999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

煙草鎘低積累材料根系鎘吸收動力學特征

2018-05-14 09:36:58趙明李廷軒黃化剛傅慧杰
中國煙草科學 2018年5期
關鍵詞:煙草

趙明 李廷軒 黃化剛 傅慧杰

摘 要:為揭示煙草Cd低積累材料根系Cd吸收特性,本研究采用水培試驗,以煙草Cd低積累材料RG11、CF986為研究對象,高積累材料Yuyan5為對照,探討煙草Cd低積累材料根系Cd吸收動力學特征。結果表明:(1)隨培養液Cd濃度升高,兩類煙草材料生物量均顯著降低(p≤0.05),但RG11、CF986地上部和地下部生物量降幅低于Yuyan5;同時兩類煙草材料Cd含量均顯著增加(p≤0.05),但RG11、CF986地上部和地下部Cd含量顯著低于Yuyan5(p≤0.05)。(2)隨Cd處理時間延長,兩類煙草材料根系Cd吸收總量呈上升趨勢,擬合得到的RG11、CF986直線斜率值小于Yuyan5,為Yuyan5的68.6%和80.0%。相同時間Cd處理下,RG11、CF986根系Cd吸收總量比Yuyan5低8.6%~27.7%。(3)兩類煙草材料根系Cd吸收速率隨Cd處理濃度的增加而升高。RG11、CF986根系最大吸收速率為Yuyan5的33.4%和48.5%,真實吸收能力比Yuyan5低51.3%和7.9%,直線斜率是Yuyan5的1.3和1.4倍。與高積累材料相比,煙草Cd低積累材料根系Cd吸收能力更弱,根系質外體對Cd的吸附能力更強。

關鍵詞:煙草;鎘;低積累;根系;吸收動力學

中圖分類號:S572.01 文章編號:1007-5119(2018)05-0040-07 DOI:10.13496/j.issn.1007-5119.2018.05.006

Abstract: Using the low cadmium (Cd) accumulating tobacco lines RG11 and CF986 and the control high Cd accumulating tobacco line Yuyan5, a hydroponic experiment was carried out to investigate Cd uptake kinetic characteristics of the low Cd accumulating lines. The results showed that: (1) The biomass of the two types of tobacco lines decreased significantly with increasing Cd concentrations in hydroponic solutions(p≤0.05). RG11 and CF986 showed lower biomass decline for both shoots and roots than Yuyan5. Cd accumulation in the two types of tobacco lines increased significantly with increasing Cd concentrations in hydroponic solutions(p≤0.05). Cd concentrations in shoots and roots of RG11 and CF986 were significantly lower than those of Yuyan5 (p≤0.05). (2) The total Cd uptake amount by roots of the two types of tobacco lines increased with increasing Cd treatment time. The slopes of the fitting lines of RG11 and CF986 were 68.6% and 80.0% of Yuyan5. The total Cd uptake amounts by roots of RG11 and CF986 were 8.6% and 27.7% lower than that of Yuyan5 under the same Cd treatment time. (3) Cd uptake rates by roots of the two types of tobacco lines increased with the increasing Cd concentrations in hydroponic solutions. The maximum Cd uptake rates of RG11 and CF986 were 33.4% and 48.5% of Yuyan5. The truly Cd uptake ability of RG11 and CF986 were 51.3% and 7.9% lower than Yuyan5. The slopes of the fitting lines of RG11 and CF986 were 1.3 and 1.4 times higher than Yuyan5. Compared with the high Cd accumulating tobacco line, the low Cd accumulating tobacco lines showed lower Cd uptake ability and greater absorption ability by root apoplasts.

Keywords: tobacco; cadmium; low accumulation; roots; uptake kinetic

隨著工農業現代化的迅速發展,化肥、農藥及污泥的大量施用,土壤鎘(Cd)污染問題越來越嚴重[1-2]。Cd作為毒性強的重金屬元素之一,易被植物吸收積累[3-4]。Cd在植物體內的積累與其自身吸收特性密切相關,根系吸收動力學是反映植物根系吸收能力的有效手段[5-6]。水稻(Oryza sativa L.)[7]、玉米(Zea mays L.)[8]、向日葵(Helianthus annuus L.)[9]、生菜(Lactuca sativa L.)[10]等根系吸收Cd的動態變化過程均符合米氏方程。動力學參數隨植物品種、生態型或積累型的不同而有所差異。比較不同煙草品種Cd吸收動力學參數發現,云煙85根系最大吸收速率和吸收能力均高于其余品種[11]。Cd高積累水稻品種根系米氏常數Km值顯著低于Cd低積累水稻品種[12]。而兩類生態型東南景天根系吸收Cd的Km值無明顯差異,但超積累型東南景天根系最大吸收速率是非超積累型的兩倍[13]。

由表2分析可知,隨Cd處理濃度升高,兩類煙草材料地上部和地下部Cd含量顯著增加。相同濃度Cd處理下,兩類煙草材料Cd含量均表現為地上部遠高于地下部,且RG11、CF986地上部和地下部Cd含量均顯著低于Yuyan5,但兩個低積累材料間無顯著差異。RG11、CF986地上部Cd含量比Yuyan5低22.5%~36.5%和22.4%~36.3%,地下部Cd含量比Yuyan5低16.6%~37.9%和15.2%~33.5%。

2.2 煙草根系Cd吸收時間動力學特征

隨Cd處理時間的延長,兩類煙草材料根系Cd吸收總量均呈上升趨勢(圖1)。在Cd處理0.5~6 h間,兩類煙草材料根系對Cd的吸收總量隨處理時間的增加呈快速增長。當處理時間為8~48 h,兩類煙草材料根系Cd吸收總量增長變緩,呈線性特征。RG11、CF986和Yuyan5根系Cd吸收總量隨時間變化的擬合方程分別為Y=0.0024X+0.2306(R2=0.96)、Y=0.0028X+0.2765(R2=0.98)和Y=0.0035X+0.2306(R2=0.99)。方程擬合的斜率能反映植物根系對Cd的吸收能力,擬合得到的RG11、CF986直線斜率值小于Yuyan5,分別為Yuyan5的68.6%和80.0%。相同時間Cd處理下,RG11、CF986根系Cd吸收總量均低于Yuyan5,比Yuyan5低8.6%~27.7%。

2.3 煙草根系Cd吸收濃度動力學特征

從圖2可知,各材料吸收特征曲線均符合Michaelis-Menten動力學方程,方程相關系數R2均達0.97以上,擬合度較好(表3),吸收曲線可分解得到飽和曲線和直線。兩類煙草材料根系Cd吸收速率隨Cd處理濃度的升高而增大,當Cd處理濃度大于0.6 mg/L時增加幅度變緩。相同濃度Cd處理下,RG11、CF986根系Cd吸收速率均低于Yuyan5,比Yuyan5低9.3%~62.4%。此外,兩類煙草材料根系米氏常數Km值差異不大(表3),RG11、CF986根系對Cd的最大吸收速率Vmax為26.05和37.84 μg/(g·h),僅為Yuyan5的33.4%和48.5%,根系α值也比Yuyan5低51.3%和7.9%。RG11、CF986非飽和曲線分解的直線斜率a值大于Yuyan5,分別為Yuyan5的1.3倍和1.4倍。

3 討 論

不同植物或同一植物不同積累型其根系吸收Cd的時間變化過程不同,但都表現為兩個階段[24]。相關研究指出,在Cd處理前期,生菜對Cd的吸收快速上升,后期增長速度變緩[10]。不同Cd積累型油菜品種根系對Cd的吸收均在Cd處理前1 h呈線性快速增長,隨后上升速度變緩[25]。本研究中出現了相同的現象,在Cd處理0.5~6 h,兩類煙草材料根系對Cd的吸收呈快速增長,隨后增長變緩。植物根系對Cd的吸收能力差異,可通過研究不同時間Cd處理下植株Cd吸收總量變化得到[26]。本研究指出,不同時間Cd處理下,兩類煙草材料根系Cd吸收總量隨處理時間的延長而增加,RG11、CF986根系Cd吸收總量均低于Yuyan5,當處理時間為8~48 h,RG11、CF986根系Cd吸收總量隨時間變化的直線斜率低于Yuyan5,表明煙草Cd低積累材料根系Cd吸收能力弱于高積累材料,是其葉部Cd積累低的原因之一。然而,不同時間Cd處理下,油菜Cd低積累品種根系Cd吸收能力強于高積累品種,木質部對Cd的運輸能力則弱于高積累品種[25],可見木質部Cd運輸能力是影響不同Cd積累型油菜品種地上部Cd 積累的關鍵因素,因此后期有必要開展煙草Cd低積累材料Cd轉運的相關研究。

植物根系吸收Cd的過程包括共質體吸收和質外體吸附兩種途徑[27],在研究植物根系對Cd的共質體吸收時,需同時考慮根細胞質外體對Cd離子的吸附,可用改進后的米氏方程表征[28]。本研究中,在Cd處理0.5~6 h,兩類煙草材料擬合曲線與縱軸的交點高出原點,可見兩類材料在解析過程中均有部分Cd吸附在根系質外體上未被解析下來,RG11、CF986吸附量小于Yuyan5,在YAMAGUCHI等[29]的研究中也出現了相同的現象。

動力學參數可用于定量判斷植物根系吸收離子能力的大小,對揭示不同植物對離子的吸收差異有重要意義[30-31]。本研究發現,兩類煙草材料根系米氏常數Km值差異不大,說明兩者根系細胞膜上載體對Cd離子的親和力接近,與羅潔文等[32]對類蘆Cd、Pb吸收特征的研究結果一致。最大吸收速率Vmax可表征植物根系對Cd的最大內在吸收潛力。HE等[7]研究發現,Cd敏感型突變體水稻根系Vmax值顯著高于野生水稻,導致Cd敏感型水稻根系Cd吸收潛力更強,同時也是其Cd敏感性更強的原因之一。本研究中,煙草Cd低積累材料RG11、CF986根系最大吸收速率Vmax小于高積累材料Yuyan5,表明煙草Cd低積累材料根系對Cd的吸收潛力更弱,可能是煙草Cd低積累材料根系質膜上Cd相應運輸載體數量較少或活性較弱所致[13]。Vmax/Km即α值表示Cd進入植物根系的速率,可反映根系對Cd的真實吸收能力[9,33]。STRITSIS等[34]發現菠菜、亞麻根系Cd吸收能力α值是玉米、向日葵的兩倍,可能是菠菜、亞麻地上部Cd含量顯著高于玉米、向日葵的原因。蘇柳172根系最大吸收速率Vmax是垂柳的20倍,但根系α值卻低于垂柳,說明垂柳根系Cu2+吸收能力強于蘇柳172[6]。本研究中,RG11、CF986根系α值小于Yuyan5,表現出與最大吸收速率Vmax相同的趨勢,可見煙草Cd低積累材料根系Cd吸收能力弱于高積累材料。然而,RG11、CF986非飽和曲線分解的直線斜率a值大于Yuyan5,說明煙草Cd低積累材料根系質外體對Cd的吸附能力更強。這一現象可能與煙草Cd低積累材料根系細胞壁對Cd的固定有關,從而限制Cd向地上部的轉移,導致其葉部Cd積累能力弱于高積累材料。因此,今后可從根系細胞壁固定這一方面來探討煙草Cd低積累材料根系對Cd的固持,進一步明晰煙草Cd低積累材料的低積累機制。

4 結 論

兩類煙草材料根系Cd吸收動力學參數存在差異。與高積累材料相比,煙草Cd低積累材料根系Cd吸收能力更弱,根系質外體對Cd的吸附能力更強,是其葉部Cd積累低的原因之一。

參考文獻

[1]LUO H F, ZHANG J Y, JIA W J, et al. Analyzing the role of soil and rice cadmium pollution on human renal dysfunction by correlation and path analysis[J]. Environmental Science and Pollution Research, 2017, 24(2): 2047-2054.

[2]AMJAD ALI, DI GUO, MAHAR A, et al. Mycoremediation of potentially toxic trace elements—a biological tool for soil cleanup: A review[J]. Pedosphere, 2017, 27(2): 205-222.

[3]ZHU Q H, HUANG D Y, LIU S L, et al. Accumulation and subcellular distribution of Cd in ramie (Boehmeria nivea L. Gaud.) planted on elevated soil Cd contents[J]. Plant Soil and Environment, 2013, 59(2): 57-61.

[4]XIN J, DAI H, HUANG B. Assessing the roles of roots and shoots in the accumulation of cadmium in two sweet potato cultivars using split-root and reciprocal grafting systems[J]. Plant and Soil, 2017, 412(1-2): 413-424.

[5]ISIAM M S, SAITO T, KURASAKI M. Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum: Phytotoxicity, uptake kinetics, and mechanism[J]. Ecotoxicology and Environmental Safety, 2015, 112(2): 193-200.

[6]陳彩虹,劉治昆,陳光才,等. 蘇柳172和垂柳對Cu2+的吸收特性及有機酸影響[J]. 生態學報,2011,31(18):5255-5263.

CHEN C H, LIU Z K, CHEN G C, et al. Uptake kinetic characteristics of Cu2+ by Salix jiangsuensis CL J-172 and Salix babylonica Linn and the influence of organic acids[J]. Acta Ecologica Sinica, 2011, 31(18): 5255-5263.

[7]HE J Y, REN Y F, WANG F J, et al.Characterization of cadmium uptake and translocation in a cadmium- sensitive mutant of rice(Oryza sativa L. ssp. japonica)[J]. Archives of Environmental Contamination and Toxicology, 2009, 57(2): 299-306.

[8]REDJALA T, ZELKO I, STERCKEMAN T, et al. Relationship between root structure and root cadmium uptake in maize[J]. Environmental and Experimental Botany, 2011, 71(2): 241-248.

[9]CORNU J Y, BAKOTO R, BONNARD O, et al. Cadmium uptake and partitioning during the vegetative growth of sunflower exposed to low Cd2+ concentrations in hydroponics[J]. Plant and Soil, 2016, 404(1-2): 263-275.

[10]TANG X, PANG Y, JI P, et al. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.)[J]. Ecotoxicology and Environmental Safety, 2016, 125(2): 102-106.

[11]劉雙營,李彥娥,趙秀蘭. 不同品種煙草鎘吸收的動力學研究[J]. 中國農學通報,2010,26(5):257-261.

LIU S Y, LI Y E, ZHAO X L. Kinetic characteristics of cadmium uptake by different tobacco cultivars[J]. Chinese Agricultural Science Bulletin, 2010, 26(5): 257-261.

[12]王龍,高子平,李文華,等. 水稻幼苗鎘吸收動力學特性的遺傳多樣性分析[J]. 植物生理學報,2016,52(1):125-133.

WANG L, GAO Z P, LI W H, et al. Genetic diversity of cadmium absorption kinetic characteristics in rice (Oryza sativa) seedlings[J]. Plant Physiology Journal, 2016, 52(1): 125-133.

[13]LU L L, TIAN S K, YANG X E, et al. Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii[J]. Journal of Experimental Botany, 2008, 59(11): 3203-3213.

[14]雷麗萍,陳世寶,夏振遠,等. 煙草對污染土壤中鎘脅迫的響應機制及影響因素研究進展[J]. 中國煙草科學,2011,32(4):87-93.

LEI L P, CHEN S B, XIA Z Y, et al. Tolerance and accumulation of cadmium by tobacco plants and the influence factors in polluted soils: a review[J]. Chinese Tobacco Science, 2011, 32(4): 87-93.

[15]陳麗鵑,周冀衡,李強,等. 鎘對煙草的毒害及煙草抗鎘機理研究進展[J]. 中國煙草科學,2014,35(6): 93-97.

CHEN L J, ZHOU J H, LI Q, et al. Advance in cadmium toxicity to tobacco and its resistance mechanism[J]. Chinese Tobacco Science, 2014, 35(6): 93-97.

[16]WANG F Y, WANG L, SHI Z Y, et al. Effects of AM inoculation and organic amendment, alone or in combination, on growth, P nutrition, and heavy-metal uptake of tobacco in Pb-Cd-contaminated soil[J]. Journal of Plant Growth Regulation, 2012, 31(4): 549-559.

[17]王浩浩,劉海偉,石屹,等. 烤煙品種對鎘吸收累積敏感性差異研究[J]. 中國煙草科學,2013,34(6):64-68.

WANG H H, LIU H W, SHI Y, et al. Sensibility variation of cadmium uptake and accumulation among flue-cured tobacco varieties[J]. Chinese Tobacco Science, 2013, 34(6): 64-68.

[18]劉登璐,李廷軒,余海英,等. 不同煙草材料鎘積累差異評價[J]. 農業環境科學學報,2016,35(11):2067-2076.

LIU D L, LI T X, YU H Y, et al. Evaluation of differential cadmium accumulation ability in different tobacco species[J]. Journal of Agro-environment Science, 2016, 35(11): 2067-2076.

[19]劉登璐,黃有勝,李廷軒,等. 鎘脅迫下煙草鎘低積累材料的鎘積累分配特征[J]. 中國煙草科學,2017,38(5):69-76.

LIU D L, HUANG Y S, LI T X, et al. The characteristics of Cd accumulation in low-Cd accumulating tobacco cultivars exposed to Cd[J]. Chinese Tobacco Science, 2017, 38(5): 69-76.

[20]李合生. 現代植物生理學[M]. 北京:高等教育出版社,2005:62-64.

LI H S. Modern plant physiology[M]. Beijing: Higher Education Press, 2005: 62-64.

[21]LIU Y, ZENG G, WANG X, et al. Cadmium accumulation in Vetiveria zizanioides and its effects on growth, physiological and biochemical characters[J]. Bioresource Technology, 2010, 101(16): 6297-6303.

[22]ZHAO F J, JIANG R F, DUNHAM S J, et al. Cadmiumuptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri[J]. New Phytologist, 2006, 172(4): 646-654.

[23]LI J, LU H, LIU J, et al. The influence of flavonoid amendment on the absorption of cadmium in Avicennia marina roots[J]. Ecotoxicology and Environmental safety, 2015, 120(5): 1-6.

[24]LI L Z, TU C, WU L H, et al. Pathways of root uptake and membrane transport of Cd2+ in the Zn/Cd hyperaccumulating plant Sedum plumbizincicola: Cadmium flux at the root of a hyperaccumulator[J]. Environmental Toxicology and Chemistry, 2017, 36(4): 1038-1046.

[25]WU Z, ZHAO X, SUN X, et al. Xylem transport and gene expression play decisive roles in cadmium accumulation in shoots of two oilseed rape cultivars (Brassica napus)[J]. Chemosphere, 2015, 119(2): 1217-1223.

[26]YOSHIHARA T, SUZUI N, ISHII S, et al. A kinetic analysis of cadmium accumulation in a Cd hyper-accumulator fern, Athyrium yokoscense and tobacco plants[J]. Plant Cell & Environment, 2014, 37(5): 1086-1096.

[27]LIU H, WANG H, MA Y, et al. Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.)[J]. Chemosphere, 2016, 144(2): 1960-1965.

[28]ZHAO Y, ZHANG S J, WEN N, et al. Modeling uptake of cadmium from solution outside of root to cell wall of shoot in rice seedling[J]. Plant Growth Regulation, 2017, 82(1): 11-20.

[29]YAMAGUCHI N, MORI S, BABA K, et al. Cadmium distribution in the root tissues of solanaceous plants with contrasting root-to-shoot Cd translocation efficiencies[J]. Environmental and Experimental Botany, 2011, 71(2): 198-206.

[30]WAN Y, YU Y, WANG Q, et al. Cadmium uptake dynamics and translocation in rice seedling: Influence of different forms of selenium[J]. Ecotoxicology and Environmental Safety, 2016, 133(7): 127-134.

[31]SONG Y, JIN L, WANG X. Cadmium absorption and transportation pathways in plants[J]. International Journal of Phytoremediation, 2017, 19(2): 133-141.

[32]羅潔文,黃玫英,殷丹陽,等. 類蘆對鉛鎘的吸收動力特性及亞細胞分布規律研究[J]. 農業環境科學學報,2016,35(8):1451-1457.

LUO J W, HUANG M Y, YIN D Y, et al. Uptake kinetic characteristics and subcellular distribution of Pb2+ and Cd2+ in Neyraudia reynaudiana[J]. Journal of Agro-environment Science, 2016, 35(8): 1451-1457.

[33]SATO Y, HIRANO T, NIWA K, et al. Phenotypic differentiation in the morphology and nutrient uptake kinetics among Undaria pinnatifida, cultivated at six sites in Japan[J]. Journal of Applied Phycology, 2016, 28(6): 1-12.

[34]STRITSIS C, CLAASSEN N. Cadmium uptake kinetics and plants factors of shoot Cd concentration[J]. Plant and Soil, 2013, 367(1-2): 591-603.

猜你喜歡
煙草
煙草具有輻射性?
CORESTA 2019年SSPT聯席會議關注新煙草、吸煙行為研究和雪茄煙
煙草控制評估方法概述
煙草依賴的診斷標準
我國煙草品牌微博營銷的反思
新聞傳播(2016年3期)2016-07-12 12:55:34
煙草中茄酮的富集和應用
SIMOTION運動控制系統在煙草切絲機中的應用
自動化博覽(2014年6期)2014-02-28 22:32:15
煙草鏡頭與歷史真實
聲屏世界(2014年6期)2014-02-28 15:18:09
百年煙草傳奇的云南敘事
西南學林(2013年2期)2013-11-12 12:58:54
煙草品種的SCAR標記鑒別
主站蜘蛛池模板: 亚洲一区二区三区香蕉| 亚洲精品无码日韩国产不卡| 久久人人爽人人爽人人片aV东京热| 亚洲动漫h| 国产精品无码制服丝袜| 亚洲欧美一区二区三区图片| AV天堂资源福利在线观看| av大片在线无码免费| 中文字幕无码av专区久久| 九色91在线视频| 国产欧美日韩在线一区| 国产在线拍偷自揄观看视频网站| 国产毛片基地| 国产自无码视频在线观看| 高清色本在线www| 国产成人AV综合久久| 日韩毛片在线播放| 亚洲另类第一页| 国产在线精彩视频二区| 91精品小视频| 无码一区二区三区视频在线播放| 色综合a怡红院怡红院首页| 无码国产偷倩在线播放老年人| a免费毛片在线播放| 在线看片免费人成视久网下载| 色网站在线免费观看| 国产福利观看| 一区二区自拍| 亚洲高清国产拍精品26u| 欧美不卡二区| 91久久夜色精品国产网站| 97免费在线观看视频| 九九久久99精品| 国产精品伦视频观看免费| 九色综合伊人久久富二代| 国产成人一区二区| 亚洲无码91视频| 中文字幕在线欧美| 天堂成人在线| 亚洲一级毛片在线播放| 亚洲成a人片77777在线播放| 天天干天天色综合网| 精品视频免费在线| 又粗又硬又大又爽免费视频播放| 精品欧美视频| 欧美日韩一区二区在线免费观看| 欧美日韩第二页| 日韩经典精品无码一区二区| www.91在线播放| av一区二区人妻无码| 亚洲天堂网在线视频| 亚洲精品成人福利在线电影| 92午夜福利影院一区二区三区| 在线观看亚洲天堂| 亚洲欧美国产高清va在线播放| 国产无吗一区二区三区在线欢| 激情综合图区| 日韩人妻精品一区| 久久久精品无码一区二区三区| 久久情精品国产品免费| 欧美精品三级在线| 四虎亚洲国产成人久久精品| 2019国产在线| 日本在线免费网站| 国产激爽爽爽大片在线观看| 四虎亚洲精品| 国产伦精品一区二区三区视频优播 | 9cao视频精品| 综合网久久| 国产a在视频线精品视频下载| 极品国产在线| 久久黄色视频影| 久久久久人妻一区精品色奶水| 精品99在线观看| 无码中字出轨中文人妻中文中| 国产日韩精品欧美一区喷| 亚洲第一视频网站| 国产乱人伦AV在线A| 伊人91视频| 天堂成人在线| 免费在线观看av| 91无码人妻精品一区二区蜜桃|