999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

An Alternative Approach to Extend Levy Constrained Search in Fock Space to No Integer Electron Number in Density Functional Theory

2018-03-08 03:45:49LIUShubin
物理化學學報 2018年6期

LIU Shubin

Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA.

Email: shubin@email.unc.edu

The Hohenberg-Kohn theorem in density functional theory, as originally formulated, states that if an electron density, ρ0(r), is the nondegenerate ground state density of an N-electron system with external potential v0(r), where N is a positive integer, then ρ0(r) is not the ground-state density for any other electronic system1. This implies that the external potential is a functional of the ground-state electron density, and provides the foundation for density-functional theory (DFT). However, defining a practical variational method for optimizing the electron density requires that one consider electron densities associated with degenerate ground states, electron densities that are not the ground state for any electronic system, and electron densities that have noninteger electron number. The Levy constrained search2, and its extension to the grand canonical ensemble by Perdew, Parr, Levy, and Balduz3, were the first (but by no means the only4–7) theoretical frameworks that provided these extensions. These approaches allow one to determine the ground-state energy and electron density by minimizing the electronic energy functional over the set of all nonnegative integrable densities. They do this by extending the domain of the Hohenberg-Kohn functional, F[ρ], from the set of nondegenerate v-representable integer-N densities to the set of all nonnegative integrable electron densities

The Hohenberg-Kohn theorem is also restricted to ground state electron densities. The integer-N Levy constrained search functional also works for excited-state electron densities that are not ground-state electron densities8, and can be extended to other excited states by a variety of techniques9–20. Similarly, the extension of the Levy constrained search to Fock space will also work for an excited state if it is not the ground state density for any electronic system; this is an advantage over the traditional zero-temperature grand-canonical ensemble approach.

In the present paper (This paper is published online in the Journal of Acta Physico-Chimica Sinica, doi:10.3866/PKU.WHXB201711071)21, Professor Paul W. Ayers of McMaster University, Canada, and Professor Mel Levy of Tulane University, USA, present a new way to extend the domain of F[ρ], based on the generalization of the Levy constrained search to Fock space. Fock space is the direct sum of the integer-N-electron Hilbert spaces, so wavefunctions in Fock space can have an (expected value for the) number of electrons that is not an integer. This allows the traditional integer-N Levy constrained search functional for the wavefunction to be extended to fractional electron number in a straightforward way. Specifically, the Levy constrained search functional searches over all wavefunctions in the N-electron Hilbert space with the target electron density, finds the wavefunction that has the smallest value for the sum of the electronic kinetic energy and electron-electron potential energy,F = T + V ee, and defines F Levy[ρ] as that value2,22. The new function, F Fock[ρ], is defined in the same way: the only change is that the constrained search is over all wavefunctions in the Fock space that have the target electron density. While the Fock-space constrained search functional gives, as it must, the same results as the zero-temperature grand canonical ensemble functional for electronic ground states, it may be easier to derive properties of the exact functional from this new approach22. (It is generally easier to derive properties of the traditional Levy constrained search functional than it is to derive properties of alternative functionals based on ensembles or Legendre transformation.23)Whether the Fock-space Levy constrained search functional can also be extended to arbitrary excited states, perhaps using the same strategies that were used to extend the integer-N Levy constrained search to excited states, is an almost24completely unexplored, but very interesting, topic for future research.

(1) Hohenberg, P.; Kohn, W. Phys. Rev. 1964, 136, B864.doi: 10.1103/PhysRev.136.B864

(2) Levy, M. Proc. Natl. Acad. Sci. USA 1979, 76, 6062.doi: 10.1073/pnas.76.12.6062

(3) Perdew, J. P.; Parr, R. G.; Levy, M.; Balduz, J. L., Jr. Phys. Rev. Lett.1982, 49, 1691. doi: 10.1103/PhysRevLett.49.1691

(4) Valone, S. M. J. Chem. Phys. 1980, 73, 4653. doi: 10.1063/1.440656

(5) Lieb, E. H. Int. J. Quantum Chem. 1983, 24, 243.doi: 10.1002/qua.560240302

(6) Ayers, P. W. Phys. Rev. A 2006, 73, 012513.doi: 10.1103/PhysRevA.73.012513

(7) Yang, W. T.; Zhang, Y. K.; Ayers, P. W. Phys. Rev. Lett. 2000, 84,5172. doi: 10.1103/PhysRevLett.84.5172

(8) Perdew, J. P.; Levy, M. Phys. Rev. B 1985, 31, 6264.doi: 10.1103/PhysRevB.31.6264

(9) Levy, M.; Nagy, A. Phys. Rev. Lett. 1999, 83, 4361.doi: 10.1103/PhysRevLett.83.4361

(10) Levy, M.; Nagy, A. Phys. Rev. A 1999, 59, 1687.doi: 10.1103/PhysRevA.59.1687

(11) Nagy, A.; Levy, M. Phys. Rev. A 2001, 63, 052502.doi: 10.1103/PhysRevA.63.052502

(12) Nagy, A.; Levy, M.; Ayers, P. W. Time-Independent Theory for a Single Excited State. In Chemical Reactivity Theory: A Density Functional View; Chattaraj, P. K., Ed.; Taylor and Francis: Boca Raton, FL, USA, 2009; p. 121.

(13) Ayers, P. W.; Levy, M. Phys. Rev. A 2009, 80, 012508.doi: 10.1103/PhysRevA.80.012508

(14) Ayers, P. W.; Nagy, A.; Levy, M. Phys. Rev. A 2012, 85, 042518.doi: 10.1103/PhysRevA.85.042518

(15) Ayers, P. W.; Levy, M.; Nagy, A. J. Chem. Phys. 2015, 143 (19), 4.doi: 10.1063/1.4934963

(16) Gorling, A. Phys. Rev. A 1999, 59, 3359.doi: 10.1103/PhysRevA.59.3359

(17) Gorling, A. J. Chem. Phys. 2005, 123, 062203.doi: 10.1063/1.1904583

(18) Theophilou, A. K. J. Phys. C 1979, 12, 5419.

(19) Gross, E. K. U.; Oliveira, L. N.; Kohn, W. Phys. Rev. A 1988, 37,2809. doi: 10.1103/PhysRevA.37.2809

(20) Oliveira, L. N.; Gross, E. K. U.; Kohn, W. Phys. Rev. A 1988, 37,2821. doi: 10.1103/PhysRevA.37.2821

(21) Ayers, P. W.; Levy, M. Acta Phys. -Chim. Sin. 2018, 34 (6), 625.doi: 10.3866/PKU.WHXB201711071

(22) Levy, M.; Perdew, J. P. Phys. Rev. A 1985, 32, 2010.doi: 10.1103/PhysRevA.32.2010

(23) Levy, M.; Perdew, J. P. NATO ASI Series, Series B 1985, 123, 11.

(24) Ayers, P. W. Ph.D. Disseration, University of North Carolina, Chapel Hill, NC, USA, 2001.

主站蜘蛛池模板: 伊人无码视屏| 最新午夜男女福利片视频| 成人91在线| 亚洲一区二区三区中文字幕5566| 国产精品成| 91偷拍一区| 欧美激情视频在线观看一区| 国产www网站| 成人在线亚洲| 在线观看国产精品一区| 国产小视频网站| 国产美女免费| 韩国自拍偷自拍亚洲精品| 沈阳少妇高潮在线| 欧美三级视频网站| 国产chinese男男gay视频网| 精品99在线观看| 国内熟女少妇一线天| 亚洲男人在线天堂| 国产白浆在线| 国产你懂得| 免费一级α片在线观看| 国产成人亚洲欧美激情| 免费观看三级毛片| 国产电话自拍伊人| 国产成人免费| av一区二区无码在线| 日韩天堂网| 宅男噜噜噜66国产在线观看| 色噜噜在线观看| 2021国产精品自产拍在线观看 | 中文字幕免费视频| 久久久久无码精品| 亚洲人成网站观看在线观看| 无码不卡的中文字幕视频| 97人人做人人爽香蕉精品| 欧美第二区| 91在线国内在线播放老师| 国产二级毛片| 亚洲欧美精品一中文字幕| 四虎国产在线观看| 色综合手机在线| 国产在线一区二区视频| 精品伊人久久久大香线蕉欧美| 亚洲综合久久成人AV| 国产一级特黄aa级特黄裸毛片| 日韩精品专区免费无码aⅴ| 日本黄色不卡视频| 成年看免费观看视频拍拍| 无码精品福利一区二区三区| 黄色福利在线| 一区二区在线视频免费观看| 综合色天天| 国产一级α片| 免费国产高清视频| 欧美福利在线观看| 成人日韩欧美| 日本道中文字幕久久一区| 乱人伦中文视频在线观看免费| 91视频区| 亚洲国产天堂久久综合| 69av免费视频| 无码一区中文字幕| 91在线日韩在线播放| 国产哺乳奶水91在线播放| 成人福利视频网| 国产日本欧美在线观看| 欧美第二区| 亚洲精品黄| 青草视频免费在线观看| 98超碰在线观看| 丝袜国产一区| 国产黄色免费看| 亚洲香蕉久久| a级毛片视频免费观看| 亚洲三级视频在线观看| 国产亚洲欧美在线专区| 亚欧乱色视频网站大全| 成人在线第一页| 911亚洲精品| 欧美成人精品高清在线下载| 久久视精品|