999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

雙饋風(fēng)電機(jī)組去磁控制策略研究

2018-09-12 04:33:14毛劍波吳國(guó)祥
現(xiàn)代電子技術(shù) 2018年17期

毛劍波 吳國(guó)祥

摘 要: 大規(guī)模風(fēng)電接入對(duì)電力系統(tǒng)影響巨大,低電壓穿越(LVRT)能力成為全球電網(wǎng)公司針對(duì)風(fēng)電并網(wǎng)制定的硬性指標(biāo)。根據(jù)該指標(biāo)對(duì)對(duì)稱(chēng)電網(wǎng)故障工況下雙饋感應(yīng)電機(jī)(DFIG)電磁瞬態(tài)過(guò)程進(jìn)行深入分析,研究一種基于去磁控制機(jī)理的低電壓穿越控制策略。在轉(zhuǎn)子側(cè)注入與定子自由磁鏈方向相反的去磁電流,能有效抑制磁鏈過(guò)渡分量、減小轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì)、提升DFIG低電壓穿越能力。利用Matlab/Simulink平臺(tái)進(jìn)行仿真,結(jié)果證明該控制策略能扼制瞬態(tài)電壓沖擊,協(xié)助系統(tǒng)迅速恢復(fù),且控制結(jié)構(gòu)簡(jiǎn)單、靈活性高。

關(guān)鍵詞: 低電壓穿越; 對(duì)稱(chēng)故障; 雙饋感應(yīng)電機(jī); 電磁瞬態(tài)過(guò)程; 去磁控制; 系統(tǒng)恢復(fù)

中圖分類(lèi)號(hào): TN03?34; TM614 文獻(xiàn)標(biāo)識(shí)碼: A 文章編號(hào): 1004?373X(2018)17?0102?05

Abstract: Since the large?scale wind power integration has a great influence on the electric power system, the ability of low voltage ride through (LVRT) becomes an obligatory index of global grid corporations for wind power integration. According to the index, the electromagnetic transient process of the doubly?fed induction generator (DFIG) under the condition of symmetrical grid fault is analyzed deeply, and an LVRT control strategy based on demagnetization control mechanism is studied. The demagnetization current opposite to the stator freedom flux linkage direction is injected into the rotor side to effectively restrain the transient component of the flux linkage, decrease the induced electromotive force of the rotor, and improve the LVRT ability of DFIG. The strategy is simulated with Matlab/Simulink. The simulation results demonstrate that the control strategy can suppress the transient voltage surge, assist the system recovery rapidly, and has simple structure and high flexibility.

Keywords: low voltage ride through; symmetrical grid fault; DFIG; electromagnetic transient process; demagnetization control; system recovery

0 引 言

風(fēng)能清潔環(huán)保、發(fā)展前景優(yōu)良,是開(kāi)發(fā)最具規(guī)模的新型能源之一。隨著風(fēng)電滲透率的不斷攀升,機(jī)組與電網(wǎng)的互擾問(wèn)題[1]備受矚目。為避免電網(wǎng)故障導(dǎo)致機(jī)組大范圍脫網(wǎng),新的并網(wǎng)技術(shù)規(guī)程明確提出電網(wǎng)電壓跌落時(shí)風(fēng)機(jī)必須具備低電壓穿越(Low Voltage Ride Through,LVRT)能力[2?3]。現(xiàn)已大量投產(chǎn)使用的雙饋感應(yīng)電機(jī)(Doubly?fed Induction Generator,DFIG)定子與電網(wǎng)直接相連,易受電網(wǎng)波動(dòng)干擾。當(dāng)電網(wǎng)故障導(dǎo)致電壓驟降時(shí),定子磁鏈不能突變,定子側(cè)將產(chǎn)生暫態(tài)直流磁鏈,不對(duì)稱(chēng)故障時(shí)還包含負(fù)序磁鏈,在轉(zhuǎn)子側(cè)感應(yīng)出較高電動(dòng)勢(shì)。由于勵(lì)磁換流器容量?jī)H為額定容量的[13]左右,電網(wǎng)故障時(shí)極易引起轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì)超出換流器最大可控電壓,導(dǎo)致轉(zhuǎn)子側(cè)產(chǎn)生過(guò)壓過(guò)流現(xiàn)象,無(wú)法保障機(jī)組安全。

文獻(xiàn)[4]中的傳統(tǒng)矢量控制策略顯然無(wú)法滿足電網(wǎng)故障下DFIG低電壓運(yùn)行控制要求,針對(duì)LVRT問(wèn)題進(jìn)行深入研究很有必要。目前,相關(guān)學(xué)者提出的LVRT解決辦法基本可歸為兩類(lèi):優(yōu)化控制算法和外拓硬件設(shè)備[5]。前者主要依賴(lài)勵(lì)磁變換器的軟件控制,具備一定靈活性,廣泛應(yīng)用于電網(wǎng)電壓跌落故障程度較輕的狀況,常見(jiàn)方法有改善傳統(tǒng)矢量模型[6]、磁鏈追蹤控制[7]等;后者對(duì)原有硬件結(jié)構(gòu)加以改造,適用于電網(wǎng)電壓大幅降落的狀況,較為普遍的方式是增加crowbar保護(hù)電路[1,8],但crowbar電路的投切時(shí)間與crowbar阻值的選取難以確定。為了避免crowbar使能過(guò)長(zhǎng)導(dǎo)致電機(jī)從電網(wǎng)吸收大量無(wú)功影響電網(wǎng)恢復(fù)與穩(wěn)定,文獻(xiàn)[9]對(duì)原始crowbar結(jié)構(gòu)加以改進(jìn),在電阻旁串接了一個(gè)電容,限流能力提升,功率外特性改善,但電容如何選取仍需探討。為提高控制的可靠性,又有學(xué)者提出了轉(zhuǎn)子crowbar和直接轉(zhuǎn)矩控制配合[10]、轉(zhuǎn)子側(cè)crowbar和直流側(cè)卸荷電路[11]等組合控制方案。

本文在對(duì)電網(wǎng)對(duì)稱(chēng)故障時(shí)引起的電磁瞬態(tài)過(guò)程分析基礎(chǔ)之上,研究了一種去磁控制策略。向轉(zhuǎn)子側(cè)注入與定子自由磁鏈?zhǔn)噶肯喾吹娜ゴ烹娏鳎梢缘窒踔料ㄗ铀矐B(tài)直流磁鏈,避免轉(zhuǎn)子感生電動(dòng)勢(shì)過(guò)高影響系統(tǒng)安全運(yùn)行。利用仿真軟件進(jìn)行研究,結(jié)果表明該控制策略可提升DFIG故障穿越能力、加快系統(tǒng)瞬態(tài)反應(yīng)進(jìn)程。

1 DFIG數(shù)學(xué)模型

式中:第一項(xiàng)為轉(zhuǎn)子開(kāi)路條件下求得的轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì)[erg],由定子磁鏈產(chǎn)生;后一項(xiàng)為轉(zhuǎn)子側(cè)阻抗壓降,由轉(zhuǎn)子電流產(chǎn)生。轉(zhuǎn)子電流受轉(zhuǎn)子電壓和轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì)共同影響,由于轉(zhuǎn)子側(cè)阻抗壓降較小,分析時(shí)可以忽略[12],轉(zhuǎn)子電壓與轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì)大小相近,前者略大于后者。

根據(jù)式(4)可畫(huà)出轉(zhuǎn)子軸系下DFIG轉(zhuǎn)子側(cè)等效電路,如圖1所示。

2 DFIG動(dòng)態(tài)過(guò)程分析

2.1 穩(wěn)態(tài)分析

綜合式(17),式(18)分析可知,電網(wǎng)電壓發(fā)生對(duì)稱(chēng)跌落故障時(shí),轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì)與轉(zhuǎn)差率[s]和故障后電網(wǎng)電壓幅值[Ud]相關(guān)。考慮到DFIG轉(zhuǎn)差率[s]在[±0.3]以內(nèi),轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì)強(qiáng)制分量較小,若電網(wǎng)電壓發(fā)生深度跌落故障、DFIG處在同步或超同步狀態(tài)下時(shí),在轉(zhuǎn)子側(cè)將感應(yīng)出較大的電動(dòng)勢(shì)自由分量,如果該值超出RSC最大電壓限值,將導(dǎo)致轉(zhuǎn)子過(guò)壓過(guò)流,嚴(yán)重情況下威脅變流器安全。[Ud=0]時(shí),表示電網(wǎng)電壓發(fā)生了較嚴(yán)重的完全跌落故障。由于磁鏈的連續(xù)性,故障發(fā)生后依然產(chǎn)生表征直流暫態(tài)特性的自由磁鏈分量,但無(wú)強(qiáng)制分量。由式(16)得電壓完全跌落后的定子磁鏈:

該感應(yīng)電動(dòng)勢(shì)正比于[(1-s)Us],幅值較高,是穩(wěn)態(tài)情況下的數(shù)倍。受RSC容量限制,此時(shí)轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì)易超出RSC電壓能控區(qū)域,會(huì)削弱RSC限流能力,影響系統(tǒng)穩(wěn)定運(yùn)行。

3 低電壓穿越控制策略

由上文分析可知導(dǎo)致轉(zhuǎn)子過(guò)壓過(guò)流的直接因素是電網(wǎng)故障時(shí)產(chǎn)生的表征暫態(tài)直流特性的定子自由磁鏈,因而可通過(guò)注入與其反相位的轉(zhuǎn)子電流[irZ]在瞬態(tài)電感上產(chǎn)生的漏磁場(chǎng)對(duì)其進(jìn)行抑制,以增強(qiáng)機(jī)組暫態(tài)不脫網(wǎng)運(yùn)行能力。

整體控制框圖如圖4所示。總參考電流包含兩個(gè)部分:第一部分為功率外環(huán)所得電流;第二部分為去磁電流。本方案僅在原矢量控制結(jié)構(gòu)上增加了去磁電流模塊,結(jié)構(gòu)簡(jiǎn)單。該控制策略理論上能有效改善電壓跌落時(shí)DFIG電磁暫態(tài)特性,加速系統(tǒng)瞬態(tài)響應(yīng)過(guò)程,提升電機(jī)故障穿越能力。

4 仿真分析

為了驗(yàn)證本文所研究控制方法的正確性,在Matlab/Simulink平臺(tái)下建立雙饋風(fēng)電系統(tǒng)模型進(jìn)行仿真研究,DFIG參數(shù)如表1所示。

圖5為電網(wǎng)電壓發(fā)生完全跌落故障時(shí)轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì)仿真波形,跌落時(shí)刻設(shè)定在[t=]1.2 s。其中:圖5a)顯示電網(wǎng)電壓跌落情況;圖5b)為傳統(tǒng)矢量控制下的仿真結(jié)果;圖5c)為去磁控制下的仿真結(jié)果。

故障前,圖5b),圖5c)顯示的轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì)穩(wěn)態(tài)值均為98.91 V。故障發(fā)生后,圖5b)中感應(yīng)電動(dòng)勢(shì)驟增至-394.17 V和386.46 V,是正常情況下的3.9倍以上,而圖5c)中感應(yīng)電動(dòng)勢(shì)驟增至-149.97 V和184.35 V,僅為正常情況下的1.51倍和1.86倍左右。可見(jiàn)注入去磁電流后,有效減小了轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì),緩解了轉(zhuǎn)子瞬態(tài)電壓沖擊。圖5b)中轉(zhuǎn)子感應(yīng)電動(dòng)勢(shì)在1.375 s時(shí)衰減至穩(wěn)態(tài)值以內(nèi),而圖5c)中顯示為1.29 s,去磁控制下系統(tǒng)瞬態(tài)響應(yīng)進(jìn)程明顯加快,利于系統(tǒng)恢復(fù)。

5 結(jié) 語(yǔ)

本文在對(duì)電網(wǎng)電壓對(duì)稱(chēng)跌落激起的DFIG電磁暫態(tài)過(guò)渡過(guò)程分析的基礎(chǔ)上,研究一種去磁控制策略。電網(wǎng)故障瞬間,在轉(zhuǎn)子回路中注入與定子自由磁鏈反方向的電流。該電流在瞬態(tài)電感上形成的漏磁場(chǎng)對(duì)磁鏈過(guò)渡分量起到抑制作用,能緩解轉(zhuǎn)子瞬態(tài)電壓沖擊,提升電機(jī)故障穿越能力,加快暫態(tài)量的衰減過(guò)程。通過(guò)仿真研究,結(jié)果驗(yàn)證了該方法的有效性和正確性。

注:本文通訊作者為吳國(guó)祥。

參考文獻(xiàn)

[1] 熊威,鄒旭東,黃清軍,等. 基于Crowbar保護(hù)的雙饋感應(yīng)發(fā)電機(jī)暫態(tài)特性與參數(shù)設(shè)計(jì)[J].電力系統(tǒng)自動(dòng)化,2015,39(11):117?125.

XIONG Wei, ZOU Xudong, HUANG Qingjun, et al. Transient analysis and crowbar design of doubly?fed induction generator with crowbar protection under grid voltage dips [J]. Automation of electric power systems, 2015, 39(11): 117?125.

[2] 李鳳婷,陳偉偉,樊艷芳,等. 基于電壓跌落程度及變阻值的DFIG低電壓穿越綜合策略[J].電網(wǎng)技術(shù),2015,39(12):3408?3413.

LI Fengting, CHEN Weiwei, FAN Yanfang, et al. An integrated control strategy for LVRT of DFIG based on voltage dip levels and dynamic resistance [J]. Power system technology, 2015, 39(12): 3408?3413.

[3] 吳國(guó)祥,吳國(guó)慶,倪紅軍,等.電網(wǎng)電壓對(duì)稱(chēng)跌落時(shí)雙饋風(fēng)力發(fā)電系統(tǒng)的暫態(tài)分析與控制[J].電氣傳動(dòng),2013,43(10):3?8.

WU Guoxiang, WU Guoqing, NI Hongjun, et al. Transient analysis and control for a doubly fed generation under symmetrical voltage dips [J]. Electric drive, 2013, 43(10): 3?8.

[4] 李輝,楊順昌,廖勇.并網(wǎng)雙饋發(fā)電機(jī)電網(wǎng)電壓定向勵(lì)磁控制的研究[J].中國(guó)電機(jī)工程學(xué)報(bào),2003,23(8):159?162.

LI Hui, YANG Shunchang, LIAO Yong. Studies on excitation control of power system voltage oriented for doubly fed generators connected to an infinite bus [J]. Proceedings of the CSEE, 2003, 23(8): 159?162.

[5] 蔚蘭,陳宇晨,陳國(guó)呈,等.雙饋感應(yīng)風(fēng)力發(fā)電機(jī)低電壓穿越控制策略的理論分析與實(shí)驗(yàn)研究[J].電工技術(shù)學(xué)報(bào),2011,26(7):30?36.

WEI Lan, CHEN Yuchen, CHEN Guocheng, et al. A low vol?tage ride?through control strategy of doubly fed induction gene?rator [J]. Transactions of China electrotechnical society, 2011, 26(7): 30?36.

[6] 胡家兵,孫丹,賀益康,等.電網(wǎng)電壓驟降故障下雙饋風(fēng)力發(fā)電機(jī)建模與控制[J].電力系統(tǒng)自動(dòng)化,2006,30(8):21?26.

HU Jiabing, SUN Dan, HE Yikang, et al. Modeling and control of DFIG wind energy generation system under grid voltage dip [J]. Automation of electric power systems, 2006, 30(8): 21?26.

[7] 吳國(guó)祥,劉鴻泉,顧菊平,等. 基于磁鏈追蹤的雙饋風(fēng)力發(fā)電系統(tǒng)低電壓穿越[J].電測(cè)與儀表,2016,53(7):61?65.

WU Guoxiang, LIU Hongquan, GU Juping, et al. Control strategy for low voltage ride?through of doubly fed wind power generation system based on flux tracking [J]. Electrical measurement and instrumentation, 2016, 53(7): 61?65.

[8] 徐殿國(guó),王偉,陳寧.基于撬棒保護(hù)的雙饋電機(jī)風(fēng)電場(chǎng)低電壓穿越動(dòng)態(tài)特性分析[J].中國(guó)電機(jī)工程學(xué)報(bào),2010,30(22):29?36.

XU Dianguo, WANG Wei, CHEN Ning. Dynamical characteristic analysis of doubly?fed induction generator low voltage ride?through based on crowbar protection [J]. Proceedings of the CSEE, 2010, 30(22): 29?36.

[9] SWAIN S, RAY P K. Short circuit fault analysis in a grid connected DFIG based wind energy system with active crowbar protection circuit for ride through capability and power quality improvement [J]. International journal of electrical power & energy systems, 2017, 84: 64?75.

[10] SEMAN S, NIIRANEN J, ARKKIO A. Ride?through analysis of doubly fed induction wind power generator under unsymmetrical network disturbance [J]. IEEE transactions on power systems, 2006, 21(4): 1782?1789.

[11] 李輝,付博,楊超,等.雙饋風(fēng)電機(jī)組低電壓穿越的無(wú)功電流分配及控制策略改進(jìn)[J].中國(guó)電機(jī)工程學(xué)報(bào),2012,32(22):24?31.

LI Hui, FU Bo, YANG Chao, et al. Reactive current allocation and control strategies improvement of low voltage ride through for doubly fed induction wind turbine generation system [J]. Proceedings of the CSEE, 2012, 32(22): 24?31.

[12] LOPEZ J, SANCHIS P, ROBOAM X, et al. Dynamic behavior of the doubly?fed induction generator during three?phase voltage dips [J]. IEEE transactions on energy conversation, 2007, 22(3): 709?717.

[13] YANG J, FLETCHER J E, O′REILLY J. A series dynamic resistor based converter protection scheme for doubly?fed induction generator during various fault conditions [J]. IEEE transactions on energy conversation, 2010, 25(2): 422?432.

[14] LOPEZ J, SANCHIS P, GUBIA E, et al. Control of doubly fed induction generator under symmetrical voltage dips [C]// 2008 IEEE International Symposium on Industrial Electronics. Cambrige: IEEE, 2008: 2456?2462.

主站蜘蛛池模板: 日韩免费无码人妻系列| 久久国产高清视频| 国产精品三级av及在线观看| 欧美日韩一区二区三区在线视频| 亚洲精品天堂在线观看| 狠狠色香婷婷久久亚洲精品| 精品无码人妻一区二区| 亚洲欧美成人| 毛片大全免费观看| 黄色a一级视频| 亚洲色图在线观看| 国产精品毛片在线直播完整版| 亚洲中文字幕在线精品一区| 中文字幕66页| 午夜精品国产自在| 成人午夜久久| 超清无码一区二区三区| 超清人妻系列无码专区| 黄片一区二区三区| 久久国产高潮流白浆免费观看| 日韩精品专区免费无码aⅴ| 精品午夜国产福利观看| 91精品啪在线观看国产| 国产熟女一级毛片| 少妇精品在线| 久久免费视频播放| 日韩人妻少妇一区二区| 婷婷午夜天| 久热re国产手机在线观看| 2022国产91精品久久久久久| 国产精品成人AⅤ在线一二三四 | 国产午夜精品鲁丝片| 国产精品久久久久久久久久98 | 国产精品yjizz视频网一二区| 三上悠亚一区二区| 波多野结衣无码中文字幕在线观看一区二区 | 最新国产在线| 精品伊人久久久久7777人| 国产精品亚洲日韩AⅤ在线观看| 毛片大全免费观看| 亚洲三级电影在线播放| 99久久成人国产精品免费| 人人91人人澡人人妻人人爽| 国产伦片中文免费观看| 国产成人高清精品免费5388| 中国一级毛片免费观看| 日本一区二区不卡视频| 国产国产人免费视频成18| jijzzizz老师出水喷水喷出| 国产丝袜啪啪| 中文字幕人妻无码系列第三区| 亚欧成人无码AV在线播放| 91 九色视频丝袜| 亚洲天堂精品视频| 亚洲第一福利视频导航| 亚洲成肉网| 日韩欧美国产中文| 精品国产成人av免费| 好吊妞欧美视频免费| 亚洲无限乱码| 99精品一区二区免费视频| 精品少妇人妻无码久久| 国产福利影院在线观看| 激情午夜婷婷| 精品国产免费观看| 在线观看免费人成视频色快速| 国产精品开放后亚洲| 国产人人干| 亚洲中久无码永久在线观看软件| 亚洲精品欧美日韩在线| 欧美第二区| 在线免费a视频| 91无码网站| 国产精品网拍在线| 在线va视频| 欧美激情视频二区| 成人年鲁鲁在线观看视频| 欧美午夜视频在线| 成人免费午夜视频| 国产成人精彩在线视频50| 一本大道无码高清| 精品一区二区三区四区五区|