譚擁軍+余景衛+陳燕+向勤+譚桂湘



摘 要:通過基因工程構建重組表達質粒pET15b-R9-FOXM1(1-234aa),轉化大腸桿菌建立構建表達R9-FOXM1(1-234aa)的菌株.采用原核表達系統和His-tag親和純化手段,規模化制備純化穿膜肽R9-FOXM1(1-234aa),獲得的蛋白的純度達到90%以上.用R9-FOXM1(1-234aa)穿膜肽處理不同的腫瘤細胞,通過MTT實驗研究其細胞效應.結果顯示:當R9-FOXM1(1-234aa)穿膜肽的濃度達到2 mM時,腫瘤細胞的死亡率為50%左右.實驗表明穿膜肽R9-FOXM1(1-234aa)抑制不同腫瘤細胞的生長,有可能成為治療腫瘤的潛在蛋白類藥物.
關鍵詞:多聚精氨酸;細胞穿膜肽;FOXM1;腫瘤治療
中圖分類號:Q784 文獻標志碼:A
Study of Scale Purification and Anti-tumor Efficacy ofR9-FOXM1(1-234aa) Recombinant Protein
TAN Yongjun,YU Jingwei,CHEN Yan,XIANG Qin,TAN Guixiang
(College of Biology, Hunan University, Changsha 410082,China)
Abstract:A recombinant protein expression vector pET15b-R9-FOXM1(1-234aa) was constructed and transformed to E. coli in order to generate a strain expressing R9-FOXM1(1-234aa). The recombinant protein R9-FOXM1 (1-234aa) (R9-FOXM1(1-234aa)) was isolated at a large scale through His-tag affinity chromatography. The purity of the purified protein reached 90%. Moreover, MTT assay was used to test the effect of R9-FOXM1(1-234aa) on cells, and the test results showed that R9-FOXM1(1-234aa) caused the cell death of different types of cancer cells with a half lethal dose around 2 mm。 The results also demonstrated that R9-FOXM1(1-234aa) suppressed the proliferation of cancer cells and may be considered as a potential angent for anti-cancer in the future.
Key words:arginine-rich; cell-penetrating peptides; FOXM1; tumor therapy
Forkhead Box(Fox)基因廣泛分布于從酵母到人的各種真核生物,構成一個龐大的轉錄因子家族[1],在哺乳動物中已擁有超過40個以上的成員,分別參與調節細胞分化、增殖、代謝及細胞凋亡等生理過程[2].該家族的成員FOXM1,首先被發現是一個調控細胞周期和細胞增殖的蛋白[3].在細胞增殖過程中,FOXM1表達水平增高,并參與調節細胞周期相關的多個基因轉錄,從而控制細胞的DNA復制與有絲分裂過程[4-6],還與DNA損傷修復有關[7-8].通過小鼠肝臟再生模型的研究發現,當從肝細胞中特異性敲除FOXM1基因之后,肝臟再生過程中DNA的復制降低了80%,而有絲分裂被完全抑制[5].在FOXM1被敲除的肝細胞中,細胞核內累積了大量細胞周期蛋白激酶的抑制蛋白p21Cip1和p27Kip1,從而大大降低了DNA的復制水平[5-6,9].同時,FOXM1還上調激活DNA復制所必須的Cdc25A 磷酸酶的表達[5].另一方面,FOXM1的缺失抑制了有絲分裂過程:因為FOXM1控制著許多與有絲分裂相關的基因轉錄,其中包括cyclin B1,Cdc25B,polo-like kinase 1(PLK1),aurora B kinase,Survivin,著絲粒蛋白A(CENPA)和CENPB基因[5-6,10-11].此外,不同器官中有條件敲除FOXM1還抑制了致癌劑所誘導的肝癌、肺癌、結直腸癌等實體瘤的發生和發展[9,12-13].
FOXM1蛋白氮端能夠通過與碳端結合,干擾FOXM1碳端的磷酸化,抑制FOXM1轉錄活性、競爭性阻礙FOXM1與其他腫瘤促進因子互作及促瘤信號通路對FOXM1的修飾活化作用等[14].在細胞周期G2階段,FOXM1的激活依賴cyclin A/cdk的磷酸化,缺失N端的FOXM1不再依賴cyclin A,細胞周期被激活[15].
細胞穿膜肽(cell-penetrating peptides,CPPs)是由氨基酸組成具有穿透細胞膜能力的多肽,最早從人HIV-1的TAT蛋白中發現:該蛋白中包含具有穿膜能力的特殊肽段區域[16];多聚精氨酸作為目前已知最為簡單有效的細胞穿膜肽,其中以九聚精氨酸 (R9)效率最高(大約為TAT的20倍),具有極大的研究及應用價值[17].本實驗通過構建攜帶R9的FOXM1-N(1-234aa)原核誘導表達體系,采用His-tag親和純化手段進行批量純化,選用不同腫瘤細胞株,研究重組蛋白對腫瘤細胞的影響.endprint
1 材料與方法
1.1 材 料
乳腺癌細胞MCF-7、肝癌細胞HepG2、肺癌細胞A549來源于(American Type Culture Collection,ATCC),二苯基溴化四氮唑藍(MTT)由上海生工提供,DMEM培養基和1640培養基均為GIBCO公司產品,HisTrapTMFF.crude,AKTA均由GE公司提供.
1.2 方 法
1.2.1 pHis-FOXM1(1-234aa)-R9的構建
設計NcoI,BamHI限制性內切酶上下游引物,引物序列如下:
引物1(上游引物):GCG CCC ATG GTG CAT CAC CAT CAC CAT CAC ATG AAA ACT AGC CCC CGT CG.
引物2(下游引物):GCG GAT CCC TAC CTT CTC CTT CTC CTT CTC CTT CTC CTA GAC ACA GAG TTC TGC CAG G.
以pcDNA3.1-FOXM1為模板,在引物1和引物2的引導下PCR擴增反應體系為:克隆質粒pcDNA3.1-FOXM1(80 ng/μL)1 μL,10X PCR Buffer for KOD-PLus-Neo5 μL,dNTPs(2 mM each)5 μL,MgSO4溶液(25 mM)4 μL,KOD-PLus-Neo(1.0 U/mL)1 μL,引物1(100 nM)1 μL,引物2(100 nM)1 μL,DMSO2 μL,加去離子水補充至反應體系50 μL.PCR反應條件:先94 ℃ 5 min;再95 ℃ 30 s, 57 ℃ 30 s,68 ℃ 50 s,共30個循環;然后68 ℃ 10 min,4 ℃ 5 min.反應結束后,對PCR擴增產物進行1.5%瓊脂糖凝膠電泳,回收并純化擴增的目的片段,純化產物溶于40 μLTE緩沖液中,-20 ℃凍存備用.
利用NcoI,BamHI限制性內切酶切出克隆片段的粘性末端.酶切體系:目的片段(150 ng/mL)或pET-15b質粒(150 ng/mL)6.7 μL,NcoI限制性內切酶0.5 μL,BamHI限制性內切酶0.5 μL,10X FastDigest Buffer1 μL,加去離子水至總體積10 μL,37 ℃水浴反應30 min.
將NcoI,BamHI限制性內切酶處理的目的片段和載體進行連接,連接體系及反應條件為:酶切載體5.63 μL,酶切目的片段2.36 μL,T4 DNA Ligase(5 U/mL)1 μL,10X T4 DNA Ligase buffer1 μL,加去離子水至反應體系10 μL.22 ℃反應20 min,-20 ℃凍存備用.
取一管DH5α感受態細胞置于冰上溶解,待感受態完全溶解后,加入1 μL的連接片段,用拇指輕彈混勻,冰上放置30 min.熱激過程:42 ℃熱激90 s,冰上放置2 min;加入1 mL的LB培養基,37 ℃放置45 min;取200 μL涂布LB平板(氨芐青霉素濃度為25 μg/mL),37 ℃培養過夜(12~16 h);挑取單克隆,接種到5 mL的LB培養液(含25 μg/mL 氨芐青霉素) 37 ℃ 振蕩培養過夜(12~16 h).提取質粒,用限制性內切酶NcoI,BamHI進行酶切鑒定,保種并分裝測序.pHis-FOXM1(1-234aa)-R9原核表達質粒結構示意圖(圖1(a)).
1.2.2 重組蛋白的規模化制備及檢測
將表達載體pHis-FOXM1(1-234aa)-R9轉化大腸桿菌Rostta DE3感受態細胞,37 ℃培養過夜(12~16 h),隨機挑選一個單克隆,接種到5 mL的LB培養基(含25 μg/mL 氨芐青霉素和25 μg/mL 氯霉素),37 ℃振蕩培養4~6 h.將菌液加到100 mL的LB培養液(含25 μg/mL 氨芐青霉素和25 μg/mL 氯霉素)37 ℃振蕩培養過夜(12~16 h),取菌液檢測OD600值,調整OD600值至0.8~1,加入IPTG誘導劑(終濃度0.8 mM),30 ℃誘導振蕩培養6 h.4 000 r/min離心20 min收集菌體,用15 mL Binding Buffer(20 mM Na3PO4, 500 mM NaCl, 20 mM imidazole, pH 7.4)重懸菌體,超聲40 min(超3 s,停2 s)破碎菌體.細菌裂解液采用原核表達系統和His-tag親和純化手段,純化后蛋白利用SDS-PAGE凝膠電泳方法檢測蛋白.
根據上述確認的菌液進行擴大培養,在8瓶500 mL的搖瓶進行培養,37 ℃振蕩培養過夜,取菌液檢測OD600值,調整OD600值至0.8~1,加入IPTG誘導劑,30 ℃誘導振蕩培養6 h.4 000 r/min離心20 min收集菌體,用15 mL Binding Buffer重懸菌體,超聲40 min破碎菌體.裂解液用HisTrapTMFF.crude親和層析方法,通過GE AKTA蛋白純化系統,用不同強度的離子濃素洗脫,收集吸收峰出現的樣品,然后利用SDS-PAGE凝膠電泳方法檢測蛋白.
1.2.3 MTT法檢測細胞活性
取對數期細胞,以每孔20 000個細胞接種到96孔板,每孔100 μL培養基,置于37 ℃、5% CO2培養箱中培養24 h.吸出培養基,加入純化的蛋白,蛋白按照5個濃度梯度,5個平行樣處理細胞,置于培養箱中培養24 h.每孔加入20 μL MTT培養4 h,小心吸出上清,每孔加100 μL DMSO,用酶標儀測定492 nm的吸光度OD值.利用Origin 9.0軟件系統繪制曲線.
2 實驗結果endprint
2.1 pHis-FOXM1(1-234aa)-R9的構建
PCR擴增R9-FOXM1(1-234aa)目的基因,1.5%瓊脂糖凝膠電泳分析,條帶位于700bp位置,如圖1(b)所示.構建的重組表達質粒pHis-FOXM1(1-234aa)-R9經NcoI,BamHI限制性內切酶處理,結果如圖1(c)所示,1號樣品符合結果,測序結果比對,與理論序列一致.
2.2 重組蛋白R9-FOXM1(1-234aa)的批量純化及鑒定
裂解液采用原核表達系統和His-tag親和純化手段,采用不同洗脫強度收集純化蛋白,實現規模化制備純化穿膜肽融合人FOXM1蛋白氮端(1-234aa)的重組蛋白,并獲得純化過程的HPLC分析譜圖圖2(a),橫坐標表示洗脫體積,縱坐標表示吸收峰UV280.吸收峰曲線代表整個過程中UV280檢測結果,階梯狀曲線代表洗脫液的離子強度(實驗過程中采用梯度洗脫),箭頭為重組蛋白吸收峰.SDS-PAGE凝膠電泳方法檢測蛋白制備不同階段的蛋白樣品,上樣量均為10 μg(圖2(b),AKTApurifier蛋白純化儀純化過程中不同時間段純化蛋白的純度,100%洗脫時目的蛋白的純度高,箭頭為目的蛋白的位置.Lane1:Marker Lane2:sample Lane3:filtered sample Lane4:No binding sample Lane5:0% elutionB Lane6:30% elutionB Lane7:100% elutionB).
2.3 重組蛋白R9-FOXM1(1-234aa)對腫瘤細胞的抑制效應
MTT實驗驗證重組蛋白對腫瘤細胞增殖表型的影響:選擇乳腺癌MDA-MB-231、肺癌A549、肝癌HepG2細胞,用不同濃度的重組蛋白(1 μmol/L,3 μmol/L,5 μmol/L,7 μmol/L,9 μmol/L)進行處理,24 h時后檢測細胞的活性,R9-GFP處理作為對照,獲得劑量依賴曲線,如圖3(a)不同濃度重組蛋白處理231細胞,24h后細胞的影響,圖3(c)不同濃度重組蛋白處理A549細胞,24h后細胞的影響,圖3(e)不同濃度重組蛋白處理HepG2細胞,24h后細胞的影響.針對所選細胞,固定重組蛋白處理濃度(1 μmol/L),在處理后不同時間點(1 d,2 d,3 d)檢測細胞活性,獲得相關細胞的生長曲線,圖3(b)1 μmol/L重組蛋白處理231細胞,3d內細胞活性變化,圖3(d)1 μmol/L重組蛋白處理A549細胞,3d內細胞活性變化,圖3(f)1 μmol/L重組蛋白處理HepG2細胞,3d內細胞活性變化.實驗結果表明,R9-FOXM1(1-234aa)對不同的腫瘤細胞都具有一定的抑制作用.
3 結 論
轉錄因子FOXM1能刺激細胞增殖、增強DNA損傷修復能力、維持細胞干性、促進細胞遷移,并被作為腫瘤治療的分子靶標,抑制FOXM1有效抑制腫瘤的發生和發展.FOXM1蛋白氮端抑制FOXM1轉錄活性、競爭性阻礙FOXM1與其他腫瘤促進因子互作及促瘤信號通路對FOXM1的修飾活化作用等.本實驗研究結合多聚精氨酸R9穿膜肽,構建了穿膜肽融合人FOXM1蛋白氮端(1-234aa)的原核表達質粒;采用原核表達系統和His-tag親和純化手段,規模化制備穿膜肽R9-FOXM1(1-234aa).相對手動純化,實驗純化手段具有蛋白純度高,產量高,時間短等明顯優勢.為進一步的活體實驗提供充足的材料.細胞水平上選擇了不同類型的腫瘤細胞(乳腺癌MDA-MB-231、肺癌A549、肝癌HepG2)開展實驗,證實了R9-FOXM1(1-234aa)對腫瘤細胞的抑制作用,R9-FOXM1(1-234aa)具體的作用機制還需要進一步的研究.本研究為R9-FOXM1(1-234aa)成為新型抗腫瘤蛋白類藥物提供了初步理論基礎.
參考文獻
[1] KAESTNER K H,KNOCHEL W,MARTINEZ D E. Unified nomenclature for the winged helix/forkhead transcription factors [J]. Genes Development,2000,14(2):142-146.
[2] HANNENHALLI S,KAESTNER K H. The evolution of Fox genes and their role in development and disease[J]. Nature Review Genetics,2009,10(4):233-240.
[3] YE H,KELLY T F,SAMADANI U,et al. Hepatocyte nuclear factor 3/fork head homolog 11 is expressed in proliferating epithelial and mesenchymal cells of embryonic and adult tissues[J]. Molecular Cell Biology,1997,17(3):1626-1641.
[4] YE H,HOLTERMAN A X,YOO K W,et al. Premature expression of the winged helix transcription factor HFH-11B in regenerating mouse liver accelerates hepatocyte entry into S phase[J]. Molecular Cell Biology,1999,19(12):8570-8580.
[5] WANG X,KIYOKAWA H,DENNEWITZ M B,et al. The Forkhead Box m1b transcription factor is essential for hepatocyte DNA replication and mitosis during mouse liver regeneration[J]. Proceeding of the National Academy of Science USA,2002,99(26):16881-16886.endprint
[6] WANG I C,CHEN Y J,HUGHES T,et al. Forkhead box M1 regulates the transcriptional network of genes essential for mitotic progression and genes encoding the SCF (Skp2-Cks1) ubiquitin ligase [J]. Molecular Cell Biology,2005,25(24):10875-10894.
[7] TAN Y,RAYCHAUDHURI P,COSTA R H. Chk2 mediates stabilization of the FoxM1 transcription factor to stimulate expression of DNA repair genes[J]. Molecular Cell Biology,2007,27(3):1007-1016.
[8] TAN Y,CHEN Y,YU L,et al. Two-fold elevation of expression of FoxM1 transcription factor in mouse embryonic fibroblasts enhances cell cycle checkpoint activity by stimulating p21 and Chk1 transcription [J]. Cell Proliferation,2010,43(5):494-504.
[9] KALINICHENKO V V,MAJOR M L,WANG X M B,et al. Foxm1b transcription factor is essential for development of hepatocellular carcinomas and is negatively regulated by the p19ARF tumor suppressor [J]. Genes Development,2004,18(7):830-850.
[10]KRUPCZAK-HOLLIS K,WANG X,KALINICHENKO V V,et al. The mouse Forkhead Box m1 transcription factor is essential for hepatoblast mitosis and development of intrahepatic bile ducts and vessels during liver morphogenesis [J]. Developmental Biology,2004,276(1):74-88.
[11]WANG X,QUAIL E,HUNG N J,et al. Increased levels of forkhead box M1B transcription factor in transgenic mouse hepatocytes prevent age-related proliferation defects in regenerating liver [J]. Proceeding of the National Academy of Science USA,2001,98(20):11468-11473.
[12]KIM I M,ACKERSON T,RAMAKRISHNA S,et al. The Forkhead Box m1 transcription factor stimulates the proliferation of tumor cells during development of lung cancer[J]. Cancer Research,2006,66(4):2153-2161.
[13]YOSHIDA Y,WANG I C,YODER H M,et al. The forkhead box M1 transcription factor contributes to the development and growth of mouse colorectal cancer [J]. Gastroenterology,2007,132(4):1420-1431.
[14]PARK H J,WANG Z,COSTA R H,et al. An N-terminal inhibitory domain modulates activity of FoxM1 during cell cycle [J]. Oncogene,2008,27(12):1696-1704.
[15]LAOUKILI J,ALVAREZ M,MEIJER L A,et al. Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain [J]. Molecular and Cellular Biology,2008,28(9):3076-3087.
[16]REGBERG J,SRIMANEE A,LANGEL U,et al. Applications of cell-penetrating peptides for tumor targeting and future cancer therapies [J]. Pharmaceuticals (Basel),2012,5(9):991-1007.
[17]SCHMIDT N,MISHRA A,LAI G H,et al. Arginine-rich cell-penetrating peptides [J]. FEBS Letters,2010,584(9):1806-1813.endprint