馮建軍,楊寇帆,朱國俊,羅興锜,李文鋒
?
進口管壁面軸向開槽消除軸流泵特性曲線駝峰
馮建軍,楊寇帆,朱國俊,羅興锜,李文鋒
(西安理工大學水利水電學院,西安 710048)
當軸流泵在小流量工況下運行時,由于葉輪進口的沖角增大,導致在葉輪內產生脫流等不穩定流動結構,降低泵的水力性能。該文采用計算流體動力學分析方法對軸流泵內部流場進行了研究,結果表明:該軸流泵的特性曲線存在明顯的駝峰區域,在0.3到0.61倍最優流量工況區間,軸流泵的揚程和效率明顯下降。在臨界失速工況下(0.61倍最優流量工況),葉片吸力面前緣靠近輪緣處及葉片尾緣靠近輪轂處均出現了脫流;在深度失速工況下(0.45倍最優流量工況),脫流進一步發展,并與來流共同作用形成穩定的渦旋結構,阻塞整個流道。為了提高軸流泵在小流量工況下的水力性能,引入一種軸流泵進口管開槽技術,分析其對軸流泵內部流場的影響及駝峰的改善作用。結果表明:在小流量工況下,軸向開槽可以減小葉輪進口環量和沖角,可以減小葉片背部的脫流,軸流泵的駝峰得到明顯的改善。開槽深度是改善軸流泵小流量工況下駝峰的重要因素之一,當槽深與葉輪直徑比為0.02時,葉輪內的通道渦幾乎完全消除,軸流泵深度失速工況點的揚程、效率分別提高了66%和32%,極大地改善了軸流泵的水力性能。溝槽數目越多,槽長越長,消除駝峰的能力越好,60個溝槽與2/3倍葉輪直徑的槽長在其他參數相同的條件下消除駝峰的能力更強。該文可為避免軸流泵內部的失速流動以及消除水力性能曲線上的駝峰相關研究提供參考。
泵;計算機仿真;葉輪;計算流體動力學;軸流泵;駝峰;性能;軸向槽
軸流泵作為一種高比轉速泵,有流量大和揚程低的特點,廣泛應用在農業灌溉、防洪排澇、市政供水、水環境治理、電廠水循環以及船舶噴水推進器等領域[1-3]。軸流泵在小流量工況區域易產生駝峰,即在揚程和效率曲線上具有正斜率特性[4-10]。駝峰的出現即意味著運行工況存在嚴重的不穩定性,影響機組效率并造成大量能耗,更嚴重的會影響機組的運行安全性。
對于軸流泵駝峰的研究和改善方法,國內外學者開展了一定的研究。通過對軸流泵葉輪前后的速度場和靠近輪緣處的葉片壓力分布開展研究,Toyokura[11]發現在最優工況點時葉輪內的流動較為平順并且沒有明顯的回流現象,但隨著流量降低,葉片發生失速時,葉輪處的徑向速度突然增大,軸流泵的水力性能急劇下降。Goltz等[12]通過開展軸流泵的水力特性試驗發現:臨界失速工況下,在吸力面的前緣葉頂處和后緣靠近輪緣處分別捕捉到了回流結構;并且在深度失速工況下觀測到流道中存在垂直葉片表面的通道渦。Fay[13]通過研究表明失速是由于葉片表面的流動分離引起的,當軸流泵的葉輪葉片數為3~4個時,失速團在葉輪通道中不發生轉移,當葉輪葉片數為6片以上時,失速團會在葉輪通道中轉移。仇寶云等[14]發現通過增設固定前導葉、選擇適當的導水錐長度以及流道形線優化等方法,可以抑制和減弱葉片進口斷面二次流,提高軸向流速均勻度,從而提高水泵運行效率和壽命。錢忠東等[15]發現沖角和尾部脫流是致使導葉部分水力損失增加的兩大主要因素;可調式導葉可以通過調節角度顯著地改善軸流泵導葉部分的流態,減小水力損失,提高泵的揚程和效率。此外,有學者借鑒壓氣機中擴大運行工況范圍的“機匣”作用原理,在軸流泵進口管壁面采用軸向開槽的方法,有效消除了軸流泵揚程曲線上的駝峰[16-17]。而一些學者則在葉輪進口采用雙進口噴嘴的方法,來減小軸流泵小流量工況下葉輪進口的預旋,從而抑制失速工況下葉輪葉頂附近的回流,改善葉輪入流條件進而提高水力性能[18-19]。
本文針對軸流泵小流量工況的流動特性開展研究,通過計算流體動力學分析揭示了不穩定工況下軸流泵內部失速流動的特征,并探究了軸流泵進口管內壁軸向開槽技術抑制泵內不良流動的機理,分析了泵進口管軸向開槽前后對失速流動的改善效果。同時,本文還進一步研究了不同槽的形狀參數對軸流泵水力性能的影響,為避免軸流泵內部的失速流動以及消除水力性能曲線上的駝峰提供了有價值的參考。
本文所選取的研究對象為比轉速n=610的小型軸流泵。其葉輪直徑1=300 mm,葉輪葉片數為6,擴壓器導葉葉片數為11,設計轉速=1450 r/min。該泵三維計算模型如圖1所示,包含進口管、葉輪、擴壓器及出口管。其中,進口錐管壁面采用軸向開槽,軸向槽的數量=60,均布角度=3°,槽長=200 mm[20]。

圖1 軸流泵計算域和過流部件網格
采用ANSYS ICEM-CFD對各過流部件進行六面體網格劃分。計算域網格總的單元數為706萬。為了消除網格數對計算結果的影響,將計算網格加密到1 200萬進行了結果對比。結果表明,當網格數從706萬增加到1 200萬,泵的計算揚程的相對變化僅為0.3%,效率變化約為0.4%。故認為采用網格數為706的網格可以得到網格無關解,因此采用該網格對軸流泵開展進一步的數值計算。
本文采用CFD商業軟件ANSYS CFX-16來求解軸流泵內部三維湍流流場。邊界條件為:在進口設置總壓,出口給定質量流量,壁面邊界均采用水力光滑的無滑移條件。對流項采用二階中心差分方法進行離散,湍流模型選擇壁面分離預測精度較高的SST湍流模型[21-23]。進口管與葉輪以及葉輪與擴壓器交界面之間的數據傳遞采用Frozen-rotor交界面來實現,從而得泵內的穩態流場,從而計算泵的揚程和效率。同時,為了研究軸流泵的壓力脈動,本文也對軸流泵內部的非定常流動進行了計算。在非定常計算中,軸流泵轉動部件和固定部件之間的交界面采用Transient rotor-stator;時間步長設置為2.299×10-4s,對應轉輪旋轉2°;在每個步長內,設置收斂標準為最大殘差小于10-3。
圖2為原始未開槽軸流泵模型數值模擬得到的揚程曲線和試驗結果的對比。此軸流泵模型為一工業用泵,其揚程的試驗數據由泵生產廠家據泵的出廠試驗提供,試驗數據與數值模擬結果列于表1。由圖2可知,數值模擬得到的揚程與試驗結果吻合較好,計算與試驗得到的揚程曲線具有相同的變化規律且二者之間的偏差較小,最大偏差在3.5%以內,驗證了CFD數值模擬的可靠性。

注:H為揚程;Hexp為試驗所得最優工況點揚程;Q為流量;Qdes為最優工況點流量。

表1 軸流泵揚程誤差分析 Table 1 Error analysis of axial pump head
為了研究泵進口管內壁面的開槽深度對駝峰的改善作用,本文對60個溝槽軸流泵模型進行了研究,應用進口管4種不同開槽深度的軸流泵進行水力性能對比。圖3給出了進口管不同相對槽深的軸流泵揚程及水力效率曲線,其中相對槽深定義為槽深與葉輪直徑1的比值。
由圖3a可知,泵進口管未開槽即=0時,軸流泵駝峰現象十分嚴重[24-25],具體表現為在/des=0.61附近,揚程陡降40%,效率下降29.3%左右。采用相對槽深=0.013的軸向開槽進口管以后,軸流泵的駝峰得到明顯改善,des=0.61附近的揚程陡降現象基本消失。當相對槽深增加到=0.02及=0.027時駝峰完全消除,此時軸流泵深度失速工況點的揚程、效率分別提高了約66%和32%。為了進一步分析具有溝槽特征的進口管對軸流泵能量特性的影響,對圖3b中的軸流泵水力效率曲線進行分析發現,進口管內壁面開槽對最優工況附近的效率影響不大;但在小流量工況下,進口管內壁面開槽能夠在一定程度上提高軸流泵的效率。隨著進口管內壁面開槽深度的增加,在大流量工況下泵的效率相比于進口管未開槽的原始狀態有所降低,且效率的降低幅度隨著相對槽深的增大而增加。綜合上述分析,選定相對槽深=0.02為本文最終方案。

注:Hdes為未開槽模型數值模擬所得最優工況點揚程。
開槽進口管通過對葉輪進口前的流體進行主動控制從而改善軸流泵的駝峰,為了分析進口管開槽對葉輪前來流的影響,探尋其改善駝峰的機理,在圖4中分別給出了2種流量工況下進口管開槽和未開槽時葉輪進口的軸面速度分布和周向速度分布。變量Span為從輪轂到輪緣的相對葉高。由圖4可知,在相同工況下,2種方案的葉輪進口軸面速度的分布規律基本相同,特別是在靠近軸流泵最優工況區,葉輪進口的軸面速度分布比較均勻,周向速度趨于0,同時,進口管開槽軸流泵葉輪進口的軸面速度明顯大于未開槽的軸流泵,周向速度則正好相反。此外,通過分析不同流量工況下速度分布發現,當軸流泵運行在小流量工況下時,葉輪進口的軸面速度隨半徑分布不均勻,隨著半徑的增大,軸面速度先增大后減小至負值,導致水流在靠近管壁處出現回流,同時周向速度先減小后增大,在靠近輪緣處達到最大值[26-27]。通過上述分析可見,在小流量工況下,軸流泵的軸面速度減小,周向速度增大,根據軸流泵葉輪進口速度三角形可知進口沖角逐步增加,導致相鄰兩葉片間的脫流渦進一步累積、發展,最終堵塞了整個流道。

注:相對槽深為0.02,溝槽數目為60,下同。
葉輪內的能量損失和來流角有關[28],為了研究進口管開槽對軸流泵葉輪進口的液流角影響規律,分別對設計工況(des=1)、臨界失速工況(des=0.61)、失速工況(des0.55)及深度失速工況(des=0.45)下軸流泵葉輪進口相對液流角進行了計算。圖5列出了臨界失速工況和失速工況下開槽和未開槽相對液流角變化規律。通過對比泵進口管開槽和未開槽的情況可以發現,進口管開槽使得靠近輪緣附近的相對液流角顯著增加,最大增幅超過了40°,相對液流角大幅增加所帶來的有益效果是減少了該處葉片進口的沖角,有效的遏制了葉片背部脫流[29],從而提高了軸流泵在小流量工況下的揚程,抑制駝峰。但在臨界失速時,進口管開槽后使得葉片進口靠近輪轂處的相對液流角反而減小,說明進口管開槽能很好地抑制輪緣處的沖角,但開槽對靠近輪轂處流動狀態的改善作用十分有限。

圖5 不同相對葉高下葉輪進口相對液流角
圖6分別給出了失速工況(/des=0.55)不同相對葉高截面處的速度流線圖。由圖6可知,當Span=0.8時,葉輪流道內出現雙排渦,靠近葉輪進口處的渦順時針旋轉,靠近出口的渦呈逆時針旋轉,旋渦幾乎堵塞了整個流道。當Span=0.85時,葉輪出口處未發現渦旋結構,取而代之的是一條出流和回流的分界線,此時葉輪進口處旋渦結構較小,更貼近于葉片進口。當截面進一步擴大,在Span=0.9時,葉輪進口渦縮小,回流進一步加大,并在葉輪進口處受來流沖擊作用,改變流動方向,向下一級葉輪通道流動。開槽以后,由圖6b、6d、6f可知,葉輪進口管壁面開槽改變了來流方向,增大了葉輪輪緣處進口的流速,能夠有效的消除葉輪流道中的通道渦。
圖7為深度失速工況(/des=0.45)下,葉輪葉片表面不同葉高上的壓力分布對比。表示從葉片頭部到尾部的無量綱相對弦長。由圖7可知,在深度失速工況下,除在靠近輪轂處葉片背面出口處壓力變化較大外,其他位置葉片正背面的壓力分布比較均勻,進口管開槽后,葉輪葉片正背面的壓力特別是靠近葉片出口處葉片正背面的壓力提升都十分明顯。而葉片中部壓差被進一步增大,增加了葉片中部的負載,這也表明葉片轉換能量的能力得到提升,提高了軸流泵的揚程。

圖6 不同葉輪截面的流線分布(Q/Qdes=0.55)

圖7 Q/Qdes=0.45時,葉輪葉片表面壓力分布
為了研究進口管開槽對軸流泵壓力脈動的影響,對該軸流泵模型進行了非定常計算,并在葉輪進口沿徑向設置3個監控點(如圖8所示),監控壓力脈動特性。其中P1靠近輪轂,P2處于半葉高位置,P3靠近輪緣。

注:P1靠近輪轂;P2處于半葉高位置;P3靠近輪緣。
采用式(1)定義的無量綱壓力脈動系數C來表示壓力脈動[7]。


圖9給出了設計工況下葉輪進口截面上3個監控點上的壓力脈動系數頻域圖,其中為捕捉到的頻率和葉輪轉頻的比值。由圖9可知,設計工況下的壓力脈動幅值由輪轂到輪緣依次增大,壓力脈動的主頻為6倍轉頻,即葉片通過頻率。這充分說明在最優工況下,2種方案下葉輪進口前的壓力脈動主要受葉輪轉動影響[30-32]。從監測點P1和P2可以看出在2種方案下壓力脈動幅值變化不大,說明在最優工況下,進口管開槽對遠離輪緣區域壓力脈動影響不大。進口管開槽對靠近輪緣的監測點P3的壓力脈動幅值影響較大,進口管開槽方案下的最大壓力脈動幅值約為未開槽的5倍左右,因此進口管開槽增大了葉輪轉頻下的壓力脈動幅值。
圖10給出了失速工況下葉輪進口截面壓力脈動頻域圖。由圖10可知,在失速工況下,進口管開槽的軸流泵的壓力脈動主頻包含葉片通過頻率和3.5倍轉頻下的脈動值;與之對應的是進口管未開槽的情況下,壓力脈動的主頻為6倍轉頻。通過對比發現,進口管開槽增加了高頻脈動的幅值。但值得注意的是,除靠近輪緣的監測點P3外,監測點P1和P2的低頻壓力脈動幅值有所降低。對比圖10,在最優工況下和失速工況下,監測點P1和P2上的壓力脈動幅值變化不大,壓力脈動幅值的最大值均低于0.3。但由于監測點P3靠近葉輪進口壁面,而每個葉輪葉片通道對應10個軸向槽,葉片在高速轉動過程中與軸向槽形成動靜干涉作用[33],使得葉輪進口靠近輪緣處的壓力脈動急劇增大。因此,在使用壁面開槽來抑制軸流泵的駝峰時,盡量使用較少的軸向槽數,以便減少靠近壁面的壓力脈動幅值。

圖9 Q/Qdes=1時,設計工況下葉輪進口壓力脈動頻譜

圖10 Q/Qdes=0.55時,失速工況下葉輪進口壓力脈動頻譜
圖11中給出了不同開槽參數下、在駝峰區域附近軸流泵揚程的對比。由圖11可知,減小開槽個數在一定程度上降低了開槽的效果,達不到完全消除駝峰的目的。原因是葉輪進口的周向速度沒有能降低到消除駝峰的程度。此外,將開槽長度1從2/3降低到1/3時,對軸流泵駝峰的改善效果略有降低,因此,60個溝槽與2/3倍葉輪直徑的槽長在其他參數相同的條件下消除駝峰的能力更強。由此可見,合理選擇軸向槽的參數對提高軸流泵小流量工況的水力性能、改善駝峰非常重要,值得進一步研究。

注:K為相對槽深,K=h/D1, h為槽深,D1為葉輪直徑;Z為溝槽數目;L為溝槽長度,L/D1為相對槽長。
本文采用數值仿真的方法,研究了軸流泵進口軸向開槽對軸流泵水力特性上的駝峰的改善作用,探究了軸向開槽抑制葉輪內流動失速的機理,具體結論如下:
1)在0.61倍最優流量工況點(有效最高點),軸流泵的揚程和效率存在一個突降,分別下降了40%和29.3%,從而造成揚程曲線存在明顯的駝峰現象。在小流量工況下,葉輪進口的軸面速度降低,周向速度增加,水流在葉輪葉片頭部的沖角增大,導致在葉輪葉片背面脫流嚴重,并產生回流。回流在來流的沖擊作用下形成了回流渦,堵塞了整個流道,導致揚程急劇下降。
2)采用了進口段壁面軸向開槽的方法來抑制葉輪內的流動失速。當相對槽深為0.02時,軸向開槽增加了軸流泵葉輪葉片進口處的軸向速度,改善了軸流泵葉輪葉片進口處的水流沖角,有效的抑制葉輪進口預旋回流和通道渦的產生,對消除軸流泵駝峰、提高軸流泵駝峰區效率起到積極作用。
3)在0.55倍最優流量工況點,軸向開槽提高了葉輪葉片正背面的壓力,這種現象在靠近葉片出口更加明顯。在葉片中部正背面壓差被進一步拉大,導致葉片中部載荷增加,從而提高了軸流泵的揚程。
4)在葉輪的旋轉過程中,葉輪葉片和進口管軸向槽流體之間的相對運動造成流體的動靜干涉效應,在一定程度上增加了軸流泵葉輪內高頻壓力脈動的幅值,且引入了多種軸流泵轉頻倍頻,但同時抑制了葉輪內低頻壓力脈動的產生。
[1] 何川. 泵與風機(第四版)[M].北京:中國電力出版社,2014.
[2] 洛馬金(蘇). 梁榮厚譯. 離心泵與軸流泵[M]. 北京:機械工業出版社,1978.
[3] 關醒凡. 現代泵理論與設計[M]. 北京:中國宇航出版社,2011.
[4] 王麗慧,施偉,沈昌榮,等. 立式軸流泵裝置模型水力性能數值分析及預測[J]. 排灌機械工程學報,2016,34(9):767-773. Wang Lihui, Shi Wei, Shen Changrong, et al. Numerical analysis and prediction of hydraulic performance of vertical axial-flow pump system model[J]. Journal of drainage and irrigation machinery engineering, 2016, 34(9): 767-773. (in Chinese with English abstract)
[5] 馬皓晨,丁榮,楊東升. 低比轉數離心泵駝峰現象的CFD分析[J]. 流體機械,2013(12):43-47.
Ma Haochen, Ding Rong, Yang Dongsheng. CFD research on hump phenomenon of low specific speed centrifugal pump[J]. Fluid Machinery, 2013(12): 43-47. (in Chinese with English abstract)
[6] 劉君,段宏江,劉立峰,等. 低揚程立式軸流泵裝置模型試驗研究[J]. 水泵技術,2011(6):1-6.
[7] 鄭源,陳宇杰,張睿,等. 軸流泵失速工況下非定常流動特性研究[J]. 農業機械學報,2017,48(7):127-135.
Zheng Yuan, Chen Yujie, Zhang Rui, et al. Analysis on Unsteady stall flow characteristics of axial-flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 127-135. (in Chinese with English abstract)
[8] 冒杰云,袁壽其,張金鳳,等. 低比轉速離心泵駝峰工況附近內部流動特性分析[J]. 排灌機械工程學報,2014,33(4):283-289.
Mao Jieyun, Yuan Shouqi, Zhang Jinfeng, et al. Analysis of inner flow characteristics in low specific speed centrifugal pump around hump conditions[J]. Journal of Drainage and Irrigation Machinery Engineering, 2014, 33(4):283-289. (in Chinese with English abstract)
[9] 鄭源,茅媛婷,周大慶,等. 低揚程大流量泵裝置馬鞍區的流動特性[J]. 排灌機械工程學報,2011,29(5):369-373.
Zheng Yuan, Mao Yuanting, Zhou Daqing, et al. Flow characteristics of low-lift and large flow rate pump installation in saddle zone[J]. Journal of Drainage and Irrigation Engineering, 2011, 29(5): 369-373. (in Chinese with English abstract)
[10] 張睿. 軸流泵失速和空化流動特性及其性能改善研究[D].上海:上海大學,2014. Zhang Rui. Research on the Stall and Cavitation Flow Characteristics and the Performance Improvement of Axial-flow Pump[D].Shanghai: Shanghai University, 2014. (in Chinese with English abstract)
[11] Toyokura T. Studies on the characteristics of axial-flow Pumps: Part 1, General tendencies of the characteristics of pumps[J]. Bulletin of JSME, 1961, 4(14): 287-293.
[12] Goltz I, Kosyna G, Stark U, et al. Stall inception phenomena in a single-stage axial-flow pump[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217(4): 471-479.
[13] Fay A. Analysis of separated flows in hydro machines[R]. 6th IASME/WSEAS International Conference, 2008.
[14] 仇寶云,林海江,黃季艷,等. 大型立式軸流泵葉片進口流場及其對水泵影響研究[J]. 機械工程學報,2005,41(4):28-34.
Qiu Baoyun, Lin Haijiang, Huang Jianyan, et al. Study on flow field in blade inlet of large vertical axial-flow pump and its influence on pump [J] .Journal of Mechanical Engineering, 2005, 41(4): 28-34. (in Chinese with English abstract)
[15] 錢忠東,王焱,鄭彪,等. 可調導葉式軸流泵水力特性數值模擬[J]. 水力發電學報,2011,30(2):123-127.
Qian Zhongdong, Wang Yan, Zheng Biao, et al. Numerical simulation and analysis of performance of axial flow pump with adjustable guide vanes[J]. Journal of Hydroelectric Engineering, 2011, 30(2): 123-127. (in Chinese with English abstract)
[16] Goltz I, Kosyna G, Stark U, et al. Eliminating the head instability of an axial-flow pump using axial grooves[J]. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 227(2): 206-215.
[17] 張睿,陳紅勛. 改善失速工況下軸流泵水力性能的研究[J]. 水力發電學報,2014,33(3):292-298.
Zhang Rui, Chen Hongxun. Study on the improvement of hydrodynamic performance of axial-flow pump at stall condition[J]. Journal of Hydroelectric Engineering, 2014, 33(3): 292-298. (in Chinese with English abstract)
[18] Flores P, Kosyna G, Wulff D. Suppression of performance curve instability of an axial-flow pump by using a double-inlet-nozzle[J]. International Journal of Rotating Machinery, 2014, 2008: 7.
[19] Hans Josef Dohmen, Friedrich-Karl Benra, Sven Brinkhorst. Improvement of axial-flow pump part load behavior by a double inlet nozzle [C]// ASME 2012 Fluids Engineering Summer Meeting, 2012:479-489.
[20] Goltz I, Kosyna G, Wulff D, et al. Structure of the rotor tip flow in a highly loaded single-stage axial-flow pump approaching stall: Part II-Stall Inception-Understanding the mechanism and overcoming its negative impacts[C]// ASME 2004 Heat Transfer/Fluids Engineering Summer Conference, 2004: 301-306.
[21] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications [J]. Aiaa Journal, 1994, 32(8): 1598-1605.
[22] 王德軍,周惠忠,黃志勇,等. 對旋式軸流泵全流道三維定常紊流場的數值模擬[J]. 清華大學學報:自然科學版,2003,43(10):1339-1342.
Wang Dejun, Zhou Huizhong, Huang Zhiyong, et al. 3-D steady turbulence flow numerical simulation on the full passage of a counter-rotating axial flow pump[J]. Journal of Tsinghua University: Science and Technology, 2003, 43(10): 1339-1342. (in Chinese with English abstract)
[23] 張德勝,吳蘇青,施衛東,等. 軸流泵小流量工況條件下葉頂泄漏空化特性[J]. 農業工程學報,2013,29(22):68-75.
Zhang Desheng, Wu Suqing, Shi Weidong, et al. Characteristics of tip leakage vortex cavitation in axial flow pump at small flow rate condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(22): 68-75. (in Chinese with English abstract)
[24] 張海勝,徐建葉,陳宇杰,等. 立式軸流泵水力不穩定工況流場數值預測[J]. 水泵技術,2016(2):29-32.
Zhang Haisheng, Xu Jianye, Chen Yujie, et al. Numerical prediction of flow field in vertical axial flow pump with unstable hydraulic conditions [J]. Water Pump Technology, 2016(2): 29-32. (in Chinese with English abstract)
[25] 姚洋陽. 水泵水輪機泵工況駝峰特性流動機理數值研究[D]. 北京:清華大學,2015.
Yao Yangyang. Hydrodynamic Mechanism Analysis of the Pump Hump District For a Pump-Turbine[D]. Beijing: Tsinghua University, 2015. (in Chinese with English abstract)
[26] Benra F K, Dohmen H J, Schmidt M. Flow phenomena in a highly-loaded single-stage axial-flow pump: Comparison of experimental and numerical results[C]// ASME/JSME 2007, Joint Fluids Engineering Conference, 2007: 979-984.
[27] Kosyna G, Goltz I, Stark U. Flow structure of an axial-flow pump from stable operation to deep stall[C]// ASME 2005 Fluids Engineering Division Summer Meetin, 2005: 1389-1396.
[28] 朱俊華. 軸流泵葉片外緣液流角∞對軸流泵性能的影響[J]. 水泵技術,1995(6):3-6.
Zhu Junhua. Effect of the flow angle∞at the outer edge of axial flow pump on the performance of axial-flow pump[J]. Pump Technology, 1995(6): 3-6. (in Chinese with English abstract)
[29] 王凡,錢忠東,郭志偉,等. 可調導葉式軸流泵壓力脈動數值分析[J]. 農業機械學報,2017,48(3):119-123.
Wang Fan, Qian Zhongdong, Guo Zhiwei, et al, Pressure oscillations prediction of axial flow pump with adjustable guide vanes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(3): 119-123. (in Chinese with English abstract)
[30] 王福軍,張玲,張志民. 軸流泵不穩定流場的壓力脈動特性研究[J]. 水利學報,2007,38(8):1003-1009.
Wang Fujun, Zhang Ling, Zhang Zhimin. Analysis on pressure fluctuation of unsteady flow in axial-flow pump[J]. Journal of Hydraulic Engineering, 2007, 38(8): 1003-1009. (in Chinese with English abstract)
[31] 施衛東,冷洪飛,張德勝,等. 軸流泵內部流場壓力脈動性能預測與試驗[J]. 農業機械學報,2011,42(5):44-48.
Shi Weidong, Leng Hongfei, Zhang Desheng, et al. Performance prediction and experiment for pressure fluctuation of interior flow in axial-flow pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(5): 44-48. (in Chinese with English abstract)
[32] 張德勝,施衛東,李通通,等. 軸流泵葉輪出口尾跡區非定常壓力和速度場特性[J]. 農業工程學報,2012,28(17):32-37.
Zhang Desheng, Shi Weidong, Li Tongtong, et al. Property of unsteady pressure and meridional velocity in wake region of axial-flow pump impeller[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(17): 32-37. (in Chinese with English abstract)
[33] 張德勝,耿琳琳,施衛東,等. 軸流泵水力模型壓力脈動和振動特性試驗[J]. 農業機械學報,2015,46(6):66-72.
Zhang Desheng, Geng Linlin, Shi Weidong, et al. Experimental investigation on pressure fluctuation and vibration in axial-flow pump model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(6): 66-72. (in Chinese with English abstract)
Elimination of hump in axial pump characteristic curve by adopting axial grooves on wall of inlet pipe
Feng Jianjun, Yang Koufan, Zhu Guojun, Luo Xingqi, Li Wenfeng
(,,710048,)
Axial flow pumps are widely utilized for transporting fluid with large flow rates. The internal flow field is extremely complex and fully turbulent. When an axial flow pump operates at small flow rate, the incidence angle at the impeller leading edge will increase because of the decreasing meridional velocity. Rotating stall may occur when the incidence angle reaches a threshold, which will reduce greatly the delivery head of the pump and produce a hump in the pump performance curve. The hump phenomenon is a source of instability for the pump operation, which will normally limit the safe operating range of an axial flow pump. Therefore, it is very important to understand the flow behavior inside the pump during the range corresponding to the hump, so as to find a way to improve the flow condition. In this paper, the commercial software ANSYS CFX-16 was adopted to calculate the three-dimensional turbulent flow in an axial flow pump with a specific speed of 610 at different flow conditions. The pump impeller has an outer diameter of 0.3 m, with 6 three-dimensional blades, and the diffuser has 11 two-dimensional vanes. The computational meshes were created by ICEM-CFD (integrated computer engineering and manufacturing code for computational fluid dynamics) in structured format, andSST turbulence model was chosen for the unsteady simulations. The obtained results show that there is an obvious hump in the performance curve of the axial flow pump, occurring in the flow range of between 30% and 61% design flow rate. In the critical stall condition (61% design flow rate), flow separations have been observed at the leading edge of the impeller blade near the shroud and at the blade trailing edge near the hub. Under a deep stall condition (45% design flow rate), the flow is seriously developed and combined with the incoming flow to form a stable vortex structure that blocks the whole flow passage. In order to improve the hydraulic performance of the axial flow pump under small flow conditions, axial grooves were applied to the wall of the pump inlet pipe. The effects of axial grooves on the internal flow field and pump performance curves have been examined in detail, and different configurations of the grooves have also been tested, in order to find the best one for improving the pump performance. The results show that under the condition of small flow rates, the axial grooves can effectively reduce the inlet circulation and the attack angle at the leading edge of the impeller as well. As a result, the back flow on the suction side of the impeller has been reduced. Consequently, the unstable hump phenomenon in the performance curve of the axial flow pump has been eliminated. At the same time, it is found that the relative groove depth is one of the most important factors to improve the stability in performance curves for the axial flow pump under small flow rate conditions. When the groove depth reaches 1/50 of the impeller diameter with the axial length being 2/3 of the impeller diameter, the axial grooves increase the axial velocity and the relative flow angle near the shroud of the impeller. As a consequence, both the inlet circulation and the attack angle of the inlet of impeller have been greatly reduced. The backflow occurring near the impeller leading edge is obviously eliminated, the channel vortex is almost eliminated, and the hump phenomenon of the axial flow pump has been removed. However, the pressure fluctuation in the impeller has been magnified by the axial grooves, caused by the rotor-stator interaction effects between the rotating impeller blades and stationary axial grooves. In addition, the introduction of axial grooves has introduced some high-order harmonics of the impeller rotation frequency and depressed low-order harmonics to the frequency spectrum of unsteady pressure fluctuations.
pumps; computer simulation; impellers;computational fluid dynamics; axial flow pump; hump; performance; axial grooves
馮建軍,楊寇帆,朱國俊,羅興锜,李文鋒. 進口管壁面軸向開槽消除軸流泵特性曲線駝峰[J]. 農業工程學報,2018,34(13):105-112.doi:10.11975/j.issn.1002-6819.2018.13.013 http://www.tcsae.org
Feng Jianjun, Yang Koufan, Zhu Guojun, Luo Xingqi, Li Wenfeng. Elimination of hump in axial pump characteristic curve by adopting axial grooves on wall of inlet pipe[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(13): 105-112. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2018.13.013 http://www.tcsae.org
2017-12-29
2018-04-04
國家自然科學基金(51679195;51339005);陜西省自然科學基礎研究計劃(2018JM5102)
馮建軍,教授,博士生導師,研究方向為流體機械流動理論及優化設計。Email:jianjunfeng@xaut.edu.cn
10.11975/j.issn.1002-6819.2018.13.013
TH312
A
1002-6819(2018)-13-0105-08