路杰 李明政 任璐



Dynamic Analysis of a Holling-Ⅳ Functional Reaction Function: Pulse Predator-Prey Model
摘要:通過討論一類具Holling-Ⅳ型功能反應(yīng)函數(shù)的脈沖捕食-食餌模型的動(dòng)力學(xué)行為,對系統(tǒng)1的計(jì)算得出其無害蟲(捕食者滅絕)周期解的存在性及解的具體表達(dá)形式,全局吸引及持久和全局漸近吸引的充分條件,為生物害蟲的防治提供理論依據(jù)。
Abstract: By discussing the dynamic behavior of a kind of impulse predator-prey modelwith Holling-Ⅳ type functional response function, the existence of theperiodic solution of the pest-free (predator extinction) and the specificexpression form of the solution are calculated for the system 1. The fullconditions of global attraction and long-lasting and global asymptotic attractionprovide a theoretical basis for the prevention and control of biological pests.
關(guān)鍵詞:Holling-Ⅳ型功能反應(yīng)函數(shù);捕食-食餌模型;全局吸引持久;全局漸近吸引
Key words: Holling-IVtype functional response function;predator-prey model;global attraction persistence;global asymptoticattraction
中圖分類號:O175 文獻(xiàn)標(biāo)識碼:A 文章編號:1006-4311(2018)15-0202-04
由于脈沖微分方程應(yīng)用于害蟲防治方面和Holling-IV型功能反應(yīng)函數(shù)對生物種群[1]的動(dòng)力學(xué)行為的重大影響,本文主要研究按常數(shù)比率周期地釋放或存儲捕食者、噴灑農(nóng)藥的具Holling-IV型功能反應(yīng)函數(shù)的捕食-食餌模型:
結(jié)論:本文研究了一類具Holling-IV型功能反應(yīng)函數(shù)的脈沖捕食–食餌模型,利用引理2我們知道當(dāng)t足夠大時(shí),系統(tǒng)1的任一解是一致有上界的。此外,還得到了系統(tǒng)1的無害蟲(捕食者滅絕)周期解的存在性及解的具體表達(dá)形式,全局吸引及持久的充分條件。通過定理1,得系統(tǒng)1的無害蟲(捕食者滅絕)周期解全局漸近吸引的充分條件,為生物害蟲的防治提供理論依據(jù)。
參考文獻(xiàn):
[1]徐光啟.農(nóng)政全書.卷四:玄扈先生井田考[M].
[2]E. C. Pielou. Mathematical Ecology[M]. John Wiley &: Sons, New York, (1977).
[3]V. Lashmikantham, D. D. Baino, P. S. Simenov. Theorey of Impulsive Differential equations [M]. World Scientific, 1989.
[4]D. D. Bainov, P. S. Simeonov. Impulsive Differential Equations: Periodic Solutions and Applications [M]. Longman, New York, 1993.
[5]S. W. Zhang, et al. The periodic n-species Gilpin-Ayala competition system with impulsive effect[J], Chaos Solitons & Fractals 26 (2005) 507-517.