999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

喹啉-8-甲醛乙酰腙鋅/鎘配合物的晶體結(jié)構(gòu)及熒光性質(zhì)

2018-02-01 06:56:22許志紅吳偉娜劉樹(shù)陽(yáng)
關(guān)鍵詞:實(shí)驗(yàn)室化學(xué)

許志紅 吳偉娜 劉樹(shù)陽(yáng) 寇 凱 王 元

(1許昌學(xué)院化學(xué)化工學(xué)院,化學(xué)生物傳感與檢測(cè)重點(diǎn)實(shí)驗(yàn)室,許昌 461000)

(2河南理工大學(xué)化學(xué)化工學(xué)院,河南省煤炭綠色轉(zhuǎn)化重點(diǎn)實(shí)驗(yàn)室,焦作 454000)

Schiff bases are an important class of ligands in coordination chemistry and have been found extensive application in different fields[1-2].As one of the most promising systems,the relevant semicarbazones and thiosemicarbazonesinvolve condensed heterocycle,especially quinoline,have been paid much attention due to their potentially biological activities[3-6].However,acylhydrazones,as their structurally analogous,have been paid much less attention[7-8].Recently,several quinoline based acylhydrazone chemosensors for the fluorescent detection of metal ions have been reported in the literature,most of which function by coordination reaction with ions[9-11].Nevertheless,the crystal structures of corresponding complexes are relatively scarce[11].

Our previous work also shows that the acylhydrazone ligand HL (Scheme 1),namely N-(quinolin-8-yl)methylene)acetohydrazide is an excellent fluorescent probe for the detection for Znギ ions[11].Therefore,in this paper,three Znギ and Cdギ complexes with HL have been synthesized and structural determined by single-crystalX-ray diffraction.In addition,the fluorescence properties of the complexes in CH3CN solution were investigated.

Scheme 1 Synthesis route of HL

1 Experimental

1.1 Materials and measurements

Solvents and starting materials for synthesis were purchased commercially and used as received.Elemental analysis was carried out on an Elemental Vario EL analyzer.The IR spectra (ν=4 000~400 cm-1)were determined by the KBr pressed disc method on a Bruker V70 FT-IR spectrophotometer.The UV spectra were recorded on a PurkinjeGeneralTU-1800 spectrophotometer.Fluorescence spectra were determined on a Varian CARY Eclipse spectrophotometer,in the measurementsofemission and excitation spectra the pass width is 5 nm.

1.2 Preparations of complexes 1~3

As shown in Scheme 1,the ligand HL was produced by condensation of 8-formylquinoline and acethydrazide in ethanol at room temperature according to the literature method[11].The complexes 1~3 were generated by reaction of the ligand HL (5 mmol)with equimolar of ZnSO4,CdCl2and CdI2in methanol solution (10 mL)at room temperature for 1 h,respectively.Crystals suitable for X-ray diffraction analysis were obtained by evaporating the corresponding reaction solutions at room temperature.

1:Colorless plates.Anal.Calcd.for C12H15N3O7SZn(%):C:35.09;H:3.68;N:10.23.Found(%):C:34.75;H:3.85;N:9.94.FT-IR (cm-1):ν(C=O)1 655,ν(C=N)1 592,ν(C=N)pyrazine1 560.

2:Colorless blocks.Anal.Calcd.For C12H11N3O Cl2Cd(%):C:36.35;H:2.80;N:10.60.Found (%):C:36.42;H:3.05;N:10.37.FT-IR (cm-1):ν(C=O)1 654,ν(C=N)1 590,ν(C=N)pyrazine1 558.

3:Colorless blocks.Anal.Calcd.For C12H11N3OI2Cd(%):C:24.87;H:1.91;N:7.25.Found(%):C:25.00;H:2.18;N:7.02.FT-IR (cm-1):ν(C=O)1 646,ν(C=N)1 586,ν(C=N)pyrazine1 555.

1.3 X-ray crystallography

The X-ray diffraction measurement for complexes 1~3 were performed on a Bruker SMART APEX ⅡCCD diffractometer equipped with a graphite monochromatized Mo Kα radiation (λ=0.071 073 nm)by using φ-ω scan mode at 296(2)K.Semi-empirical absorption correction was applied to the intensity data using the SADABS program[12].The structures were solved by direct methods and refined by full matrix least-square on F2using the SHELX-97 program[13].All non-hydrogen atoms were refined anisotropically.All the H atoms were positioned geometrically and refined using a riding model.Details of the crystal parameters,data collection and refinements for complexes 1~3 are summarized in Table 1.

CCDC:1562151,1;1562152,2;1562153,3.

Table 1 Crystal data and structure refinement for complexes 1~3

2 Results and discussion

2.1 Crystal structures description

The diamond drawings of complexes 1~3 are shown in Fig.1.Selected bond distances and angles are listed in Table 2.As shown in Fig.1a,1 contains one discrete cationic Znギcomplex and one crystal water molecule in the asymmetric unit.The center Znギionwith a distorted octahedron geometry is coordinated by one neutral hydrazone with ONN donor set,one coordinated water molecule and two O atoms from two independent μ2-bridged sulfate anions,thus forming one dimension chain-like framework along b axis.In addition,in the solid state,the chains were further linked into a 2D supramolecular network by intermolecular N-H…O and O-H…O hydrogen bonds(Fig.1d and Table 3).

Table 2 Selected bond lengths(nm)and angles(°)in complexes 1~3

Continued Table 2

Fig.1 Diamond drawing of 1~3 (a~c)with 30%thermal ellipsoids;Extended 2D supramolecular structure in complex 1 (d);Chain-like structures in complex 2 (e,along c axis)and 3 (f)formed by hydrogen bonds (shown in dashed line),respectively

Table 3 Hydrogen bonds information for complexes 1~3

Similarly,the hydrazone HL acts as a neutral tridentate ligand in complexes 2 and 3 (Fig.1b and 1c).Coordinated by two additional halide anions(chloride for 2,while iodide for 3),the Cdギ ion adopts a distorted square pyramid coordination geometry (τ=0.348 and 0.345 for complex 2 and 3,respectively)[7].In the crystal,intermolecular N-H…Cl or N-H…I hydrogen bonds link the complex molecules of 2 or 3 into one dimension chains (Fig.1e and 1f).

2.2 IR spectra

The FT-IR spectral region for both complexes is more or less similar due to the similar coordination modes of the ligands.The ν(C=O),ν(C=N)imineand ν(C=N)quinolinebands are at 1 673,1 615 and 1 584 cm-1,respectively.They shift to lower frequency values in the complexes,indicating that the carbonyl O,imine N and quinoline N atoms take part in the coordination[7-8,14-15].It is in accordance with the crystal structure study.

2.3 UV spectra

The UV spectra of the ligand HL,complexes 1~3 in CH3CN solution (c=1×10-5mol·L-1)were measured at room temperature (Fig.2).The spectra of HL features two main band located around 230 nm (ε=35 288 L·mol-1·cm-1)and 320 nm (ε=16 955 L·mol-1·cm-1),which could be assigned to characteristic π-π*transition of quinoline and imine units,respe-ctively[8].Both bands have no shift while with absorption intensity change in the spectra of complexes 1~3 (ε1=34 327,16 575 L·mol-1·cm-1;ε2=30 131,14 854 L·mol-1·cm-1;ε3=38 244,14 870 L·mol-1·cm-1).This fact supports the neutral mode of the ligand HL in three complexes[7].

2.4 Fluorescence spectra

The fluorescence spectra of the ligand HL and complexes 1~3 have been studied in CH3CN solution(c=1 ×10-5mol·L-1)at room temperature.The free Schiff base ligand HL exhibits almost none fluorescenceemission when excited at320 nm,primarily due to C=N isomerization.However,complexes 1 and 2 show remarkable peaks at about 428 and 408 nm under the same tested condition,respectively.Obviously,binding with Zn2+/Cd2+inhibits the isomerization of C=N,thereby increasing the fluorescence intensity through the CHEF mechanism[9-11].In addition,it should be noted that complex 3 gives similar emission as the free ligand because of the heavy atom effect of the coordinated iodide anions.

Fig.3 Fluorescence emission spectra of the ligand HL,complexes 1~3 in CH3CN solution at room temperature

[1]Alagesan L,Bhuvanesh N S P,Dharmaraj N.Dalton Trans.,2013,42:7210-7223

[2]Ye X P,Zhu T F,Wu W N,et al.Inorg.Chem.Commun.,2014,47:60-62

[3]Bourosh P N,Revenko M D,Stratulat E F,et al.Russ.J.Inorg.Chem.,2014,59:545-557

[4]Revenko M D,Bourosh P N,Stratulat E F,et al.Russ.J.Inorg.Chem.,2010,55:1387-1397

[5]MAO Pan-Dong(毛盼東),YAN Ling-Ling(閆玲玲),WANG Wen-Jing(王文靜),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32(3):555-560

[6]MAO Pan-Dong(毛盼東),HAN Xue-Feng(韓學(xué)峰),LI Shan-Shan(李珊珊),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2017,33(4):692-698

[7]LI Xiao-Jing(李曉靜),WU Wei-Na(吳偉娜),XU Zhou-Qing( 徐 周 慶 ),et al.Chinese J.Inorg.Chem.(無(wú) 機(jī) 化 學(xué) 學(xué) 報(bào) ),2015,31(11):2265-2271

[8]CHANG Hui-Qin(常慧琴),YUAN Zhi-Ze(原知?jiǎng)t),LAI Xiao-Qing(賴(lài)曉晴),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32(11):2058-2062

[9]Liu H,Dong Y,Zhang B,et al.Sens.Actuators B,2016,234:616-624

[10]Ponnuvel K,Kumar M,Padmini V.Sens.Actuators B,2016,227:242-247

[11]Wu W N,Mao P D,Wang Y,et al.Spectrochim.Acta A,2018,188:324-331

[12]Sheldrick G M.SADABS,University of G?ttingen,Germany,1996.

[13]Sheldrick G M.SHELX-97,Program for the Solution and the Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

[14]Huang Y Q,Zhao W,Chen J G,et al.Z.Anorg.Allg.Chem.,2012,638:679-682

[15]Huang Y Q,Wan Y,Chen H Y,et al.New J.Chem.,2016,40:7587-7595

猜你喜歡
實(shí)驗(yàn)室化學(xué)
電競(jìng)實(shí)驗(yàn)室
電競(jìng)實(shí)驗(yàn)室
電競(jìng)實(shí)驗(yàn)室
電競(jìng)實(shí)驗(yàn)室
電競(jìng)實(shí)驗(yàn)室
電競(jìng)實(shí)驗(yàn)室
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
奇妙的化學(xué)
主站蜘蛛池模板: 天天躁夜夜躁狠狠躁图片| 欧亚日韩Av| 亚洲欧美日韩中文字幕一区二区三区| 久久性妇女精品免费| 国产精品任我爽爆在线播放6080 | h视频在线观看网站| 丁香六月激情婷婷| 囯产av无码片毛片一级| 欧美色图久久| 99在线免费播放| 国产又黄又硬又粗| 干中文字幕| 无码国内精品人妻少妇蜜桃视频| 国产在线视频自拍| 婷婷激情五月网| 国产福利小视频在线播放观看| 波多野结衣的av一区二区三区| 久久性妇女精品免费| www.99精品视频在线播放| 欧美激情视频一区| 欧美不卡视频在线| 亚洲丝袜第一页| 日本不卡在线播放| 国产99精品久久| 刘亦菲一区二区在线观看| 亚洲国产成人精品一二区| 国产精品开放后亚洲| 一级高清毛片免费a级高清毛片| 青青操国产视频| 波多野结衣视频一区二区| 中文成人在线| 看国产毛片| 日本影院一区| 国产视频你懂得| 91尤物国产尤物福利在线| 国产夜色视频| 亚洲午夜国产精品无卡| 久久免费看片| 91精品国产综合久久不国产大片| 欧美日韩在线第一页| 国产精品亚洲日韩AⅤ在线观看| h视频在线播放| 国产丝袜91| 四虎精品国产永久在线观看| 国产在线视频欧美亚综合| 五月天天天色| 免费一级毛片不卡在线播放| 日本免费a视频| 3344在线观看无码| 老司国产精品视频91| 久久久久久久久18禁秘| 欧美日韩激情| 亚洲激情99| 中文字幕永久在线观看| 日韩精品一区二区深田咏美| 久精品色妇丰满人妻| 日韩在线中文| 亚洲综合香蕉| 亚洲综合二区| 青青国产成人免费精品视频| 色国产视频| 日本道中文字幕久久一区| 99热最新在线| 四虎免费视频网站| 亚洲色图综合在线| 婷婷六月天激情| 国产亚洲精品无码专| 免费国产好深啊好涨好硬视频| 一级一级一片免费| 国产成人一区| 欧美亚洲国产日韩电影在线| 日韩毛片基地| 超碰精品无码一区二区| 日本爱爱精品一区二区| 国产91久久久久久| 亚洲AV无码一区二区三区牲色| 波多野结衣无码中文字幕在线观看一区二区 | 九色视频一区| 国产另类视频| 亚洲国产欧美国产综合久久| lhav亚洲精品| 日韩成人午夜|