曾 敬,向華榮
(重慶西部汽車試驗場管理有限公司,重慶 408300)
隨著汽車產業的發展,國內汽車試驗場道路資源的需求越來越大。汽車試驗場在場車輛總數為各試驗道路車輛數及連接道路上車輛數的總和,依靠各道路道閘對進出車輛的統計可以獲取在場車輛實時總數。了解車輛總數的變化及趨勢可以為試驗場管理者提供道路使用計劃、運行調度、試驗統籌、經營決策等方面的參考依據,可達到對日趨緊張的試驗場道路資源充分利用的目的,并可為汽車試驗場的數據可視化、智能化管理提供數據輸入。試驗場在場車輛總數經采樣后可表示為典型的時間序列,其在一段時間內受各企業試驗方案、場內安全調度管理影響,對突發天氣情況、節假日等因素也有一定依賴,呈現出非線性與不可控性的特征。典型的汽車試驗場由高速環道、耐久強化路、綜合評價路等數十種特殊道路組成,每種道路屬于一個有限空間內循環往復的交通流,其局部流動性具有一定的公共交通流的特點。對外開放的試驗場,往往有數十個不同的試驗主體單位,各主體單位又包含多個試驗小隊,各試驗小隊之間入場與出場的意圖并未事先統一,所以在場車輛總數還呈現出一定經濟模型的特征。目前國內外對試驗場在場車輛總數數據的研究停留在歷史統計方面,對該數據的深入分析及預測方面的研究較少,但對公共交通流量及經濟模型的研究較多,韋凌翔等[1]、姚衛紅等[2]、KUMAR等[3]、楊兆升等[4]對短時交通流采用支持向量機(Support Vector Machine,SVM)、人工魚群算法、粒子群優化(Particle Swarm Optimization,PSO)、自回歸積分滑動平均模型(Autoregressive Integrated Moving Average Model,ARIMA)等方法進行預測,達到了不錯的短期預測效果,但對長時預測均未達到理想效果。程山英[5]用廣義自回歸條件異方差(Generalized Autoregressive Conditional Heteroskedasticity,GARCH)模型和ARIMA模型對股價波動趨勢進行短期預測,在長時預測方面仍存在改進空間。張健等[6]用基于GM(1,1)[7]模型的BP算法對股票市場預測進行建模,通過對樣本的訓練,以尋求最優網絡模型,表明了神經網絡算法具有預測的潛能。文獻[8]表明ARIMA及隱馬爾科夫鏈(Hidden Markov Model,HMM)方法具有短期相關性,適用于短期預測,人工神經網絡方法具有長期相關性,更適用于長期預測。本文先采用R軟件的ARIMA方法及Facebook發布的Fbprophet方法對車輛數據進行簡單分析及預測,然后使用LSTM及GRU方法對車輛數據進行訓練,將部分保留數據作為測試數據進行測試,并用訓練出的模型對未來1年在場車輛總數趨勢進行了預測。
某試驗場3年以來的道閘管理系統數據庫中車輛出入場數據多達700萬條,初步梳理了該數據之后,對每天上午10時的在場總車輛數進行采樣,得到共1 008組數據,在場車輛總數Yt可表示為離散時間序列[9]:

Yt總變化曲線如圖1所示,該圖反映出節假日期間,道路部分或全場封閉,車輛總數急劇下滑的特點。

圖1 某試驗場在場車輛總數Yt變化曲線
先采用ARIMA方法對在場車輛總數進行分析,對Yt進行1階差分處理后,繪制ΔYt其自相關圖和偏自相關圖,發現自相關圖有兩個峰值然后截尾,偏自相關圖第5階后處于置信區間,暫判斷Yt適用ARIMA(0,1,5)來進行擬合,該模型可寫成:

式中:μ為常數;ui為白噪聲;βi為各階白噪聲的系數,其擬合結果見表1。

表1 ARIMA(0, 1, 5)擬合結果
經分析,ARIMA(0,1,5)模型的赤池信息量(Akaike Information Criterion,AIC)為8 801.08,貝葉斯信息度量(Bayesian Information Criterion,BIC)為8 830.56,說明該模型復雜度過高,存在過擬合的現象,表明該模型不適合用于預測。
Fbprophet是Facebook 于2017年2月23日發布的一款開源數據預測工具,其基本模型為廣義相加模型(Generalized Additive Models,GAM)的特例,可由式(3)~(6)表示。

Fbprophet模型將時間序列分成4個部分的疊加,其中g(t)為增長函數,用來擬合非周期性變化,C為數據容量,k為增長率,b為偏移量參數。s(t)為使用傅里葉級數來表示的周期性變化;h(t)為假期、節日等特殊原因等造成的變化,Di為第i個虛設變量,可以將數據進行0,1設置,u為白噪聲。
利用Fbprophet進行1年的預測,結果如圖2所示。

圖2 Fbprophet對Yt的擬合及預測曲線
通過Fbprophet能夠對原始數據周期特性進行擬合,并可分離出總趨勢、一周規律和一年規律,但對疏遠點不能進行很好的識別。
LSTM是由Hochreiter和Schmidhuber于1997年提出的一種基于循環神經網絡(Recurrent Neural Networks,RNN)上改進的機器學習神經網絡[10-11]。相比于RNN,LSTM解決了梯度反傳過程由于逐步縮減而產生的梯度消失問題,LSTM還可以識別并記憶時間序列中長期信息的特征,并對當前的輸出產生影響,因此適用于處理和預測有疏遠點特征的時間序列。
LSTM一個單位的基本結構如圖3所示,其中xt序列為輸入時間序列,ht為輸出時間序列。LSTM的最大的特點就是輸入xt不僅會影響到輸出ht,還會將Ct-1改變為Ct,Ct和ht將輸入到下一個基本單元甚至傳遞到更遠的基本單元并影響其狀態。

圖3 LSTM單元結構圖
LSTM 由輸入層、輸出層ht、遺忘層ft、狀態更新層Ct組成,其間關系可由式(7)~(12)給出:

式中:Wi和bi分別代表各層的權重和偏置。
LSTM有多種變體,GRU[12]是LSTM的一種變體,它將遺忘層ft和輸入層融合在一起,還將狀態更新層Ct進行了隱藏,結構上比LSTM更為簡單,其模型如圖4所示。

圖 4 GRU單元結構圖
GRU滿足如下關系:

式中:rt為遺忘層和輸入層的融合,狀態更新層隱藏后由zt和為輸出層提供參數。
本文基于谷歌發布的人工智能開源工具Tensor-Flow[13-14]建立LSTM及GRU模型,TensorFlow的特點是使用圖 (graph) 來表示計算任務,圖中的一個操作節點 (operation)稱之為 op,一個操作節點獲得0個或多個張量(Tensor)執行計算,生成 0個或多個張量,每個張量是一個類型化的多維數組。TensorFlow在被稱之為會話 (Session) 的上下文中執行圖,使用張量表示數據,通過變量(Variable)維護狀態,使用feed和fetch操作輸入和輸出數據。TensorFlow還自帶tensorboard可視化模塊,可以清晰看到學習過程及模型結構。建立單層LSTM及GRU結構,橫向并列布置100個LSTM,設置損失函數(loss)為均方損失[15],利用優化器AdamOptimizer進行最小化loss優化并不斷更新隱藏層的權重w和偏置b,對試驗場內車輛總數Yt變化趨勢的學習流程如圖5所示。

圖5 在場車輛總數機器學習流程
利用tensorboard可以看到LSTM和GRU的結構,如圖6所示。
設置學習率為0.000 6,步長為60,總訓練次數為5 000次,將在場車輛總數Yt的前715組數據作為訓練數據進行訓練。通過tensorboard可以看到整個學習過程中loss的變化(圖7),兩種方法的loss均能快速收斂。

圖6 tensorboard中的LSTM和GRU單元結構

圖7 LSTM和GRU方法進行訓練的loss變化曲線
由表2可知,LSTM與GRU訓練速度幾乎相當,在loss對比上,除了在1 000步時GRU有超過LSTM的情況,其余時間的loss和最終loss,LSTM均超過GRU,通過5 000步的計算后LSTM的loss達到了0.019 11。

表2 訓練過程中LSTM及GRU的loss對比
在訓練過程中,LSTM和GRU權重w和偏置b的取值變化也可由圖8和圖9直觀地表達。

圖8 LSTM偏置bin,bout,權重win,wout的變化

圖9 GRU偏置bin,bout,權重win,wout的變化
可以看到在整個學習過程中,LSTM和GRU的權重w和偏置b的取值變化分布均勻,說明整個學習過程中沒有出現異常,隨著學習次數的增加,權重w和偏置b的取值變化相比學習開始之初的變化越來越趨于穩定。對應圖7中loss的變化情況,可以看出隨著學習次數的增加,loss的收益開始遞減,到達3 000步左右時,已經達到一個學習“瓶頸”,loss的減少量已經非常細微。
使用訓練好的模型進行293天的預測,并與Yt中的后293組數據進行對比測試,結果如圖10所示。

圖10 LSTM方法與GRU方法的測試
測試結果表明,LSTM和GRU對原始數據疏遠點均能較好地預測,根據實際情況,差異范圍在30輛車內可以作為調度參考,LSTM和真實值總差異率為16.15%,GRU和真實值總差異率為25.76%,說明LSTM的預測效果更理想(表3)。
再利用Yt的1 008組數據分別進行LSTM和GRU方法的訓練,并對未來1年場內車輛總數變化趨勢進行預測,結果如圖11所示。

圖11 LSTM方法與GRU方法對在場車輛總數Yt的預測

表3 LSTM及GRU預測值與真實值的對比
兩種方法對節假日可能出現的封場、調度作了相應的預測,對春節后車輛數量的反彈現象均有一定判斷。根據該預測結果,可在節后反彈時加強場內調度,適當增加道路容量以解決道路需求,在一些道路需求可能較少的節點,可以計劃安排一些道路維護、道路檢測等工作。
本文對在場車輛總數Yt運用基于傳統統計法的ARIMA和Fbprophet方法進行了分析及預測,發現效果并不理想。再利用TensorFlow建立LSTM及GRU模型,通過測試,發現兩種模型均能對在場車輛總數的的周期特征、疏遠點進行很好的識別,其中LSTM與真實值的差異值更小。LSTM及GRU均屬于機器學習中的強化學習,學習過程主要在隱藏層上進行,整個學習過程中基于優化方式不斷更新權重w和偏置b,并不能用一個直觀的模型進行表示,但是可以看出機器學習方法比傳統的基于具體統計模型的方法有更強的識別能力和預測能力,如何調整LSTM及GRU的參數,使差異值進一步降低可作為今后的課題。本文利用LSTM及GRU方法對未來1年場內車輛總數變化趨勢進行了預測,該預測方式為試驗場管理提供了一種新的統計方法,對試驗場道路資源的計劃調度提供了數據支持,值得進行進一步的研究與運用。
致 謝
本研究工作得到了“基于寬帶移動互聯網的智能汽車和智慧交通應用示范工程及產品工程化公共服務平臺”重點項目的資助(項目招標編號為:0714-EMTC02-5593/20),特此致謝。
[1] 韋凌翔,陳紅,王永崗,等.基于RVM和ARIMA的短時交通流量預測方法研究[J].武漢理工大學學報(交通科學與工程版),2017,41(2):349-354.WEI Lingxiang,CHEN Hong,WANG Yonggang,et al. Research on Short-term Traffic Flow Prediction Method Based on RVM and ARIMA [J]. Journal of Wuhan University of Technology (Traffic Science and Engineering),2017,41(2):349-354.(in Chinese)
[2] 姚衛紅,方仁孝,張旭東. 基于混合人工魚群優化SVR的交通流量預測[J]. 大連理工大學學報,2015,55(6):632-637.YAO Weihong,FANG Renxiao,ZHANG Xudong.Traf fi c Flow Prediction Based on the Optimization of SVR of Mixed Artificial Fish Stocks [J]. Journal of Dalian University of Technology,2015,55(6):632-637.(in Chinese)
[3] KUMAR S V,VANAJAKSHI L. Short-term Traf fi c Flow Prediction Using Seasonal ARIMA Model with Limited Input Data[J]. European Transport Research Review,2015,7(3):9 Pages.
[4] 楊兆升,王媛,管青.基于支持向量機方法的短時交通流量預測方法[J].吉林大學學報(工學版),2006,36(6):881-884.YANG Zhaosheng,WANG Yuan,GUAN Qing.Forecasting Method of Short-term Traffic Flow Based on Support Vector Machine Method [J]. Journal of Jilin University (Engineering Edition),2006,36(6):881-884.(in Chinese)
[5] 程山英.基于模糊神經網絡的短時交通流預測方法研究[J].計算機測量與控制,2017,25(8):155-158.CHENG Shanying. Research on Prediction Method of Short-term Traf fi c Flow Based on Fuzzy Neural Network[J]. Computer Measurement and Control,2017,25(8):155-158.(in Chinese)
[6] 張健,陳勇,夏罡,等.人工神經網絡之股票預測[J].計算機工程,1997(2):52-55.ZHANG Jian,CHEN Yong,XIA Gang,et al. Stock Prediction of Artificial Neural Networks [J]. Computer Engineering,1997(2):52-55.(in Chinese)
[7] 劉思峰,曾波,劉解放,等. GM(1,1)模型的幾種基本形式及其適用范圍研究[J].系統工程與電子技術,2014,36(3):501-508.LIU Sifeng,ZENG Bo,LIU Jiefang,et al. GM(1,1) Model of Several Basic Forms and Its Application Scope Research[J]. Systems Engineering and Electronics Technology,2014,36(3):501-508.(in Chinese)
[8] 李永立,吳沖,王崑聲. 優選時間序列數據模型的人工智能算法[J]. 計算機工程與設計,2011,32(12):4190-4193,4201.LI Yongli,WU Chong,WANG Kunsheng. Artificial Intelligence Algorithm of Optimal Time Series Data Model[J]. Computer Engineering and Design,2011,32(12):4190-4193,4201.(in Chinese)
[9] 原繼東,王志海. 時間序列的表示與分類算法綜述[J].計算機科學,2015,42(3):1-7.YUAN Jidong,WANG Zhihai. The Expression of Time Series and Classi fi cation Algorithm [J]. Computer Science,2015,42(3):1-7.(in Chinese)
[10] HOCHREITER S,SCHMIDHUBER J. Long Short-term Memory [J]. Neural Computation,1997,9(8):1735-1780.
[11] GERS F A,SCHMIDHUBER J,CUMMINS F. Learning to Forget:Continual Prediction with LSTM[J]. Neural Computation,2000,12(10):2451-2471.
[12] CHO K,VAN MERRIENBOER B,GULCEHRE C,et al. Learning Phrase Representations Using RNN Encoder-decoder for Statistical Machine Translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP),Oct. 25-29,2014,Doha,Qatar.2014:1724-1734.
[13] ABADI M,BARHAM P,CHEN Jianmin,et al.Tensor-Flow:A System for Large-scale Machine Learning[C]//OSDI'16 Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation,Nov. 2-4,2016,Savannah,GA,USA.c2016:265-283.
[14] ABADI M,AGARWAL A,BARHAM P,et al.Tensorflow:Large-scale Machine Learning on Heterogeneous Distributed Systems[Z].arXiv:1603.04467v2 [cs.DC],2016.
[15] 李航.統計學習方法[M]. 北京:清華大學出版社,2012:7-9.LI Hang.The Statistical Method of Learning [M].Beijing:Tsinghua University Press,2012:7-9.(in Chinese)