999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

激光淬火及熔覆技術提高柑橘枝粉碎機65Mn鋼錘片耐磨性

2018-09-03 03:31:04黃永俊李明震李善軍張衍林
農業工程學報 2018年17期

孟 亮,李 雄,黃永俊,萬 強,李明震,李善軍,張衍林

?

激光淬火及熔覆技術提高柑橘枝粉碎機65Mn鋼錘片耐磨性

孟 亮,李 雄,黃永俊,萬 強,李明震,李善軍,張衍林※

(華中農業大學工學院,武漢 430070)

為了提高柑橘枝粉碎機錘片的摩擦性能,該文主要通過多面激光淬火及激光熔覆技術強化65Mn鋼錘片表面。采用金相顯微鏡、顯微硬度計、摩擦磨損試驗機等探究激光處理后65Mn鋼組織對其顯微硬度及摩擦性能的影響。試驗結果表明:經激光淬火處理后65Mn鋼主要由完全淬火區、不完全淬火區、熱影響區及基體組成,經激光熔覆處理后65Mn鋼主要由熔覆區、完全淬火區、不完全淬火區、熱影響區及基體組成;65Mn鋼經激光淬火處理后,其顯微硬度最高可達619.8 HV0.1;65Mn鋼經激光熔覆處理后,其顯微硬度最高可達1 038.4 HV0.1;65Mn鋼經水淬-中溫回火處理后,其平均顯微硬度為585.6 HV0.1;激光淬火處理后65Mn鋼表面出現磨粒磨損機制,平均摩擦系數為0.40;65Mn鋼經激光熔覆Ni60+35%WC后熔覆層表面出現磨粒磨損機制,平均摩擦系數為0.36;水淬-中溫回火熱處理后65Mn鋼表面出現粘著磨損機制,平均摩擦系數為0.41;由此可見,65Mn鋼錘片經激光熔覆處理后摩擦性能較好。該研究可為錘片耐磨性提升提供參考。

農業機械;顯微組織;淬火;激光熔覆;顯微硬度;摩擦性能

0 引 言

由于65Mn具有良好的摩擦性能以及較好的經濟性,使得65Mn鋼成為很多刀具及工程機械耐磨工件的首選材料。65Mn鋼錘片作為柑橘枝粉碎機上的關鍵工作部件,易于出現磨損進而影響柑橘枝粉碎機工作效率。為進一步提高65Mn鋼耐磨工件使用壽命,相關學者采用了一些新的工藝方法提高65Mn鋼耐磨工件的使用壽命,王宏立等[1]對65Mn鋼表面進行激光淬火,試驗對象為65Mn鋼板,試驗方法采用預熱處理后的單道激光淬火和激光熔凝,試驗表明:經激光淬火處理后試樣表面組織為細密的針狀馬氏體,顯微硬度較常規處理有較大提高,試樣擁有較好摩擦性能且磨損機制為磨粒磨損和黏著磨損。袁曉明等[2]對65Mn鋼旋耕刀表面進行滲鉻-淬火-中溫回火熱處理工藝,試驗表明:處理過的旋耕刀能達到典型的表硬內韌特點,摩擦性能較傳統工藝處理試樣得到了較大提高。黃永俊等[3]對農機用65Mn鋼刀具進行預熱處理-激光強化,試驗對象為65Mn鋼板,試驗方法采用激光淬火時單道掃描,試驗表明:激光淬火處理后硬化區的顯微硬度要高于激光熔凝硬化區顯微硬度,正火預熱處理后激光強化組織顯微硬度要高于淬火-中溫回火預熱處理后激光強化組織的顯微硬度。由于金屬復合涂層具有較高的硬度、較優的摩擦性能以及良好的化學穩定性,使得其在磨損部件中的應用得到越來越多的關注[4-12]。

激光表面強化技術具有冷卻速度快、自動化程度高及易于選區加工等特點,因此在工件表面改性方面得到了廣泛的應用。單道激光處理為農機用65Mn鋼在農機部件組織改善和耐磨性提升方面提供一定的科學依據,但其試驗方法與實際應用需求存在一定差異;本文選擇粉碎機65Mn鋼錘片作為試驗對象,采用多面激光淬火和激光熔覆處理對錘片進行表面強化,研究不同工藝處理后試樣顯微組織及摩擦性能。

1 試驗材料及方法

1.1 試驗材料

激光淬火、激光熔覆及普通熱處理試驗所采取的基材均為65Mn鋼錘片,試驗前對試樣表面除銹除油并清洗潔凈,試樣尺寸為90 mm×60 mm×12 mm,其組織成分如表1所示。激光熔覆涂層材料為WC/Ni60(碳化鎢與鎳60)合金粉末,其中WC(碳化鎢)的質量分數為35%。

表1 65Mn鋼基體成分組成(質量分數)

1.2 試驗方法

本試驗采用設備為GS-HL-5000型激光器(武漢高斯激光設備有限公司,功率5 kW,波長10.6m)及SX2-5-12型電爐(武漢亞華電爐有限公司,額度功率5 kW,額定電壓220 V,額定溫度1 000 ℃)。試驗方法采用多面激光淬火和激光熔覆處理。激光淬火時采用功率為2.5 kW,掃描速度為300 mm/min。激光熔覆時采用功率為3.2 kW,掃描速度為350 mm/min,送粉速度為15~20 g/min。普通熱處理采用水淬-中溫回火工藝,其試驗參數為:淬火溫度為790 ℃,時間20 min;中溫回火溫度為350 ℃,時間25 min。試樣經激光淬火及激光熔覆后,沿垂直于掃描速度方向截取一部分制作金相樣品,使用體積分數為10%的硝酸酒精溶液對金相樣品進行腐蝕。試樣經普通熱處理后,在試樣任意部位截取部分制作金相樣品,并利用10%的硝酸酒精溶液對金相樣品進行腐蝕。通過MJ30型金相顯微鏡(廣州市明美光電技術有限公司,像素2000萬)分析金相試樣的顯微組織結構,利用HV-1000B型數字顯微硬度計(煙臺華銀試驗儀器有限公司,最小檢測單位0.25m)測量金相試樣各部分顯微硬度,加載壓力為0.981 N,壓力保持時間為15 s。將表面改性后的試樣制作成15 mm×15 mm×4 mm標準試樣塊,在MS-T-3001型摩擦磨損試驗機(蘭州華匯儀器科技有限公司,加載精度0.1 g)進行磨損試驗,磨頭材料為Si3N4,試驗時間20 min,載荷500 g,旋轉速度50 r/min,摩擦溫度0 ℃。錘片實際運行工況下磨損主要集中于4個頂角相鄰端面,因此為提升錘片摩擦性能,本文對錘片4個頂角相鄰5個端面全部進行激光淬火及激光熔覆,如圖1所示,熱處理范圍尺寸為60 mm×15 mm、12 mm× 15 mm、60 mm×12 mm。

圖1 65Mn鋼錘片激光處理部位示意圖

2 試驗結果與分析

2.1 激光淬火處理后65Mn組織分析

圖2為65Mn鋼經激光淬火處理后顯微組織的低倍截面形貌及各溫度區間顯微組織結構。

圖2 激光淬火處理后樣品顯微組織

如圖2a所示,65Mn鋼經激光淬火處理后由表及里顯微組織由完全淬火區、不完全淬火區、熱影響區及基體組成。如圖2b所示,由于激光加工時工作區域較小且激光能量密度較大,導致其加熱和冷卻速率極快,所以經激光淬火后65Mn鋼表層完全淬火區組織為針狀馬氏體+少量殘余奧氏體,殘余奧氏體分布在針狀馬氏體之間。如圖2c所示,不完全淬火區組織為鐵素體+回火屈氏體,回火屈氏體分布在鐵素體之間;回火屈氏體是由于多面激光淬火造成,具體來說是進行另一面加工時,由于熱流因素影響,進而相當于對前一次組織進行回火。熱影響區組織為片層狀珠光體+粒狀珠光體,如圖2d所示,片層狀珠光體的量少于基體內片層狀珠光體。

2.2 激光熔覆處理后65Mn組織分析

圖3為65Mn鋼經激光熔覆處理后顯微組織的低倍截面形貌及各溫度區間顯微組織結構。

如圖3a所示,65Mn鋼經激光熔覆處理后由表及里顯微組織由熔覆區、完全淬火區、不完全淬火區、熱影響區及基體組成。由于熔覆區各部位溫度場分布不同并且受到熱流因素的影響,導致熔覆區組織分為上、中、下3層。如圖3b所示,熔覆區上部顯微組織主要為樹枝狀共晶組織,同時存在熔解WC。由于熔覆層上部散熱渠道相對較多,既可以通過基體散熱也可通過與外界進行散熱,此處溫度梯度最低,結晶速度最大,/比值趨于零,以至于熔覆區上部出現生長方向多向性的樹枝晶[13]。熔覆區中部組織為共晶組織,由圖3c可知,熔覆區中部晶枝大小相對于上部晶枝較粗,主要是此處晶枝相較于上部散熱慢。由圖3d可知,熔覆區下部顯微組織為共晶組織,熔覆區與基體結合部位有一條白亮帶,白亮帶寬度大約為1~2m,白亮帶靠近熔覆區附近組織主要由等軸晶及樹狀晶組成,由于熔覆區下部與基體交界處溫度梯度值較小,結晶速度較大,液體與固體間存在正溫度梯度,使得垂直于白亮帶方向具有較優的散熱條件,導致此區域組織沿白亮帶垂直方向生長[14],同時可觀察到熔覆區中出現氣孔及熔覆區與基體結合處出現孔隙,造成此現象可能是由于WC含量過高,導致WC與Ni基二者熱膨脹系數差異增大,進而產生氣孔或裂紋[15-19]。完全淬火區顯微組織為針狀馬氏體+少量殘余奧氏體,且組織較為細密,如圖3e所示。由圖3f可知,不完全淬火區組織為粒狀珠光體,主要是由馬氏體經高溫回火獲得。由圖3g可知,熱影響區組織為片層狀珠光體+少量粒狀珠光體。

圖3 激光熔覆處理后樣品顯微組織結構

2.3 水淬-中溫回火處理后65Mn組織分析

圖4為65Mn鋼經水淬-中溫回火處理后顯微組織結構。如圖4所示,65Mn鋼經水淬-中溫回火處理后顯微組織為針狀馬氏體。在水淬-中溫回火處理中,65Mn鋼經790 ℃高溫加熱后致使組織轉變為奧氏體,在快速冷卻的條件下組織轉變為針狀馬氏體。

圖4 水淬-中溫回火處理后樣品顯微組織結構

2.4 顯微硬度

圖5為不同工藝處理后65Mn鋼橫截面顯微硬度分布。由圖5可知,經激光淬火處理后65Mn鋼截面硬度隨著距表面距離的增加,顯微硬度總體呈現緩慢下降、急劇下降、緩慢下降、穩定的趨勢。經激光熔覆處理后65Mn鋼截面硬度隨著距表面距離的增加,顯微硬度總體呈現緩慢上升、緩慢下降、急劇下降、緩慢下降、穩定的趨勢。根據顯微硬度變化趨勢,可將界面硬度區域劃分為高顯微硬度區、急劇下降過渡區、緩降過渡區及低顯微硬度區,與此對應硬化區、不完全淬火區、熱影響區及基體。對于激光淬火而言,硬化區為完全淬火區,而激光熔覆硬化區則包含熔覆區及完全淬火區。對于激光淬火而言:其硬化區深度大約為0.8 mm;不完全淬火區深度較窄,大約為0.2 mm;熱影響區深度大約為1.2 mm。對于激光熔覆而言:其硬化區深度大約為1.2 mm;不完全淬火區深度較窄,大約為0.2 mm;熱影響區深度大約為1.0 mm。

注:QZ為硬化區,PQZ為不完全淬火區,HAZ為熱影響區,SUB為基體。

由圖5可知,硬化區經激光淬火處理后65Mn鋼組織的顯微硬度最高可達619.8 HV0.1,主要是因為在急熱、急冷的情況下會導致碳原子來不及擴散致使珠光體轉變為含碳量較高的奧氏體,冷卻后得到高碳馬氏體,硬度略高于水淬-中溫回火熱處理后65Mn鋼組織的平均顯微硬度585.6 HV0.1。

由圖5可以看出經激光熔覆處理后試樣顯微硬度先呈現增長的趨勢后呈現下降的趨勢,出現這種情況是因為在進行激光熔覆時,由于激光能量較高導致熔覆區表層合金元素燒損以至于熔覆區表面處硬度稍低于亞表層,隨著距表層距離增加,顯微硬度會逐漸降至65Mn鋼基體硬度,冶金結合(白亮帶)區域硬度稍低于熔覆區硬度而高于基體,是由于熔池中存在對流作用,基體中的Fe等元素會擴散進入熔池進而稀釋熔覆區使得顯微硬度降低,同時熔覆區中的合金元素向基體擴散,由于固溶強化作用使得冶金結合區域顯微硬度高于基體。對于經激光熔覆處理后的65Mn鋼而言,在高硬度的硬化區中,其顯微硬度可達到1 038.4 HV0.1,顯微硬度相對于經水淬-中溫回火熱處理后65Mn鋼平均顯微硬度提高了近1.77倍。從圖5還可以看出,激光熔覆處理后硬化區的顯微硬度遠高于激光淬火處理后硬化區的顯微硬度,一方面是復合合金粉末中WC的含量較高,另一方面是由于激光能量密度較高以及掃描速度較低使得WC顆粒較大程度的熔解,進而使快速凝固后析出的碳化物強化相數量也得到相應的提高,激光熔覆過程中熔池的凝固速率極快,進而細化組織,從而起到強化表面的作用[20-27]。

3 材料的摩擦性能

圖6為表面改性及普通熱處理后試樣在干摩擦過程中摩擦系數與時間變化曲線。由圖6可知,試樣在摩擦過程初始階段中摩擦系數迅速增加,隨著時間的增加,摩擦系數緩慢增加,最終穩定在某一范圍內。經激光淬火處理后的65Mn鋼在整個摩擦過程中摩擦系數隨時間的波動程度相對于水淬-中溫回火熱處理較為平緩,平均摩擦系數為0.40。經水淬-中溫回火熱處理后65Mn鋼在整個摩擦過程中摩擦系數隨時間波動幅度較大,主要原因是由于熱處理過程中降溫不均勻導致65Mn鋼表面軟硬不一,進而在摩擦磨損過程中磨損表面附著較多粘著物,平均摩擦系數為0.41。而經激光熔覆處理后65Mn鋼在整個摩擦過程中摩擦系數隨時間波動最平穩,說明熔覆層的摩擦性能較好,平均摩擦系數為0.36。從圖6還可以看出,在摩擦磨損過程后期,摩擦系數隨時間略有增加,是由于試樣表面與磨粒接觸面積逐漸增加,進而加大塑性變形程度及磨損程度,致使試樣表面粗糙度增加,所以摩擦系數略有上升。

圖6 摩擦系數與時間關系

不同工藝強化后試樣磨損形貌圖如圖7所示。由圖7a可知,經激光淬火處理后的65Mn鋼表面犁溝較淺,屬于磨粒磨損機制。由圖7b可知,經水淬-中溫回火熱處理后65Mn鋼表面犁溝深淺不一,屬于粘著磨損機制。由圖7c可知,經激光熔覆處理后65Mn鋼熔覆區表面出現了剝落及較淺犁溝,磨損機制為磨粒磨損,造成此現象主要有兩方面原因,一是在循環法向載荷及剪切應力作用下使熔覆區局部發生剝落,二是熔覆區中WC硬質顆粒分布較廣,在磨損過程中WC顆粒阻礙Si3N4磨粒對基體的磨削[28-30]。

圖7 摩擦磨損高倍形貌

經激光強化后65Mn鋼,試樣表面硬度與磨頭表面硬度相差較小,試樣表面會形成較淺的犁溝,提高了65Mn鋼的摩擦性能。

4 結 論

1)經激光淬火處理后65Mn鋼由表及里顯微組織依次為針狀馬氏體+少量殘余奧氏體、鐵素體+回火屈氏體、片層狀珠光體+粒狀珠光體、片層狀珠光體+鐵素體。經激光熔覆處理后65Mn鋼由表及里顯微組織依次為共晶組織、針狀馬氏體+少量殘余奧氏體、粒狀珠光體、片層狀珠光體+粒狀珠光體、片層狀珠光體+鐵素體。經水淬-中溫回火處理后65Mn鋼顯微組織為針狀馬氏體。

2)經激光淬火處理后65Mn鋼顯微硬度最高可達619.8 HV0.1,經激光熔覆處理后65Mn鋼顯微硬度最高可達1 038.4 HV0.1,經水淬-中溫回火處理后65Mn鋼平均顯微硬度為585.6 HV0.1。在高硬度的硬化區中,65Mn鋼錘片經激光熔覆處理后顯微硬度最高。

3)經激光淬火處理后65Mn鋼平均摩擦系數為0.40,屬于磨粒磨損機制。經激光熔覆處理后65Mn鋼平均摩擦系數為0.36,屬于磨粒磨損機制。經水淬-中溫回火處理后65Mn鋼平均摩擦系數為0.41,屬于粘著磨損機制。65Mn鋼錘片經激光熔覆處理后,平均摩擦系數最低。

65Mn鋼錘片經激光處理尤其是激光熔覆處理后摩擦性能較好,且工藝簡單,滿足了錘片表硬心韌的性能要求。該研究為錘片耐磨性提升提供了科學依據,對實際生產應用有一定指導意義。

[1] 王宏立,張偉,申玉軍,等. 激光淬火65Mn鋼表面摩擦磨損性能研究[J]. 應用激光,2015(6):652-656.

Wang Hongli, Zhang Wei, Shen Yujun, et al. Study on friction and wear properties of laser quenched 65Mn steel[J]. Journal of Applied Lasers, 2015(6): 652-656. (in Chinese with English abstract)

[2] 袁曉明,王宏宇,趙玉鳳,等. 大耕深旋耕刀的制造工藝及其耐磨性[J]. 揚州大學學報:自然科學版,2012,15(1):33-37.

Yuan Xiaoming, Wang Hongyu, Zhao Yufeng, et al. Manufacturing process and wear resistance of deep-tillage rotary blade[J]. Journal of Yangzhou University: Natural Science Edition, 2012, 15(1): 33-37. (in Chinese with English abstract)

[3] 黃永俊,張國忠. 農機用65Mn鋼預熱處理后激光強化組織及性能[J]. 農業工程學報,2015,31(1):53-57.

Huang Yongjun, Zhang Guozhong. Microstructure and property of 65Mn steel preheated by laser strengthening[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 53-57. (in Chinese with English abstract)

[4] 曾維華,劉洪喜,王傳琦,等. 工藝參數對不銹鋼表面激光熔覆Ni基涂層組織及耐腐蝕性能的影響[J]. 材料工程,2012(8):24-29.

Zeng Weihua, Liu Hongxi, Wang Chuanqi, et al. Effects of technological parameters on microstructure and corrosion resistance of laser cladding Ni-based coating on stainless steel surface[J]. Journal of Materials Engineering, 2012(8): 24-29. (in Chinese with English abstract)

[5] 李美艷,韓彬,王勇,等. B4C和Ti含量對激光熔覆Fe-Cr-Ni-Si系合金涂層結構及性能影響[J]. 中國激光,2013,40(12):12030081-12030085.

Li Meiyan, Han Bin, Wang Yong, et al. Effect of B4C and Ti contents on structure and property of laser cladding Fe-Cr-Ni-Si alloy coatings[J].Chinese Journal of Lasers, 2013, 40(12): 12030081-12030085. (in Chinese with English abstract)

[6] 儲訓,馬援東. 鑄鐵、鑄鋼激光表面改性材料及工藝研究[J]. 農業工程學報,2001,17(4):22-25.

Chu Xun, Ma Yuandong. Material and technology research on surface of cast iron and cast steel by laser cladding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2001, 17(4): 22-25. (in Chinese with English abstract)

[7] 劉秀波,喬世杰,翟永杰,等. TA2合金激光熔覆自潤滑復合涂層組織與摩擦學性能[J]. 摩擦學學報,2017,37(1):75-82. Liu Xiubo, Qiao Shijie, Zhai Yongjie, et al. Microstructure and tribological properties of laser cladding self-lubricating anti-wear composite coatings on TA2alloy[J]. Tribology, 2017, 37(1): 75-82. (in Chinese with English abstract)

[8] 張松,張春華,吳維?,等. TiC/Ti復合材料激光熔覆層的沖擊磨粒磨損性能[J]. 金屬學報,2002,38(10):1100-1104.

Zhang Song, Zhang Chunhua, Wu Weitao, et al. Impact abrasive behavior of TiC / Ti composite layer by laser cladding[J]. Acta Metallurgica Sinica, 2002, 38(10): 1100-1104. (in Chinese with English abstract)

[9] 趙樹國,李成龍. 激光熔覆工藝參數對CBN膜層裂紋率的影響[J]. 中國表面工程,2015,28(6):119-126.

Zhao Shuguo, Li Chenglong. Relationship between crack rate of CBN coating and parameters of laser cladding[J]. Chinese Surface Engineering, 2015, 28(6): 119-126. (in Chinese with English abstract)

[10] 劉洪喜,董濤,張曉偉,等. 激光熔覆制備WC/Co50/Al硬質合金涂層刀具的微觀結構及切削性能[J]. 中國激光,2017,44(8):08020021-08020029.

Liu Hongxi, Dong Tao, Zhang Xiaowei, et al. Microstructure and cutting performance of WC/Co50/Al cemented carbide coated tools fabricated by laser cladding process[J]. Chinese Journal of Lasers, 2017, 44(8): 08020021-08020029. (in Chinese with English abstract)

[11] 王璐,胡樹兵,單煒濤,等. 激光熔覆NiCrMn-WC復合涂層的組織與耐磨性[J]. 中國有色金屬學報,2014,24(1):145-151.

Wang Lu, Hu Shubing, Shan Weitao, et al. Microstructure and wear resistance of laser cladding NiCrMn-WC composite coatings[J]. The Chinese Journal of Nonferrous Metals, 2014, 24(1): 145-151. (in Chinese with English abstract)

[12] 趙建國,李建昌,郝建軍,等. 氮弧熔覆TiCN/Fe金屬陶瓷涂層對農業刀具耐磨性的影響[J]. 農業工程學報,2013,29(3):84-89.

Zhao Jianguo, Li Jianchang, Hao Jianjun, et al. Influence of TiCN/Fe metal ceramic coating by reaction nitrogen arc cladding on wear resistance of agricultural tools[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(3): 84-89. (in Chinese with English abstract)

[13] 袁慶龍,馮旭東,曹晶晶,等. 激光熔覆鎳基合金涂層微觀組織研究[J]. 中國激光,2010,37(8):2116-2120.

Yuan Qinglong, Feng Xudong, Cao Jingjing, et al. Research on microstructure of Ni-based alloy coating by laser cladding[J]. Chinese Journal of Lasers, 2010, 37(8): 2116-2120. (in Chinese with English abstract)

[14] 何宜柱,斯松華,徐錕,等. Cr3C2對激光熔覆鈷基合金涂層組織與性能的影響[J]. 中國激光,2004,31(9):1143-1148.

He Yizhu, Si Songhua, Xu Kun, et al. Effect of Cr3C2particles on microstructure and corrosion-wear resistance of laser cladding Co-based alloy coating[J]. Chinese Journal of Lasers, 2004, 31(9): 1143-1148. (in Chinese with English abstract)

[15] 路程. 激光熔覆Ni基球形WC復合涂層的組織與性能研究[D]. 廣州:華南理工大學,2012.

Lu Cheng. Microstructure and Performance of Ni-based Spherical WC Composite Coating by Laser Cladding[D]. Guangzhou: South China University of Technology, 2012. (in Chinese with English abstract)

[16] 戎磊,黃堅,李鑄國,等. 激光熔覆WC顆粒增強Ni基合金涂層的組織與性能[J]. 中國表面工程,2010,23(6):41-44.

Rong Lei, Huang Jian, Li Zhuguo, et al. Microstructure and property of laser cladding Ni-based coating reinforced by WC particles[J]. China Surface Engineering, 2010, 23(6): 41-44. (in Chinese with English abstract)

[17] 周圣豐,戴曉琴,鄭海忠. 激光熔覆與激光感應復合熔覆WC-Ni60A 涂層的結構與性能特征[J]. 機械工程學報,2012,48(7):115-118.

Zhou Shengfeng, Dai Xiaoqin, Zheng Haizhong. Characteristics on structure and properties of WC-Ni60A coatings by laser cladding and laser-induction hybrid cladding[J]. Journal of Mechanical Engineering, 2012, 48(7): 115-118. (in Chinese with English abstract)

[18] 高原,王成磊,黃家強,等. 高頻感應熔覆Ni60合金組織及耐磨性能研究[J]. 稀有金屬材料與工程,2011,40(增刊2):309-312.

Gao Yuan, Wang Chenglei, Huang Jiaqiang, et al. Microstructure and wear resistance of Ni60 layer prepared by high-frequency induction cladding[J]. Rare Metal Materials and Engineering, 2011, 40(Supp.2): 309-312. (in Chinese with English abstract)

[19] 周野飛,高士友,王京京. 激光熔覆高碳鐵基合金組織性能研究[J]. 中國激光,2013,40(12):3-5.

Zhou Yefei, Gao Shiyou, Wang Jingjing. Microstructure- property of laser cladding high carbon Fe-based alloy[J]. Chinese Journal of Lasers, 2013, 40(12): 3-5. (in Chinese with English abstract)

[20] 張攀,張偉,于鶴龍,等. 感應熔覆鐵基合金涂層的顯微組織與性能[J]. 中國表面工程,2016,29(1):41-45.

Zhang Pan, Zhang Wei, Yu Helong, et al. Microstructure and properties of Fe-based alloy coatings synthesized by induction cladding[J]. China Surface Engineering, 2016, 29(1): 41-45. (in Chinese with English abstract)

[21] 屈平,馬躍進,趙建國,等. 適宜碳化鎢含量提高Ti(C,N)-WC涂層耐磨耐蝕性[J]. 農業工程學報,2014,30(16):35-40.

Qu Ping, Ma Yuejin, Zhao Jianguo, et al. Appropriate WC content improving wear and corrosion resistance of Ti(C, N)-WC coating[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(16): 35-40. (in Chinese with English abstract)

[22] 郭國林,張娜,王俊杰,等. Q235鋼氬弧熔覆鐵基合金涂層的耐磨性研究[J]. 鑄造技術,2012,33(6):675-676.

Guo Guolin, Zhang Na, Wang Junjie, et al. Investigation on wear resistance of Fe-based alloy coating prepared by argon arc cladding on Q235[J]. Foundry Technology, 2012, 33(6): 675-676. (in Chinese with English abstract)

[23] 郝建軍,馬躍進,李建昌,等. 氬弧熔覆原位合成Ni基耐磨層在犁鏵上的應用[J]. 農業工程學報,2006,22(12):118-120.

Hao Jianjun, Ma Yuejin, Li Jianchang, et al. Application of in-situ synthesis of nickel-based anti-abrasion coating by argon-arc cladding on plowshare[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(12): 118-120. (in Chinese with English abstract)

[24] 江少群,王剛,陳超文. WC增強Fe基合金熔覆層的組織與濕砂磨損特性[J]. 中國表面工程,2015,28(1):37-41.

Jiang Shaoqun, Wang Gang, Chen Chaowen. Microstructure and wet sand abrasion resistance of Fe-based alloy clad coatings reinforced with WC[J]. China Surface Engineering, 2015, 28(1): 37-41. (in Chinese with English abstract)

[25] 張國棟,李莉,劉念,等. 打殼錘頭等離子堆焊鎳基涂層組織和性能[J]. 機械工程學報,2014,50(20):71-76.

Zhang Guodong, Li Li, Liu Nian, et al. Structure and properties of nickel-based surfacing on crust breaker deposited by plasma arc welding[J]. Journal of Mechanical Engineering, 2014, 50(20): 71-76. (in Chinese with English abstract)

[26] 韓照坤,樊云飛,趙建國,等. 深松鏟NiWC噴焊層耐磨性研究[J]. 河北農業大學學報,2015,38(1):110-117.

Han Zhaokun, Fan Yunfei, Zhao Jianguo, et al. Study on wear-ability of deep-shovel with NiWC coating[J]. Journal of Agricultural University of Hebei, 2015, 38(1): 110-117. (in Chinese with English abstract)

[27] 孫耀寧. 激光熔覆TiC增強Ti基復合涂層的組織與性能[J]. 應用激光,2008,28(4):282-286.

Sun Yaoning. Microstructure and properties of laser clad TiC reinforced Ti matrix composite coatings[J]. Application Laser, 2008, 28(4): 282-286. (in Chinese with English abstract)

[28] 陳希章,胡科,袁其兵. 激光熔敷原位合成WC增強鐵基復合涂層的組織和性能[J]. 中國表面工程,2016,29(4):118-122.

Chen Xizhang, Hu Ke, Yuan Qibing. Microstructure and performance of WC reinforced Fe-based composite coating synthesized in-situ produced by laser cladding[J]. China Surface Engineering, 2016, 29(4): 118-122. (in Chinese with English abstract)

[29] 曹熙,王文健,劉啟躍,等. 激光離散淬火對輪軌材料磨損與損傷性能的影響[J]. 中國表面工程,2016,29(5):72-79.

Cao Xi, Wang Wenjian, Liu Qiyue, et al. Effects of laser dispersed quenching on wear and damage performances of wheel/rail materials[J]. China Surface Engineering, 2016, 29(5): 72-79. (in Chinese with English abstract)

[30] 趙建國,李建昌,王安,等. 噴焊余溫淬火改善深松鏟尖鐵基涂層耐磨性[J]. 農業工程學報,2018,34(3):65-71.

Zhao Jianguo, Li Jianchang, Wang An, et al. Improvement of wear resistance of deep-shovel tip with Fe-based alloy coating by flame spray welding residual temperature quenching[J]. Transactions of the Chinese Society of Agricultural Engineering(Transactions of the CSAE), 2018, 34(3): 65-71. (in Chinese with English abstract)

Improvement on wear resistance of citrus twig grinding hammer of 65Mn steel by laser quenching and laser cladding

Meng Liang, Li Xiong, Huang Yongjun, Wan Qiang, Li Mingzhen, Li Shanjun, Zhang Yanlin※

(,,430070,)

In order to improve the wear resistance of the citrus twig grinding hammer, the multiple surfaces of the 65Mn steel hammer are strengthened by laser quenching and laser cladding. The metallographic microscope, microhardness tester and friction tester are used to study the effect of laser treated 65Mn steel on its microhardness and friction property. The main equipment used in this experiment is GS-HL-5000 fiber laser and SX2-5-12 type electric furnace. The power used for laser quenching is 2.5 kW and the scanning speed is 300 mm/min. For laser cladding, the power is 3.2 kW, the scanning speed is 350 mm/min, and the powder feeding speed is 15-20 g/min. Ordinary heat treatment uses water quenching and medium-temperature tempering process, and the test parameters are: With the quenching temperature of 790 °C, the time is 20 min; with the tempering temperature of 350 °C, the time is 25 min. After the laser quenching and laser cladding of the sample, a part of the metallographic sample is cut perpendicular to the scanning speed. The metallographic sample is etched by using 10% solution of nitric acid (volume fraction), and the metallographic sample is analyzed by the metallographic microscope. The loading pressure of digital microhardness tester is set to 0.981 N for 15 s pressure-keeping time. The friction experiment is implemented by MS-T-3001 friction tester with Si3N4grinding head, time of 20 min, 500 g loading, spindle speed of 50 r/min and 0 ℃ testing temperature. The results show that 65Mn steel, processed by laser quenching, is composed of entire quenching zone, part quenching zone, heat affected zone and substrate with its microstructure sequences as acicular martensite + retained austenite, ferrite + tempered troostite, lamellar pearlite + granular pearlite, lamellar pearlite + ferrite from the surface to the center. The 65Mn steel, processed by laser cladding, is composed of cladding zone, entire quenching zone, part quenching zone, heat affected zone and substrate with its microstructure sequences as eutectic structure, acicular martensite + retained austenite, granular pearlite, lamellar pearlite + granular pearlite, lamellar pearlite + ferrite from the surface to the center. The microstructure of 65Mn steel processed by water quenching and medium-temperature tempering is acicular martensite. The maximum microhardness of 65Mn steel processed by laser quenching is 619.8 HV0.1while the average microhardness of 65Mn steel processed by water quenching and medium-temperature tempering is 585.6 HV0.1.The surface microhardness of 65Mn steel processed by laser quenching is slightly higher than that by water quenching and medium-temperature tempering, because the surface of 65Mn steel with laser quenching is prone to form a layer of high carbon martensite. The maximum microhardness of 65Mn steel processed by laser cladding is 1 038.4 HV0.1, far more higher than the other 2 kinds of processing ways, because not only the content of WC (tungsten carbide) in composite alloy powder is high and also the higher laser energy density and the lower scanning speed can melt the WC particles to a large extent, increasing the number of carbide strengthening phase precipitated by rapid solidification. Abrasive wear mechanism appears on the surface of 65Mn steel by laser quenching, and the average friction coefficient is 0.40. Adhesive wear mechanism appears on the surface of 65Mn steel by water quenching and medium-temperature tempering, and the average friction coefficient is 0.41. The mechanism of surface abrasive wear appears on the surface of cladding layer, when the 65Mn steel is treated by laser cladding with Ni60 + 35% WC, and the average friction coefficient is 0.36, and the wear resistance is better. Based on the above results, the surface hardness of the laser-treated 65Mn steel increases substantially and the wear resistance increases significantly. This study provides a reference for extending the service life of the hammer.

agricultural machinery; microstructure; quenching; laser cladding; microhardness; friction property

10.11975/j.issn.1002-6819.2018.17.008

TG174.44

A

1002-6819(2018)-17-0054-07

2018-02-05

2018-06-06

現代農業(柑橘)產業技術體系建設專項資金項目(CARS-26);中央高校基本科研業務費專項基金(2662015PY144);國家重點研發計劃(2017YFD0202001、2017YFD0701400)

孟 亮,高級工程師,博士生,研究方向為現代農業裝備設計。 Email:4662078@qq.com

張衍林,教授,博士生導師,研究方向為柑橘生產機械化和生物質能裝備研究。Email:zhangyl@mail.hzau.edu.cn

孟 亮,李 雄,黃永俊,萬 強,李明震,李善軍,張衍林. 激光淬火及熔覆技術提高柑橘枝粉碎機65Mn鋼錘片耐磨性[J]. 農業工程學報,2018,34(17):54-60. doi:10.11975/j.issn.1002-6819.2018.17.008 http://www.tcsae.org

Meng Liang, Li Xiong, Huang Yongjun, Wan Qiang, Li Mingzhen, Li Shanjun, Zhang Yanlin. Improvement on wear resistance of citrus twig grinding hammer of 65Mn steel by laser quenching and laser cladding[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(17): 54-60. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.17.008 http://www.tcsae.org

主站蜘蛛池模板: 精品少妇人妻无码久久| 日韩小视频在线播放| 国产91成人| 91麻豆精品视频| 国产高清精品在线91| 亚洲综合极品香蕉久久网| 欧美色图久久| 露脸国产精品自产在线播| 亚洲精品午夜天堂网页| 天天躁日日躁狠狠躁中文字幕| 国产精品一区二区国产主播| 无码人中文字幕| 亚洲美女一级毛片| 91激情视频| 天堂在线www网亚洲| 国产免费人成视频网| 色天天综合久久久久综合片| 日韩AV无码免费一二三区| 欧美精品啪啪一区二区三区| 国产精品浪潮Av| 日韩一级毛一欧美一国产| 国产黄色视频综合| 国产女人喷水视频| 中文字幕不卡免费高清视频| 国产区在线观看视频| 色网站在线视频| 欧美国产在线一区| 制服丝袜无码每日更新| 58av国产精品| 欧洲日本亚洲中文字幕| 制服丝袜在线视频香蕉| 亚洲第一中文字幕| 香蕉伊思人视频| 亚洲人人视频| 久久国产V一级毛多内射| 国产精品亚洲天堂| 国产精品福利社| 国产91小视频| 日本久久免费| 中文字幕欧美日韩| 天天综合网色| 中国成人在线视频| 欧美中出一区二区| 全裸无码专区| 国产毛片基地| 毛片免费试看| 一级不卡毛片| 免费毛片a| 欧美天堂在线| 国产浮力第一页永久地址| 亚洲 日韩 激情 无码 中出| 国产高清国内精品福利| 欧美日韩成人在线观看| 又大又硬又爽免费视频| 一级毛片在线播放免费观看| 欧美五月婷婷| 青青青伊人色综合久久| 就去吻亚洲精品国产欧美| 欧美在线综合视频| 国产导航在线| 99久视频| 国产精品偷伦在线观看| 免费观看成人久久网免费观看| 少妇露出福利视频| 精品中文字幕一区在线| 国产91在线|日本| 茄子视频毛片免费观看| Jizz国产色系免费| 久久久受www免费人成| 国产精品专区第一页在线观看| 日本久久网站| 91美女视频在线| 亚洲国产日韩一区| 91外围女在线观看| 欧美国产另类| 色婷婷在线播放| 久久中文无码精品| 欧美激情视频一区| 国产高清不卡视频| 国产精品va免费视频| 国产男女XX00免费观看| 亚洲无码不卡网|