpiration suppression by evaporation of intercepted water in improving irrigation efficiency[J]. Irrigation Science, 1995, 16(2):89-95.
[17] Salmeron M, Urrego Y F, Isla R. Effect of non-uniform sprinkler irrigation and plant density on simulated maize yield[J]. Agricultural Water Management, 2012, 113: 1-9.
[18] 趙淑梅,山口智治,周清,等. 現代溫室濕簾風機降溫系統的研究[J]. 農機化研究,2007(9):147-152.
Zhao Shumei, Tomoharu Yaguchi, Zhou Qing, et al. Study on pad and fan cooling system in modern greenhouse[J]. Journal of Agricultural Mechanization Research, 2007(9): 147-152. (in Chinese with English abstract)
[19] 覃建美,余寶泉,陳全有. 節水灌溉系統在溫室花卉生產上的應用研究[J]. 現代農業科技,2007(16):14-16.
Tan Jianmei, Yu Baoquan, Chen Quanyou. Application of water saving irrigation system in flower production in greenhouse[J]. Modern Agricultural Science and Technology, 2007(16): 14-16. (in Chinese with English abstract)
[20] Hebbar S S, Ramachandrappa B K, Nanjappa H V, et al. Studies on NPK drip fertigation in field growntomato (Lycopersicon esculentum Mill.)[J]. European Journal of Agronomy, 2004, 21(1): 117-127.
[21] 郭文忠,陳青云,高麗紅,等. 設施蔬菜生產節水灌溉制度研究現狀及發展趨勢[J]. 農業工程學報,2005,21(增刊2):24-27.
Guo Wenzhong, Chen Qingyun, Gao Lihong, et al. Present situation and developmental tendency on system of water-saving irrigation of vegetable production in protective cultivation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(Suppl 2): 24-27. (in Chinese with English abstract)
[22] 劉安,劉旭,黃嵐,等. 基于熱平衡法檢測植物莖流傳感器的標定[J]. 農業工程學報,2010,26(增刊2):6-10.
Liu An, Liu Xu, Huang Lan, et al. A calibration method for stem-flow sensor based on heat balance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(Supp.2): 6-10. (in Chinese with English abstract)
[23] 申寶營,李毅念,趙三琴,等. 暗期補光對黃瓜幼苗形態調節效果及綜合評價[J]. 農業工程學報,2014,30(22):201-208.
Shen Baoying, Li Yinian, Zhao Sanqin, et al. Effect of dark period lighting regulation on cucumber seedling morphology and comprehensive evaluation analysis and comprehensive evaluation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(22): 201-208. (in Chinese with English abstract)
[24] 費良軍,汪愛科,王龍飛,等. 日光溫室基質栽培櫻桃西 紅柿滴灌試驗研究[J]. 排灌機械工程學報,2016,34(12):1070-1076.
Fei Liangjun, Wang Aike, Wang Longfei, et al. Experiment on substrate cultivation of cherry tomatoes in sunlight greenhouse with drip irrigation[J]. Journal of Drainage and Irrigation Machinery Engineering, 2016, 34(12): 1070-1076. (in Chinese with English abstract)
[25] 彭致功,段愛旺,劉祖貴,等. 日光溫室條件下茄子植株蒸騰規律的研究[J]. 灌溉排水,2002,21(2):47-50.
Peng Zhigong, Duan Aiwang, Liu Gugui, et al. Research on plant transpiration in eggplant in solar-heated greenhouse[J]. Journal of Irrigation and Drainage, 2002, 21(2): 47-50. (in Chinese with English abstract)
[26] 龔雪文,劉浩,孫景生,等. 日光溫室番茄不同空間尺度蒸散量變化及主控因子分析[J]. 農業工程學報,2017,33(8):166-175.
Gong Xuewen, Liu Hao, Sun Jingsheng, et al. Variation of evapotranspiration in different spatial scales for solar greenhouse tomato and its controlling meteorological factors[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 166-175. (in Chinese with English abstract)
[27] Zhang Baozhong, Xu Di, Liu Yu, et al. Multi-scale evapotranspiration of summer maize and the controlling meteorological factors in north China[J]. Agricultural and Forest Meteorology, 2016, 216(5): 1-12.
[28] Franks P J, Farqnhar G D. The mechanical diversity of stomata and its significance in gas-exchange control[J]. Plant Physiology, 2007, 143(1): 78-87.
[29] 林琭,湯昀,張紀濤,等. 不同水勢對黃瓜花后葉片氣體交換及葉綠素熒光參數的影響[J]. 應用生態學報,2015,26(7):2030-2040.
Lin Lu, Tang Yun, Zhang Jitao, et al. Effects of different water potentials on leaf gas exchange and chlorophyll fluorescence parameters of cucumber during post-flowering growth stage[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 2030-2040. (in Chinese with English abstract)
[30] 汪炳良,徐敏,史慶華,等. 高溫脅迫對早熟花椰菜葉片抗氧化系統和葉綠素及其熒光參數的影響[J]. 中國農業科學,2004,37(8):1245-1250.
Wang Bingliang, Xu Min, Shi Qinghua, et al. Effects of high temperature stress on antioxidant systems, chlorophyll and chlorophyll fluorescence parameters in early cauliflower leaves[J]. Scientia Agricultura Sinica, 2004, 37(8): 1245-1250. (in Chinese with English abstract)
[31] 田婧,郭世榮. 黃瓜的高溫脅迫傷害及其耐熱性研究進展[J]. 中國蔬菜,2012, 18:43-52.
Tian Jing, Guo Shirong. Research progress on high-temperature stress in jury and heat tolerance of cucumher[J]. China Vegetables, 2012, 18: 43-52. (in Chinese with English abstract)
[32] 張洪印. 溫室大棚黃瓜病蟲害綜合防治技術[J]. 南方農業,2011,5(4):17-18. Zhang Hongyin. Integrated control technology of cucumber pests and diseases in greenhouse[J]. South China Agriculture, 2011, 5(4): 17-18. (in Chinese with English abstract)
[33] 陳志杰,張淑蓮,梁銀麗,等. 設施蔬菜病蟲綠色防治技術初探[J]. 西北植物學報,2003,23(8):1452-1457.
Chen Zhijie, Zhang Shulian, Liang Yingli, et al.Primary investigation on the ecological technologies of prevention and cure on diseases and insect pests in protected vegetable production[J]. Acta Botanica Boreali-Occidentalia Sinica, 2003, 23(8): 1452-1457. (in Chinese with English abstract)
[34] 許大全. 光合作用“午睡”現象的生態、生理與生化[J]. 植物生理學通訊,1990(6):5-10.
Xu Daquan. Ecology physiology and biochemistry of midday depression of photosynthesis[J]. Plant Physiology Communications, 1990(6): 5-10. (in Chinese with English abstract)
[35] Karim A, Fukamachi H, Hidaka T. Photosynthetic performance of Vigna radiate L. leaves developed at different temperature and irradiance levels[J]. Plant Science, 2003,164(4): 451-458.
[36] Yamada M, Hidaka T, Fukamachi H. Heat tolerance in leaves of tropical fruit crops as measured by chlorophyll fluorescence[J]. Sci Hortic, 1996, 67(1): 39-48.
[37] 李建建,常雅君,郁繼華. 高溫脅迫下黃瓜幼苗的某些光合特性和PSⅡ光化學活性的變化[J]. 植物生理學通訊,2007,43(6):1085-1088.
Li Jianjian, Chang Yajun, Yu Jihua. Changes of some photosynthetic properties and photosystem II photochemical activities in cucumber seedlings under high temperature stress[J]. Plant Physiology Journal, 2007, 43(6): 1085-1088. (in Chinese with English abstract)
Effects of micro-sprinkler irrigation combined with drip irrigation on greenhouse high temperature environment and crop growth physiological characteristics
Zhang Chuan1, Zhang Hengnian1, Yan Haofang2, Samuel Joe Acquah2, Xing Deke1
(1.212013,; 2.,212013,)
Micro-sprinkler irrigation combined with drip irrigation(MSDI) refers to the use of crop canopy micro-sprinkler irrigation to improve crop growth environment on the basis of drip irrigation. The differences in greenhouse high temperature environment and crop growth physiological characteristics under two kinds of irrigation modes, MSDI and surface drip irrigation (SDI), were compared and analysed. The field observations of greenhouse high temperature environment and growth physiological characteristics of cucumber under two irrigation modes were conducted in a Venlo-type glass greenhouse in Jiangsu China from February to June 2017. The results show that greenhouse environmental variables like temperature and humidity of the canopy at different heights (0.8, 1.3 and 1.8 m) during night hours (18:00-06:00) are basically the same. However, with the increase of solar radiation during the daytime hours, the air temperature rises whereas the relative humidity falls. The pattern of fluctuation is as follows: The highest air temperature and the lowest relative humidity all occur at 1.8 m level; the highest relative humidity and the lowest air temperature also occur at 0.8 m level; and the air temperature and relative humidity levels at height 1.3 m appeared to be intermediate between that of the 0.8 and 1.8 m. The application of MSDI can increase the relative humidity of the greenhouse, reduce the air temperature and the leaf temperature to about 4 ℃. In terms of crop growth physiology characteristics, MSDI can increase plant height and stem diameterand promote cucumber plant growth. Correlation analysis results showed that the sap flow rate of cucumber plant was significantly positively correlated with air temperature, solar radiation and net radiation (<0.01), and significantly negatively correlated with relative humidity (<0.01). Applying MSDI can reduce the sap flow rate by decreasing the air temperature and increasing the relative humidity. The maximum photosynthetic efficiencies of cucumber under the two irrigation modes were almost the same, with the values of 0.74 (MSDI) and 0.77 (SDI), respectively. However, the daily average photosynthetic efficiencies were significantly different between the two irrigation modes, with the values of 0.57 and 0.47, respectively. This phenomenon indicates that the use of MSDI irrigation method can alleviate the stress of greenhouse high temperature on the actual light energy conversion efficiency of the PSII and improve the photosynthetic capacity of mesophyll cells. Under the two irrigation methods (MSDI and SDI), the stomatal conductance of cucumber leaves increased initially, and then decreased rapidly to a minimum. The photosynthetic rate behaved similarly, but slightly lagged behind the stomatal conductance. The effect of MSDI irrigation on the stomatal conductance and photosynthetic rate of greenhouse cucumber leaves was obvious during the study. The average daily stomatal conductance and photosynthetic rate of cucumber leaves under MSDI mode were higher than SDI mode with 182.8% and 92.4%, respectively. The results have significant importance in reasonable regulation of greenhouse high temperature environment, and in improving greenhouse crop yield.
irrigation; greenhouse; crops;micro-sprinkler irrigation; surface drip irrigation; sap flow; photosynthetic rate; photosynthetic efficiency
10.11975/j.issn.1002-6819.2018.20.011
S275
A
1002-6819(2018)-20-0083-07
2018-05-09
2018-08-30
國家自然科學基金項目(51609103,51509107);江蘇省自然科學基金(BK20150509,BK20140546);
張 川,江蘇大學農業裝備工程學院副研究員,博士, 2017年赴荷蘭代爾夫特理工大學研修,主要從事農田水文、節水灌溉理論與技術方面的研究。Email:zhangchuan@ujs.edu.cn
張 川,張亨年,閆浩芳,Samuel Joe Acquah,邢德科. 微噴灌結合滴灌對溫室高溫環境和作物生長生理特性的影響[J]. 農業工程學報,2018,34(20):83-89. doi:10.11975/j.issn.1002-6819.2018.20.011 http://www.tcsae.org
Zhang Chuan, Zhang Hengnian, Yan Haofang, Samuel Joe Acquah, Xing Deke. Effects of micro-sprinkler irrigation combined with drip irrigation on greenhouse high temperature environment and crop growth physiological characteristics[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(20): 83-89. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.20.011 http://www.tcsae.org