999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Construction of a New Two-fold Interpenetrated Three-dimensional Cobalt(II) Coordination Polymer Based on 2,5-Thiophenedicarboxylic Acid and Bis(imidazol-1-yl)methane①

2018-08-17 08:01:24XUELiPingCUIJiJiZHANGTingGAOYueYAOJiXin
結構化學 2018年7期

XUE Li-Ping CUI Ji-Ji ZHANG Ting GAOYue YAO Ji-Xin

?

Construction of a New Two-fold Interpenetrated Three-dimensional Cobalt(II) Coordination Polymer Based on 2,5-Thiophenedicarboxylic Acid and Bis(imidazol-1-yl)methane①

XUE Li-Pinga②CUI Jia-JiabZHANG TingbGAOYuebYAO Jia-Xinba

(471934)b(471934)

A cobalt coordination polymer, {[Co2(tdc)2(bimm)2]·(3DMF)}n, was synthesized based on 2,5-thiophenedicarboxylic acid (H2tdc) and bis(imidazol-1-yl)methane (bimm) mixed ligands. The asymmetric unit of the complex contains two Co2+cations, two tdc2?dianions, two neutral bimm ligands, and three free DMF molecules.In the complex, deprotonatedtdc2-dianions alternately bridge the adjacent Co2+cations to generate chains, which are further connected by the flexible bimm ligands to form a 3Dstructure containing adamantanoid-like subunits. In topology, the structure of 1 represents a 4-connecteduninodaltwo-fold interpenetrateddia (66) topology. Moreover, the solid UV-Vis absorption spectra of the complex have also been investigated.

cobalt coordination polymer,2,5-thiophenedicarboxylic acid,bis(imidazol-1-yl)methane, crystal structure, dia topology;

1 INTRODUCTION

Coordination polymers (CPs) are attractive func- tional materials with considerable promises in gas storage, luminescence, molecular magnetism, he-terogeneous catalysis, drug delivery and molecular separation[1-4]. Generally speaking, the design and construction of target CPs materials are still a great challenge, as many factors like organic ligands, solvent, pH, counter anion, concentration and tem- perature are associated with its synthesis[5-7]. Among the above-mentioned factors, the selection of appropriate organic ligands is very important, and a great deal of significant work has been done by using the strategy.

The rigid 2,5-thiophenedicarboxylic acid (H2tdc) with C2-like symmetry is a good exo-bidentate linker and becomes conspicuous and indispensible in CPs owing to its structural rigidity and chemical robustness. For example, Furukawa et al. reported a 2-fold interpenetrating zinc CP with 6-connected lcy net[8]. Zhang et al. reported three anionic CPs with bcg, bcu and flu topologies by tuning different organic cations[9]. In addition, the combination of H2tdc with N-donor co-ligands is also an effective paradigm for the synthesis of CPs[10-12]. Compared with flexible bridging pyridyl ligands, the combination of H2tdc and bis(imidazole) co-ligands in the self-assembly of CPs is rarely documented to date. Thus, these considerations inspired us to construct new CPs with H2tdc and flexible bis(imidazole) co-ligands.

In our previous study, we have employed H2tdc and flexible bis(imidazol-1-yl)methane (bimm) mixed ligands to construct threehighly-connected cadmium CPs, which show 4-connected sql layer, 6-connected 2-fold interpenetratedpcu and 8-con- nected bcu-type network, respectively[13].Herein, we report a new three-dimensional (3D) CP, {[Co2(tdc)2(bimm)2]·(3DMF)}n, based on H2tdc and bimm mixed ligands, featuring a 2-fold interpene- trating net with dia topology. What’s more, the solid UV-Vis absorption spectra of the complex were investigated.

2 EXPERIMENTAL

All chemicals for the syntheses were purchased from commercial sources and used without further purification. The hydrothermal reaction was per- formed in a 30 mL Teflon-lined autoclave under autogenous pressure. Elemental analyses for C, H, and N were carried out on a Flash 2000 elemental analyzer. Thermogravimetric analyses (TGA) were carried out on a SDTQ600 thermogravimetric analyzer. A platinum pan was used for heating the sample with a heating rate of 10 ℃/min under a N2atmosphere. Powder X-ray diffraction (PXRD) measurements were performed on a Bruker D8- ADVANCE X-ray diffractometer with Curadiation (= 1.5418 ?). The UV-Vis absorption spectra were recorded with a Hitachi U-4100 spectrophotometer.

2. 1 Synthesis of {[Co2(tdc)2(bimm)2]·(3DMF)}n

A mixture of H2tdc (0.034 g, 0.2 mmol), Co(NO3)2·6H2O (0.046 g, 0.2 mmol), bimm (0.029 g, 0.2 mmol), and 8 mL deionized water was sealed in a 25 mL Teflon-lined stainless-steel vessel and heated at 120 °C for 3 days under autogenous pre- ssure, followed by cooling to room temperature at a rate of 5 °C·h-1. Pink block crystals of 1 were collected (yield: 52% based on Co). Elemental analysis calcd. (%) for C35H41Co2N11O11S2: C, 43.13; H, 4.21; N, 15.82. Found (%): C, 43.11; H, 4.23; N, 15.79.

2. 2 X-ray structure determination

3 RESULTS AND DISCUSSION

Table 1. Selected Bond Lengths (?) and Bond Angles (°)

Symmetry transformation: #1:– 1,+ 1,; #2:+ 1,,– 1; #3:1,– 1,– 1

Fig. 1. Coordination environment of the Co2+cations in 1, showing the atom numbering scheme.Displacement ellipsoids are drawn at the 30% probability level. All hydrogen atoms are omitted.Symmetry codes: (#1)– 1,+1,; (#2)+1,,–1; (#3)+1,–1,–1

Fig. 2. (a) 1D polymeric chain. (b) View of the 3D framework of 1

Fig. 3. (a) View of a single diamond motif in 1. (b) Schematic view of a single 3D diamond framework. (c) Schematic representation of the 2-fold interpenetrating 3D diamond framework

To confirm the phase purity of complex 1, the PXRD pattern was recorded. As seen in Fig. 4a, the peak positions of the experimental and simulated patterns matched well, and there are no other peaks in the bulk material powder diffraction pattern, indicating the pure phase of the obtained product. Thermogravimetric analysis (TGA) was also investigated for complex 1 under N2atmosphere at a heating rate of 10 °C·min?1(Fig. 4b). The weight loss of 22.67% from 80 to 300 °C is attributed to the loss of free DMF molecules (calcd. 22.52%). The abrupt weight loss corresponding to the release of organic ligands starts at 300 °C with a result of thermal decomposition with the residual weight at ca. 17.10%.

In order to further characterize complex 1, the UV-vis absorption spectra of complex 1 together with the solid H2tdc and bimm ligands at room temperature are investigated(Fig. 5). The H2tdc ligand mainly exhibits one peak at 298 nm and the bimm ligand itself displays absorption bands at 216 nm with a weak shoulder band at 288 nm. The absorptions of the free organic ligands may be ascribed to the-* transition. In contrast, the coordination to the Co2+ion in complex 1 obstructs the-* electron transition and the resulted complex 1 displays one absorption at 264 nm, while a wide band in the range of 416~650 nm results from thespin-forbidden transition of the Co2+ion[18].

Fig. 4. (a) XRD patterns of 1 simulated from X-ray single-crystal diffraction data and experimental data. (b)TGA curve for 1

Fig. 5. UV-vis absorption spectra for free organic ligands and 1

4 CONCLUSION

In summary, a cobalt coordination polymer was synthesized based on 2,5-thiophenedicarboxylic acid and bis(imidazol-1-yl)methanemixed organic ligands. The compoud is a two-fold interpenetrated 3D colt(II) coordination polymer with 4-connected dia(66) topology. Moreover, the solid UV-Vis absorption spectra of the complex have also been investigated.

(1) Yoon, M.; Srirambalaji, R.; Kim, K.Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis.. 2012, 112, 1196–1231.

(2) Li, J. R.; Scully, J. L.; Zhou, H. C.Metal-organic frameworks for separations.. 2012, 112, 869–932.

(3) Doherty, C. M.; Buso, D.; Hill, A. J.; Furukawa, S.; Kitagawa, S.; Falcaro, P.Using functional nano- and microparticles for the preparation of metal-organic framework composites with novel properties.. 2013, 47, 396–405.

(4) Sumida, K.; Rogow, D. L.; Mason, J. A.; McDonald, T. M.; Bloch, E. D.; Herm, Z. R.; Bae, T. H.; Long, J. R. Carbon dioxide capture in metal-organic frameworks.. 2012, 112, 724–781.

(5) Li, B.; Wei, R. J.; Tao, J.; Huang, R. B.; Zheng, L. S.; Zheng, Z. P. Solvent-induced transformation of single crystals of a spin-crossover (SCO) compound to single crystals with two distinct SCO centers.. 2010, 132, 1558–1566.

(6) Lee, S. Y.; Jung, J. H.; Vittal, J. J.; Lee, S. S. Solvent-dependent networking of O2S2-macrocycle with silver perchlorate into one- and two-dimensional coordination polymers.. 2010, 10, 1033–1036.

(7) Li, Z.; He S.; Xue, L.; Wang, X.; Zhang, D.; Zhao, B. Exploring methyl-3-hydroxy-5-carboxy-2-thiophenecarboxylate and varying flexible bis(imidazole)-based synthons as building blocks for the construction of diverse cadmium coordination polymers.2018, 149, 498–504.

(8) Takashima, Y.; Bonneau, C.; Furukawa, S.; Kondo, M.; Matsuda, R.; Kitagawa, S. Periodic molecular boxes in entangled enantiomorphic lcy nets.. 2010, 46, 4142–4144.

(9) He, Y.; Tan, Y.; Zhang, J. Organic cation templated synthesis of three zinc-2,5-thiophenedicarboxylate frameworks for selective gas sorption.. 2014, 14, 3493?3498.

(10) Jia, H.; Li, W.; Ju, Z.; Zhang, J. Synthesis, structure and magnetism of metal-organic framework materials with doubly pillared layers.2006, 21, 4264?4270.

(11) Liu, S.; Xu, Q.; Li, S.; Zhang, R.; Wang, L.; Liu, J. Crystal structure of poly[diaqua-bis(2-thiophene-2,5-dicarboxylate-2O:O')(3,5-di(1H-imidazol-1-yl)pyridine-2N:N')cobalt(II)], Co(H2O)2(C6H2O4S)(C11N4H9), C17H15CoN5O6S.2014, 229, 427?428.

(12) Zou, H.; He, Y.; Gui, L.; Liang, F. A new 8-connected porous coordination polymer: crystal structure and selective adsorption properties.2011, 13, 3325–3329.

(13) Li, Z.;Xue, L.; Miao, S.; Zhao, B. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: synthesis, solvent-dependent structural variation and properties.2016, 240, 9–15.

(14) Sheldrick, G. M., University of G?ttingen, G?ttingen, Germany 1997.

(15) Sheldrick, G. M.. University of G?ttingen: Germany 1997.

(16) Sheldrick, G. M.. University of G?ttingen: Germany 1997.

(17) Liu, J. Q.; Wang, Y. Y.; Wu, T.; Wu, J. Control over multifarious entangled Co(II) metal-organic frameworks: role of steric bulk and molar ratio of organic ligands.. 2012, 14, 2906–2913.

(18) Hasi, Q.; Fan,Y.; Hou, C.; Yao, X.; Liu, J. Two new two-dimensional coordination polymers based on isophthalate and a flexible N-donor ligand containing benzimidazole and pyridine rings: synthesis, crystal structures and a solid-state UV-Vis study.. 2016. C72, 724–729.

2 December 2017;

20 March 2018 (CCDC 1476869)

①This work was supported by the Natural Science Foundation of Henan Province (172102310333)

. Doctor, majoring in material chemistry. E-mail: lpxue@163.com

10.14102/j.cnki.0254-5861.2011-1922

主站蜘蛛池模板: 日本少妇又色又爽又高潮| 9cao视频精品| 国产欧美日韩va| 亚洲网综合| 久久这里只有精品2| 精品撒尿视频一区二区三区| 国产一级妓女av网站| 老司机午夜精品网站在线观看| 日韩免费视频播播| 免费在线观看av| 亚洲国产综合精品一区| 亚洲AV永久无码精品古装片| 97亚洲色综久久精品| 无码久看视频| 国内丰满少妇猛烈精品播| 免费又爽又刺激高潮网址| 五月天久久婷婷| 国产国拍精品视频免费看| 青青操国产| 国产9191精品免费观看| 国产成人AV综合久久| 亚洲第一成年免费网站| 国产精品对白刺激| 青青久在线视频免费观看| 久久天天躁夜夜躁狠狠| AV在线天堂进入| 色爽网免费视频| 亚洲制服中文字幕一区二区 | 精品久久国产综合精麻豆| 久久精品亚洲热综合一区二区| 99精品热视频这里只有精品7| 国产在线精品人成导航| 91精品日韩人妻无码久久| 日韩视频免费| 久久夜色精品| 国产a在视频线精品视频下载| 精品99在线观看| 国产日韩av在线播放| 亚洲五月激情网| 日韩精品一区二区三区大桥未久| 色呦呦手机在线精品| 最新亚洲av女人的天堂| 国产成人区在线观看视频| 久久综合成人| 天堂成人在线| 亚洲 欧美 日韩综合一区| 一级福利视频| 国产又色又刺激高潮免费看| 97国产在线视频| 日本久久网站| 欧美一区二区福利视频| 亚洲国产成人在线| 国产h视频在线观看视频| 国产9191精品免费观看| 四虎永久免费地址| 免费在线色| 日本欧美午夜| 国产精品林美惠子在线播放| 国产精品va免费视频| 中国精品久久| 亚洲美女视频一区| 亚洲第一成年免费网站| 亚洲AⅤ无码日韩AV无码网站| 99热最新网址| 亚洲中文字幕在线观看| 欧美yw精品日本国产精品| 亚洲综合片| 青青国产视频| 亚洲精品无码久久毛片波多野吉| 欧美成人综合视频| 国产成人免费高清AⅤ| 亚洲日本韩在线观看| 99在线视频网站| 99久久国产自偷自偷免费一区| 国产91熟女高潮一区二区| 国产精品无码AV中文| 精品国产一区91在线| 国产精品手机视频| 成人伊人色一区二区三区| 91精品国产一区| 久久这里只精品国产99热8| 亚洲精品色AV无码看|