999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

羥甲基功能化吡唑金屬羰基化合物的合成及催化性質

2018-08-01 01:55:52甘賢雪唐良富
無機化學學報 2018年8期
關鍵詞:化學

李 松 甘賢雪 唐良富*,

(1南開大學化學學院,元素有機化學國家重點實驗室,天津 300071)

(2宜賓學院化學與化工學院,宜賓 644007)

0 Introduction

Itiswell-known thathydrogen bondsplay important roles in the self-assembly of metal complexes to form supramolecular architectures[1-2].Organometallic building blocks can also aggregate into supramolecular structures through hydrogen-bonding interactions[3-4].Metal carbonyls as hydrogen bond acceptors in organometalliccrystalsengineering have been observed in several systems,in which these metal carbonyl derivatives show interesting one to threedimensional supramolecular structures[5-8].One the other hand,derivatives of pyrazoles have been used extensively in bioinorganic,coordination chemistry and organometallic fields because of their versatile coordination behavior towards main group and transition metals[9-11].Among pyrazole derivatives,hydroxymethyl functionalized pyrazole is an excellent candidate forthe construction ofsupramolecular architectures,since it not only has multiple coordination modes but also can form regular hydrogen bonding by functioning as both a hydrogen-bonding donor and acceptor[12-13].The group 6 metal carbonyl complexes are of great interest to scientists since they are widely applied in electron beam induced deposition technique as well as employed as catalysts in various organic synthesis[14-15].In this paper,we report the reaction of hydroxymethyl functionalized pyrazoles(L)with group 6 metal carbonyls,which yields a series of LW(CO)5and LM(CO)4(M=Mo or W)derivatives with organometallic supramolecular structures through O-H…O,N-H…O and O-H…OC-M hydrogen-bonding interactions,and the preliminary catalytic activity of these corresponding complexes in the cyclotrimerization reaction of phenylacetylene.

1 Experimental

Solvents were dried and freshly distilled prior to use according to standard procedures.All reactions were carried out under an atmosphere of argon.NMR spectra were recorded on a Bruker 400 spectrometer using DMSO-d6as solvent,and the chemical shifts were reported with respect to the reference(internal SiMe4for1H and13C NMR spectra).IR spectra were recorded as KBr pellets on a Tensor 27 spectrometer.Elemental analyses were carried out on an Elementar Vario EL analyzer.Bis(3-hydroxymethyl-5-methylpyrazol-1-yl)methane was prepared by the published method[16].All the other chemicals were analytical reagents and used as received.

1.1 Syntheses of 1 and 2

3(5)-Hydroxymethyl-5(3)-methylpyrazole(0.112 g,1 mmol)was added to a solution of W(CO)5THF in THF,prepared in situ by the irradiation of a solution of W(CO)6(0.359 g,1 mmol)in THF(60 mL)for 8 h.The mixture was stirred and heated at reflux for 4 h.After the reaction was completed,the solvent was removed under a reduced pressure,and the residue was isolated by column chromatography on silica using ethyl acetate/hexane (1∶2,V/V)as the eluent to give 1 and 2 as yellow solids.

Complex 1:Yield:12%.1H NMR:δ 2.28(s,3H,CH3),4.46(d,J=5.6 Hz,2H,CH2),5.43(t,J=5.6 Hz,1H,OH),6.20 (s,1H,H4of pyrazole),13.28 (s,1H,NH).13C NMR:δ 16.4(CH3),54.5(CH2),105.6(C4of pyrazole),148.3,153.3 (C3and C5of pyrazole),198.2(4 CO),202.5(CO).IR(cm-1): ν(OH)3 208;ν(NH)3 150;ν(CO)2 073,1 918(br),1 879.Anal.Calcd.for C10H8N2O6W(%):C 27.55,H 1.85,N 6.42;Found(%):C 27.69,H 1.78,N 6.65.

Complex 2:Yield:33%.1H NMR:δ 2.29(s,3H,CH3),4.47(s,2H,CH2),5.45(s,1H,OH),6.21(s,1H,H4of pyrazole),13.29 (s,1H,NH).13C NMR:δ 15.9(CH3),54.0(CH2),105.1(C4of pyrazole),147.8,152.8(C3and C5of pyrazole),197.7(4 CO),202.1(CO).IR(cm-1):ν(OH)3 234;ν(NH)3 162;ν(CO)2 073,1 984,1 915,1 847.Anal.Calcd.for C10H8N2O6W(%):C 27.55,H 1.85,N 6.42;Found(%):C 27.62,H 1.94,N 6.29.

1.2 Synthesis of 3

The solution of 4-hydroxymethylpyrazole(49 mg,0.5 mmol)and W(CO)6(180 mg,0.5 mmol)in THF(30 mL)was irradiated with a 300 W high-pressure mercury lamp for 8 h at room temperature.After the reaction was completed,the solvent was removed under a reduced pressure,and the residue was isolated by column chromatography on silica using ethyl acetate/hexane(1∶1,V/V)as the eluent to give 3 as a yellow solid.Yield:125 mg(60%).1H NMR:δ 4.37(d,J=5.3 Hz,2H,CH2),5.01(t,J=5.3 Hz,1H,OH),7.82(s,1H)and 7.86(s,1H)(H3and H5of pyrazole),13.64(s,1H,NH).The signals at 5.01 and 13.64 disappeared when D2O was added.13C NMR:δ 54.0(CH2),124.5(C4of pyrazole),131.1,146.4 (C3and C5of pyrazole),198.3(4CO),202.8(CO).IR(cm-1):ν(OH)3 182;ν(NH)3 137;ν(CO)2 074,1 968(sh),1 909,1 859.Anal.Calcd.for C9H6N2O6W(%):C 25.62,H 1.43,N 6.64;Found(%):C 25.28,H 1.25,N 6.38.

1.3 Synthesis of 4

Complex 4 was similarly obtained using 3,5-dimethyl-4-hydroxymethylpyrazole instead of 4-hydroxymethylpyrazole as above-mentioned synthesis of 3.Yield:57%.1H NMR:δ 2.23(s,3H,CH3),2.26(s,3H,CH3),4.25(s,2H,CH2),4.69(s,br,1H,OH),12.93(s,1H,NH).13C NMR:δ 8.9(CH3),14.0(CH3),52.3(CH2),117.8(C4of pyrazole),141.2,151.9(C3and C5of pyrazole),197.7(4 CO),202.1(CO).IR(cm-1):ν(OH)3 199;ν(NH)3 159;ν(CO)2 072,1 969(sh),1 908,1 888.Anal.Calcd.for C11H10N2O6W(%):C 29.36,H 2.24,N 6.22;Found(%):C 29.31,H 2.31,N 6.24.

1.4 Synthesis of 5

Bis(3-hydroxymethyl-5-methylpyrazol-1-yl)methane(0.118 g,0.5 mmol)was added to a solution of Mo(CO)5THF in THF,prepared in situ by the irradiation of a solution of Mo(CO)6(0.132 g,0.5 mmol)in THF(60 mL)for 8 h.The mixture was stirred and heated at reflux for 4 h.After the reaction was completed,the solvent was removed under a reduced pressure,and the residue was purified by column chromatography on silica using acetone/hexane(2∶3,V/V)as the eluent to give 5 as a yellow solid.Yield:0.13 g(57%).1H NMR:δ 2.48(s,6H,CH3),4.67(d,J=5.2 Hz,4H,CH2),5.49(t,J=5.2 Hz,2H,OH),6.17(s,br,1H,CH2N),6.30(s,2H,H4of pyrazole),6.51(s,br,1H,CH2N).13C NMR:δ 10.8(CH3),57.1(CH2),58.3(CH2),105.5(C4of pyrazole),142.4,157.9 (C3and C5of pyrazole),220.1(CO).IR(cm-1):ν(OH)3 393;ν(CO)2 024,1 921,1 843.Anal.Calcd.for C15H16MoN4O6(%):C 40.55,H 3.63,N 12.61;Found(%):C 40.18,H 3.42,N 12.87.

1.5 Synthesis of 6

Complex 6 was similarly obtained using W(CO)6instead of Mo(CO)6as above-mentioned synthesis of 5.Yield:53%.1H NMR:δ 2.50(s,6H,CH3),4.63(s,2H,CH2),4.72(s,2H,CH2),5.56(s,2H,OH),6.14(d,J=13.1 Hz,1H,CH2N),6.34 (s,2H,H4of pyrazole),6.55(d,J=13.1 Hz,1H,CH2N).13C NMR:δ 11.4(CH3),58.4(CH2),59.6(CH2),106.1(C4of pyrazole),143.0,158.7(C3and C5of pyrazole),211.9 (CO).IR(cm-1):ν(OH)3 393;ν(CO)2 016,1 908,1 840.Anal.Calcd.for C15H16N4O6W(%):C 33.86,H 3.03,N 10.53;Found(%):C 33.92,H 3.25,N 10.37.

1.6 Catalyzed cyclotrimerization of phenylacetylene

Phenylacetylene(0.12 mL,1 mmol)and complexes 1~6(x%,molar ratio)were charged in the reaction tube with 5 mL of toluene.After the reaction mixture was stirred at reflux for 9 h,the volatile materials were removed under reduced pressure.The residuals were purified by column chromatography on silica using CH2Cl2/hexane(1∶10,V/V)as the eluent to give the products,which were analyzed by1H NMR[17].

1.7 Crystal structure determination

Green-yellow crystals of 1~3 suitable for X-ray analysis were grown by slow diffusion of hexane into their CH2Cl2solutions at-18℃.While crystals of 6 were obtained through slow diffusion of hexane into the acetone solution.All intensity data were collected on a Rigaku Saturn CCD detector using Mo Kα radiation (λ=0.071 073 nm)at-160 ℃.Semi-empirical absorption corrections were applied using the Crystalclear program[18].The O(6)atom in 3 was disordered over two sites,with the occupancy factor of 0.5.The complex 6 crystallized with one acetone and one water molecules in the asymmetric unit.The structures were solved by direct methods and difference Fourier map using SHELXS of the SHELXTL package and refined with SHELXL[19]by full-matrix least-squares on F2.All non-hydrogen atoms were refined anisotropically.Hydrogen atoms were added geometrically and refined with riding model position parameters.A summary of the fundamental crystal data for these complexes is listed in Table 1.

CCDC:1835473,1;1835474,2;1835475,3;1835476,6.

2 Results and discussion

2.1 Syntheses of complexes 1~6

Reaction of 3(5)-hydroxymethyl-5(3)-methylpyrazole with W(CO)5THF at refluxing THF or the direct photochemical reactions of 4-hydroxymethylpyrazoles with W(CO)6at room temperature yielded complexes 1~4(Scheme 1).Complexes 5 and 6 were also obtained through the similar reactions of bis(3-hydroxymethyl-5-methylpyrazol-1-yl)methanewith M(CO)5THF(M=Mo or W)in moderate yields.Complexes 1~6 have been characterized by spectroscopic methods.Complexes 1~4 displayed similar IR spectra.These four complexes showed two characteristic absorption peaks for the OH(3 199~3 234 cm-1)and N-H stretching bands(3 137~3 162 cm-1).A ν(C≡O)band at ca.2 073 cm-1corresponding to the A1eqmode for the pseudo C4vmetal center in the M(CO)5fragment[20]was observed in these four complexes,consistent with monodentate pyrazole complexes.The IR spectra of complexes 5 and 6 were different from those of 1~4.Four carbonyl absorption peaks in the range of 1 840~2 024 cm-1were observed for 5 and 6,matching a typical cistetracarbonyl arrangement[21].The NMR spectra of 1~6 also support the suggested structures.For example,the13C NMR spectra of 1~4 showed two carbonyl carbon signals with ca.a 1∶4 intensity ratio,corresponding to a monosubstituted pentacarbonyl species.In addition,the protons of the methylene bridge of 5 and 6 displayed an AB system in their1H NMRspectra,indicating that the inversion of the boat conformation of six-membered metallacycle(crystal structure of 6)was hindered possibly due to the repulsion among ligands.

Table 1 Crystallographic data and refinement parameters for complexes 1~3 and 6

Scheme 1 Syntheses of complexes 1~6

2.2 Crystal structures of complexes 1~3 and 6

The structures of complexes 1~3 and 6 were further confirmed by X-ray crystallography,and are shown in Fig.1~4,respectively.The selected bond distances and angles are listed in Table 2.Fig.1~3 show that hydroxymethylpyrazoles coordinate to the metal center in a monodentate fashion in 1~3,causing them to possess a similar pentacarbonyl tungsten fragment,as shown by their NMR spectra.Complexes 1~3 also share some analogous structural parameters,such as similar W-N bond distance and N-W-C angle.The W-N distances in 1~3(0.223 7~0.226 4 nm)are similartothosereported in otherpentacarbonyl tungsten(0)complexes with azole ligands,such as 0.225 6(4)nm in CH2(3,5-Me2Pz)(Bt-SnPh3)W(CO)5[22].Fig.4 shows that bis(3-hydroxymethyl-5-methylpyrazol-1-yl)methane acts as a chelating κ2-[N,N]bidentate ligand to the tungsten atom in 6,yielding a sixmembered metallacycle with a boat conformation.The W-N bond distances(0.226 4(2)and 0.226 9(2)nm)are similar to those in 1~3,and comparable to those reported for other tetracarbonyl tungsten(0)derivatives with chelating bidentate pyrazolyl groups[23].Additionally,two cis-carbonyls(C(2)O(2)and C(5)O(5)in 1,C(1)O(1)and C(4)O(4)in 2 and 3,as well as C(1)O(1)and C(3)O(3)in 6)are markedly distorted in these four complexes,as evidenced by the corresponding nonlinear C-W-C and W-C-O angles (Table 2),indicating the presence of steric repulsion between the ligand and these carbonyls.

Fig.1 Molecular structure of 1 with 30%probability displacement ellipsoids

Table 2 Selected bond distances(nm)and angles(°)for complexes 1~3 and 6

Fig.2 Molecular structure of 2 with 30%probability displacement ellipsoids

Fig.3 Molecular structure of 3 with 30%probability displacement ellipsoids

Fig.4 Molecular structure of 6 with 30%probability displacement ellipsoids

It is noteworthy that although complexes 1~3 have a similar molecular skeleton,they show significantly different supramolecular structures(Fig.5~7)owing to the different substitutional position of hydroxymethyl on the pyrazolyl ring.For example,Fig.5 shows that complex 1 aggregates into a 2D supramolecular network through O-H…O(carbonyl)and N-H…O(hydroxyl)hydrogen bonds,and Fig.6 illustrates that complex 2 only extends into a 1D supramolecular double chain.Moreover,Fig.7 shows that the metal carbonyls in 3 do not participate in the hydrogen bonding interactions,and this molecule is only linked into a onedimensional chain via intermolecular N-H…O(hyd-roxyl)hydrogen bonds.In addition,Fig.8 shows that complex 6 forms a 1D supramolecular double chain with macrocyclic units through crystallization water molecule,and also no hydrogen bond is observed between the metal carbonyls with hydroxyl protons.

Fig.5 Two dimensional supramolecular structure of 1

Fig.6 One dimensional supramolecular structure of 2

Fig.7 One dimensional supramolecular structure of 3

Fig.8 One dimensional supramolecular structure of 6·CH3COCH

2.3 Catalytic activity of complexes 1~6

The transition metal-catalyzed cyclotrimerization reaction of alkynes has been widely used to prepare various polysubstituted benzene derivatives in recent years[24].Molybdenum carbonyl and its derivatives have exhibited efficient catalytic activity in the cyclotrimerization of alkynes[25-26],but it seems that phenylacetylene tends to form polyphenylacetylene when tungsten carbonyl was used as the catalyst[27].Herein,our preliminary studies showed that all these molybdenum and tungsten carbonyl derivatives exhibited effective catalytic activity in the cyclotrimerization reaction of phenylacetylene(Table 3).Two isomers were obtained in moderate yields when 15%(n/n)of complex was used as the catalyst.1,3,5-Trisubstituted benzene is the major product,similar to the result of the cyclotrimerization of phenylacetylene catalyzed by molybdenum carbonyl[26].The ratio of isomers needs to be further improved in future work.

Table 3 Catalytic activity for the cyclotrimerization of phenylacetylene

3 Conclusions

In summary,a series of tungsten and molybdenum carbonyl derivatives with hydroxymethyl functionalized pyrazoles have been synthesized.These complexes show significantly different supramolecular structures owing to the different substitutional position of hydroxymethyl on the pyrazolyl ring.Preliminary catalytic studies prove that all these complexes exhibit moderate catalytic activity in the cyclotrimerization reaction of phenylacetylene.

猜你喜歡
化學
化學與日常生活
奇妙的化學
奇妙的化學
奇妙的化學
奇妙的化學
奇妙的化學
化學:我有我“浪漫”
化學:舉一反三,有效學習
考試周刊(2016年63期)2016-08-15 22:51:06
化學與健康
絢麗化學綻放
主站蜘蛛池模板: 日韩第一页在线| 亚洲精品自拍区在线观看| 久久综合色天堂av| 国产麻豆aⅴ精品无码| 国产成人艳妇AA视频在线| 国产探花在线视频| 69综合网| 中文字幕色在线| 婷婷五月在线| 四虎国产精品永久一区| 美女亚洲一区| 欧美全免费aaaaaa特黄在线| 亚洲第一黄片大全| 中文字幕1区2区| 99在线国产| 亚洲国产综合自在线另类| 2020极品精品国产| 57pao国产成视频免费播放| 国国产a国产片免费麻豆| 香蕉视频国产精品人| 日本www在线视频| 久久香蕉国产线看观| 91无码视频在线观看| 日韩无码视频专区| 亚洲第一天堂无码专区| 国产91线观看| 亚洲精品卡2卡3卡4卡5卡区| 国产精品xxx| 草草影院国产第一页| 四虎影视永久在线精品| 久久国产精品无码hdav| 精品国产免费观看| 欧美日韩中文国产| 久草视频福利在线观看| 日韩精品久久无码中文字幕色欲| 99精品高清在线播放| 四虎永久在线视频| 国产成人无码久久久久毛片| 乱码国产乱码精品精在线播放| 亚洲精品无码久久久久苍井空| 国产综合网站| 伊大人香蕉久久网欧美| 无码不卡的中文字幕视频| 日韩在线播放中文字幕| 亚洲视频a| 激情爆乳一区二区| 国产成人精品一区二区三区| 日本人妻一区二区三区不卡影院 | 人人91人人澡人人妻人人爽 | 91美女视频在线| 大学生久久香蕉国产线观看| 麻豆a级片| 久久性妇女精品免费| 亚洲综合九九| 国产高清色视频免费看的网址| 免费在线不卡视频| 成人国产小视频| 又爽又大又光又色的午夜视频| 国产欧美日韩在线在线不卡视频| 欧美日韩午夜| 99久久精品视香蕉蕉| 99精品福利视频| 四虎影视库国产精品一区| 国产成人欧美| 直接黄91麻豆网站| 亚洲福利一区二区三区| 精品一区国产精品| 这里只有精品免费视频| 中文字幕亚洲第一| 色综合天天娱乐综合网| 女人爽到高潮免费视频大全| 又爽又大又黄a级毛片在线视频| 97在线公开视频| 四虎精品国产永久在线观看| 黄片在线永久| 日韩精品免费一线在线观看| 亚洲AV电影不卡在线观看| 色婷婷成人| 蜜臀av性久久久久蜜臀aⅴ麻豆| 婷婷六月激情综合一区| 亚洲乱码视频| 亚洲乱亚洲乱妇24p|