王永文 喬志琴 薛亞奎



摘要:為了豐富三維混沌系統的定性與分支理論,以具有三重零奇異平衡點的二次截斷規范型系統為研究對象,研究了此系統在不同參數條件下的平衡點的存在性及其附近的穩定性與分支問題。使用數學分析的方法討論了在不同參數條件下,平衡點所對應的特征方程實根的存在性,從而得到平衡點處豐富的局部流形情況,引出系統可能會產生的分支情形。利用卡爾丹諾公式仔細分析了平衡點為鞍焦點的參數條件,分析了產生一維Hopf分支的參數條件,通過計算得到超臨界Hopf分支與亞臨界Hopf分支的前提條件,結果表明系統具有豐富的穩定性與分支情況,可為以后證明產生連接鞍焦點的同宿環或異宿環的存在性和產生Silnikov型混沌證明提供理論前提。研究方法可推廣到對其他高維非線性系統的研究。
關鍵詞:定性理論;鞍焦點;Hopf分支;超臨界;亞臨界
中圖分類號:O175.12MSC(2010)主題分類:16S40文獻標志碼:A
收稿日期:20171225;修回日期:20180303;責任編輯:張軍
基金項目:國家自然科學基金(11401541);山西省自然科學基金(2015011009)
第一作者簡介:王永文(1980—),男,山西繁峙人,碩士研究生,主要從事生物數學方面的研究。
通信作者:薛亞奎教授。Email:ykxue@nuc.edu.cn
王永文,喬志琴,薛亞奎.一類三維系統的分支分析[J].河北科技大學學報,2018,39(2):135141.
WANG Yongwen,QIAO Zhiqin,XUE Yakui. Bifurcation analysis of a three dimensional system[J].Journal of Hebei University of Science and Technology,2018,39(2):135141.Bifurcation analysis of a three dimensional system
WANG Yongwen,QIAO Zhiqin,XUE Yakui
(School of Science, North University of China, Taiyuan, Shanxi 030051, China)
Abstract: In order to enrich the stability and bifurcation theory of the three dimensional chaotic systems, taking a quadratic truncate unfolding system with the triple singularity equilibrium as the research subject, the existence of the equilibrium, the stability and the bifurcation of the system near the equilibrium under different parametric conditions are studied. Using the method of mathematical analysis, the existence of the real roots of the corresponding characteristic equation under the different parametric conditions is analyzed, and the local manifolds of the equilibrium are gotten, then the possible bifurcations are guessed. The parametric conditions under which the equilibrium is saddlefocus are analyzed carefully by the Cardan formula. Moreover, the conditions of codimensionone Hopf bifucation and the prerequisites of the supercritical and subcritical Hopf bifurcation are found by computation. The results show that the system has abundant stability and bifurcation, and can also supply theorical support for the proof of the existence of the homoclinic or heteroclinic loop connecting saddlefocus and the Silnikov's chaos. This method can be extended to study the other higher nonlinear systems.
Keywords:stability theory; saddlefocus; Hopf bifurcation; supercritical; subcritical
隨著洛侖茲系統的發現,許多學者致力于研究各種非線性系統現象,其中包含廣義的Lorenz系統[1],呂系統[23],陳系統[4],Genesio系統[5],Chua系統[6]等。除了利用李雅普諾夫指數證明一類系統具有混沌之外,更多學者利用Silnikov條件去構造自治系統出現混沌,陳關榮等[1]根據Silnikov準則構造了同時具有洛侖茲吸引子和陳吸引子的呂系統。ZHOU等[5]在Genesio系統里找到一條Silnikov形式的同宿軌,得到Genesio系統里存在馬蹄混沌結論。河北科技大學學報2018年第2期王永文,等:一類三維系統的分支分析ZHOU等[7]構造了一類新的簡單的具有連接鞍焦點的同宿軌的三維二次混沌系統。王煒等[8]對改進的PID控制系統求出具有Silnikov形式的同宿軌的解析表達式,從而說明具有混沌現象的發生。其他學者[918]也對不同的系統做了相應的分析。本研究主要在FRIEIRE等[19]討論三重零線性退化的標準型開折的基礎上,討論以下一類三維自治系統:1=x2,2=x3,3=ax1+b2x2+cx3+A1x1x3+A2x1x2- x212 (1)的分支情況,其中a,b,c,A1,A2為參數,此系統比Genesio系統[5]更一般化。
DENG Xueming. Analysis of bifurcation topological structure of nonlinear system[J]. Journal of Hebei University of Science and Technology, 2008, 29(3):182184.
[5]ZHOU Liangqiang, CHEN Fangqi. Hopf bifurcation and Shilnikov chaos of Genesio system[J]. Chaos Solitons & Fractals, 2009, 40(3): 14131422.
[6]EUZEBIO R, LLIBRE J. ZeroHopf bifurcation in a Chua system[J]. Nonlinear Analysis Real World Applications, 2017, 37: 3140.
[7]ZHOU Tianshou, CHEN Guanrong, YANG Qigui. Constructing a new chaotic system based on the Silnikov criterion[J]. Chaos Solitons & Fractals, 2004, 19(4): 985993.
[8]王煒,張琪昌. 一類三維PID控制系統的Shilnikov類型Smale馬蹄混沌[C]//第十二屆全國非線性振動暨第九屆全國非線性動力學和運動穩定性學術會議論文集.鎮江:中國力學學會,2009:212219.
[9] 張康明. 一個具有唯一鞍焦點的三維混沌系統分析[J]. 數學的實踐與認識, 2010, 40(14): 197202.
ZHANG Kangming. Analysis of a 3D chaotic system with only one saddle foci equilibrium[J]. Mathematics in Practice and Theory, 2010, 40(14): 197202.
[10]BAO Jianhong, YANG Qigui. A new method to find homoclinic and heteroclinic orbits[J]. Applied Mathematics and Computation, 2011, 217: 65266540.
[11]魏飛,李威,陳明. 構造一類具有Silnikov鞍焦同宿軌的動力系統[J]. 北京化工大學學報(自然科學版), 2011, 38(1): 140143.
WEI Fei, LI Wei, CHEN Ming. Constrction of dynamic system having Silnikovs saddlefocus homoclinic orbit[J]. Journal of Beijing University of Chemical Technology(Natural Science), 2011, 38(1): 140143.
[12]朱道宇. 一類特殊三維混沌系統的退化Hopf分岔[J]. 湖北民族學院學報(自然科學版), 2014, 32(1): 7577.
ZHU Daoyu. Degenerate Hopf bifurcation in a special 3D chaotic system[J]. Journal of Hubei University for Nationalities(Natural Science Edition), 2014, 32(1): 7577.
[13]張娟. 一類三維混沌系統的音叉分岔分析[J]. 河南科學, 2015, 33(4): 509511.
ZHANG Juan. The pitchfork bifucation analysis of 3D chaotic system[J]. Henan Science, 2015, 33(4): 509511.
[14]ALGEBA A, DOMINGUEZ M, MERINO M, et al. TakensBogdanov bifurcations of equilibria and periodic orbits in the Lorenz system[J]. Commun Nonlinear Sci Number Simulat, 2016, 30: 328343.
[15]HE Qiong, XIONG Haiyun. Shilnikv chaos and Hopf bifurcation in threedimensional differential system[J]. Optik International Journal for Light and Electron Optics,2016, 127(19): 74687655.
[16]ELSONBATY A, ELSADANY A. Bifurcation analysis of chaotic geomagnetic field model[J]. Chaos, Solitons & Fractals, 2017, 103: 325335.
[17]ALGABA A,FEMANDEESANCHEEF, MERINO M, et al. Comments on “Shilnikv chaos and Hopf bifurcation in threedimensional differential system”[J]. Optik International Journal for Light and Electron Optics, 2018, 155: 251256.
[18]WANG Haijun, LI Xianyi. A novel hyperchaotic system with infinitely many heteroclinic orbits coined[J]. Chaos, Solitons & Fractals, 2018, 106: 515.
[19]FRIEIRE E, GARMERO E, ALGABA A, et al. A note on the triple zero linear degeneracy: Normal forms, dynamical and bifurcation behaviors of an unfolding[J]. International Journal of Bifurcations and Chaos, 2002, 12(12): 27992820.
[20]KUZNETSOV Y. Elements of Applied Bifurcation Theory[M]. New York: SpringVerlag, 1998.第39卷第2期河北科技大學學報Vol.39,No.2
2018年4月Journal of Hebei University of Science and TechnologyApr. 2018