999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于PID-BPNN的礦用鉛酸蓄電池SOC在線估計

2018-05-15 06:43:02姜長泓徐宏
現代電子技術 2018年10期

姜長泓 徐宏

摘 ?要: 針對礦山避難硐室安全供電系統中鉛酸蓄電池內化成過程中檢測是否已經達到滿電荷量,且在組裝鉛酸蓄電池時需要考慮電池均衡問題都需要進行準確估算SOC的問題,提出基于BP神經網絡的PID控制通過修正反饋誤差來實現鉛酸蓄電池SOC在線估計。采用實驗的方法獲取數據,選取與電池SOC相關的因子作為BP神經網絡的輸入參數,最終準確在線預測蓄電池SOC值。仿真結果表明,基于BP神經網絡的PID控制的鉛酸蓄電池SOC估計的精度大大提高,同時為電池管理系統提供一個新的估計方法。

關鍵詞: 安全供電系統; 鉛酸蓄電池; 礦用; 內化成; PID?BP神經網絡; SOC在線估計

中圖分類號: TN86?34; TP273 ? ? ? ? ? ? ? ? ? 文獻標識碼: A ? ? ? ? ? ? ? ? ? ?文章編號: 1004?373X(2018)10?0113?04

Abstract: Since accurate SOC estimation is needed when detecting whether the lead?acid battery has reached the full charge during its internal formation and when considering the battery balance problem during the assembling of the lead?acid battery in the safe power supply system of the mine refuge chamber, SOC online estimation of lead?acid battery is achieved based on PID control of BPNN by means of feedback error modification. The experimental method is adopted to obtain data, and the factors related to battery SOC are selected as the input parameters of BP neural network to perform accurate online prediction of the battery′s SOC values. The simulation results show that the lead?acid battery SOC estimation based on PID control of BPNN has improved a lot in its precision, and meanwhile provides a new estimation method for the battery management system.

Keywords: safe power supply system; lead?acid battery; mine; internal formation; PID?BPNN; SOC online estimation

0 ?引 ?言

礦山避難硐室安全供電系統是礦井安全系統的重要研究內容之一。特別是在研究鉛酸蓄電池內化成效率提高問題時,判斷是否達到滿電荷是一個重要的研究課題,因此,充電過程中準確的SOC估算至關重要。與此同時,充電完畢之后,組裝蓄電池組時需要挑選SOC曲線近似吻合的單體蓄電池,這樣才可保證電池的均衡一致性,防止電池內部能量損耗。然而,鉛酸蓄電池作為一種古老的能源電池,其能量密度等特性不如其他動力電池,導致SOC的估算相對困難[1?2]。開路電壓法、安時計量法以及內阻法等傳統的SOC估算方法無法實現準確估算[3]。隨著科學技術的不斷發展,國內外學者將神經網絡、模糊控制等控制方法應用到蓄電池的SOC估算中,并取得了一定的成果[4]。PID與BP神經網絡的結合為電池SOC估計的研究提供了一個新的估計方法。

安時積分法從電池的定義出發,在線估計SOC存在無反饋修正環節,從而不可避免地產生電流積分的累積誤差,導致無法準確在線估計SOC值。PID?BP神經網絡法(PID?BPNN)包括信號的正向傳播和誤差的反向傳播,因此,它能夠有效地模擬電池系統的非線性特性關系,優化復雜的電池SOC模型,有效修正電池SOC的反饋誤差,進一步提高了電池的SOC估算精度。將D560KT鉛酸蓄電池端電壓、環境溫度和電池放電流3個變量作為模型的輸入量,電池SOC作為模型的輸出量。仿真結果表明,基于PID?BPNN的控制方法可以準確有效地估算蓄電池的SOC值。

3 ?仿真結果分析

3.1 ?獲取電池數據

本文對礦山硐室安全供電系統用D560KT鉛酸蓄電池組進行充放電研究:首先,環境溫度設置為25 ℃,倍率范圍設置為0.3~1 C,大電流放電儀每隔3 s記錄一次數據;然后,通過電流積分法計算出訓練樣本和測試樣本中的SOC值。現選取部分實驗數據,實驗條件為放電電流為10 A,放電容量為30%,表1為進行了歸一化處理的數據。歸一化處理的公式為:

將表1獲取的電池數據作為PID?BPNN模型的訓練樣本,然后進行蓄電池的內化成實驗,則預測樣本數據如表2所示。

3.2 ?PID?BPNN訓練與預測

PID?BPNN模型的最大訓練步數為200,目標值設定為0.001,其他參數設置為默認值,采用梯度下降訓練算法。將表1數據輸入網絡中,進行訓練。經過62個步長的訓練,網絡達到了精度要求,誤差為0.001 3,其誤差曲線圖如圖3所示。

為了驗證PID?BPNN模型的有效性,將訓練集電池數據導入模型進行仿真[8],仿真SOC與期望SOC的對比曲線如圖4所示。

鉛酸蓄電池經過PID?BPNN模型訓練可有效進行電池SOC值的估算,最終SOC預測的誤差能夠保持在±3%以內,達到預期效果。

4 ?結 ?語

本文提出基于BP神經網絡的PID控制,應用到礦山避難硐室安全供電系統的鉛酸蓄電池優化成過程中電荷量檢測實現蓄電池SOC在線估計。由仿真結果得出,其估算精度大大提高,此優化方法為能量管理系統中SOC的計算提供了一種新的估算方法。同時,該方法存在陷入局部最優問題,估算精度有待進一步提高,因此,進一步研究優化問題是下一步工作的重點。

參考文獻

[1] 胡信國.動力電池技術與應用[M].2版.北京:機械工業出版社,2013:32?36.

HU Xinguo. Power battery technology and its application [M]. 2nd ed. Beijing: China Machine Press, 2013: 32?36.

[2] 劉瑞浩,孫玉坤,陳坤華.電動汽車SOC利用BP神經網絡模型預測方法研究[J].電測與儀表,2011,48(3):34?36.

LIU Ruihao, SUN Yukun, CHEN Kunhua. BP neural network model estimation on state of charge for electric vehicle [J]. Electrical measurement & instrumentation, 2011, 48(3): 34?36.

[3] 王標.基于電池模型的汽車鉛酸電池SOC在線估計方法研究[D].合肥:合肥工業大學,2015.

WANG Biao. Research on SOC online estimation of vehicular lead?acid batteries based on battery model [D]. Hefei: Hefei University of Technology, 2015.

[4] 劉曉剛.鉛酸蓄電池容量檢測方法研究[D].武漢:華中科技大學,2007.

LIU Xiaogang. Research on capacity detection of lead?acid batteries [D]. Wuhan: Huazhong University of Science and Technology, 2007.

[5] 吳池.AH計量法在Matlab環境下對鋰離子電池SOC的估算[D].天津:天津大學,2007.

WU Chi. SOC estimation of Lithium?ion battery using A?H measurement method in Matlab environment [D]. Tianjin: Tianjin University, 2007.

[6] 舒懷林.PID神經網絡元對強耦合帶時延多變量系統的解耦控制[J].控制理論與應用,1998,15(6):920?924.

SHU Huailin. PID neural network for decoupling control of strong coupling multivariable time?delay system [J]. Control theory and applications, 1998, 15(6): 920?924.

[7] 劉金琨.先進PID控制Matlab仿真[M].2版.北京:電子工業出版社,2004:162?170.

LIU Jinkun. Matlab simulation of advanced PID control [M]. 2nd ed. Beijing: Publishing House of Electronics Industry, 2004: 162?170.

[8] 蔣凱.車用鉛酸電池SOC估算研究[D].長沙:中南大學,2013.

JIANG Kai. SOC estimation of VRLA for electric vehicle research [D]. Changsha: Central South University, 2013.

[9] 葛哲學,孫志強.神經網絡理論與Matlab R2007實現[M].北京:電子工業出版社,2007.

GE Zhexue, SUN Zhiqiang. Neural network theory and Matlab R2007 application [M]. Beijing: Publishing House of Electronics Industry, 2007.

[10] 高飛.Matlab智能算法超級學習手冊[M].北京:人民郵電出版社,2014:183?200.

GAO Fei. Super learning manual of Matlab intelligent algorithm [M]. Beijing: Posts & Telecom Press, 2014:183?200.

主站蜘蛛池模板: 中文字幕首页系列人妻| 亚洲精品综合一二三区在线| 日韩A∨精品日韩精品无码| 高清码无在线看| 国产精品一老牛影视频| 91国语视频| 22sihu国产精品视频影视资讯| 色婷婷国产精品视频| 日韩久久精品无码aV| 99热这里只有精品免费| 人妻精品久久无码区| 久久人妻xunleige无码| 十八禁美女裸体网站| 久久免费视频播放| 91成人在线免费视频| 亚洲乱码精品久久久久..| 欧美午夜在线播放| 波多野结衣一区二区三区四区| 美美女高清毛片视频免费观看| 熟女成人国产精品视频| 成人亚洲国产| 免费在线看黄网址| 久久精品国产精品青草app| 天天躁日日躁狠狠躁中文字幕| 激情六月丁香婷婷| 精品国产自在现线看久久| 欧美精品啪啪一区二区三区| 色久综合在线| 日本午夜影院| 国产在线观看成人91| 亚洲一级毛片| 蜜臀av性久久久久蜜臀aⅴ麻豆| 欧美成人a∨视频免费观看| 日韩视频福利| 欧美精品v欧洲精品| 2022国产无码在线| 国产美女在线观看| 狠狠色成人综合首页| 在线精品欧美日韩| 中文字幕在线日本| 全午夜免费一级毛片| 午夜老司机永久免费看片| 国产一区二区三区视频| 99免费视频观看| 日本不卡视频在线| 国产高清自拍视频| 国产青榴视频在线观看网站| 亚洲欧美在线综合一区二区三区| 在线国产91| 全部毛片免费看| 亚洲中文字幕无码爆乳| 97在线免费| 国产精品欧美激情| 亚洲欧美成人| 亚洲精品无码AV电影在线播放| 国产三级国产精品国产普男人| 国产精品浪潮Av| 亚洲精品综合一二三区在线| 欧美人人干| 精品欧美一区二区三区久久久| 玩两个丰满老熟女久久网| 国产精品专区第一页在线观看| 伊人久久久久久久久久| 2020精品极品国产色在线观看| 无码免费视频| 免费啪啪网址| 国产美女在线观看| 国产精品成人AⅤ在线一二三四| 天天色天天操综合网| 国产99欧美精品久久精品久久| 欧美三级视频在线播放| 99re这里只有国产中文精品国产精品| www亚洲精品| 91精品亚洲| a级高清毛片| 在线观看国产精品日本不卡网| AV片亚洲国产男人的天堂| 国产精品片在线观看手机版 | 一级毛片免费不卡在线| 亚洲人成网7777777国产| www欧美在线观看| 国产va在线|