999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

NOTES ON STRONGLY SEPARABLE EXTENSIONS

2018-01-15 06:35:19XUAimin
數學雜志 2018年1期

XU Ai-min

(School of Mathematical Sciences,Qufu Normal University,Qufu 273165,China)

1 Introduction

For any ring extension?:R→S,we can always consider the triple of functors Γ =(S?R?,??,HomR(RS,?)),whereS?R?and HomR(RS,?)are,respectively,the left and the right adjoint of the restriction of scalars functor??:S-Mod→R-Mod.The functor??is termed a quasi-Frobenius(Frobenius)functor ifS?R?and HomR(RS,?)are similar(naturally isomorphic).It was shown in[8](see[22])that??is a quasi-Frobenius(Frobenius)functor if and only if?is a quasi-Frobenius(Frobenius)extension in the sense of[21](see[18]),i.e.,Sis finitely generated and projective as a leftR-module and the(S,R)-bimodulesSand HomR(RS,RR)are similar(i.e.,Sis finitely generated and projective as a leftR-module andS~=HomR(RS,RR)as(S,R)-bimodules).It was known[8]that if?is a quasi-Frobenius extension,then the functorsS?R?,??and HomR(RS,?)are exact and preserve all limits and colimits as well as injective and projective objects.Separable extensions were studied in[10,14,16,17,19,23,27,28]among others.The ring extension?is separable[25]if the natural multiplication mapS?RS→Sis a split epimorphism asS-bimodules;?is separable if and only if??is a separable functor in the sense of[23];?is split[25]if?is a split monomorphism ofR-bimodules;?is split if and only ifS?R?is a separable functor;?is called strongly separable[10]if?is a separable,split and quasi-Frobenius extension.But?is called strongly separable in[19]if?is a separable,split and Frobenius extension.And hence the notion of strongly separable extensions in[10]is weaker than that of[19].

Gorenstein homological algebra was initiated by Auslander and Bridger in[1,2],where they introduced theG-dimension of any finitely generated module over a two-sided Noetherian ring.Over a general ring,Enochs and Jenda[12]introduced Gorenstein projective modules,which is a generalization of finitely generated modules ofG-dimension zero.And to complete the analogy with the classical homological algebra,Gorenstein injective and fl at modules were introduced by Enochs et al.in[12,13].The Gorenstein homological dimensions are similar to(and refinements of)the classical homological dimensions.In 2004,Holm[15]generalized several well-known results on Gorenstein dimensions over Noetherian rings to arbitrary rings,and then the Gorenstein homological dimensions theory witnessed a new impetus.LetRbe a ring andMa leftR-module.We useGpd(M),Gid(M)andGfd(M)to denote,respectively,the Gorenstein projective,injective,and fl at dimensions ofM.In[5],several classical results on global homological dimensions were extended to global Gorenstein homological dimensions.Namely,it was proved in[5]that for a ringR,sup{Gpd(M)|Mis a leftR-module}=sup{Gid(M)|Mis a leftR-module}.The common value of the terms of this equality is called,the left Gorenstein global dimension ofR,and denoted byl.Ggldim(R).Also,the left Gorenstein weak global dimension of a ringR,l.wGgdim(R)=sup{Gfd(M)|Mis a leftR-module},is investigated.

Recall that an Artin algebraRis said to be of finite representation type if there exist only finitely many isomorphism classes of finitely generated indecomposableR-modules.It is well known that determining the representation type of algebras is fundamental and important in representation theory of Artin algebras.As an analogy of Artin algebras of finite representation type,recall that an Artin algebraRis calledCM- finite if there exist only finitely many isomorphism classes of finitely generated indecomposable Gorenstein projectiveR-modules.This notion was introduced by Beligiannis in[3].Since thenCM- finite Artin algebras have attracted considerable attentions[3,4].Recall from[9]that an Artin algebraRis calledCM-free if any finitely generated Gorenstein projectiveR-module is projective.Note thatCM-free algebras are an extreme case ofCM- finite algebras.

In this paper,we study the invariant properties under strongly separable extensions,such as the Gorenstein(weak)global dimensions,the representation type andCM- finite type of Artin algebras.In Section 2,we show that if?:R→Sis a strongly separable extension,thenRandShave the same left global dimension,left weak global dimension,left Gorenstein global dimension.Moreover,ifSis right coherent,then they have the same left Gorenstein weak global dimension.Finally,it is proved that if?is a strongly separable extension of Artin algebras,thenRisCM- finite(resp.,CM-free,of finite representation type)if and only if so isS.

Throughout this paper,all rings are associative with identity and all modules are unitary.LetRbe a ring,R-Mod denotes the category of all leftR-modules.We writeRM(MR)to indicate a left(right)R-module.For anR-moduleM,we usepd(M)andfd(M)to denote,respectively,projective, fl at dimension ofM.lD(R)andwD(R),stand for the left global dimension,the weak global dimension of a ringR,respectively.addMdenotes the class of all direct summands of finite direct sums of copies ofM.LetM,Nbe two leftR-modules.IfMis a direct summand ofN,then we denote it byM|N.For unexplained concepts and notations,we refer the reader to[11,20,25,26].

2 Main Results

Definition 2.1[10]A ring extension?:R→Sis called strongly separable if?is a separable,split and quasi-Frobenius extension.

Example 2.2[10,19](1)LetGbe a group with a subgroupHof finite index,sayn,ifRis a ring withnR=R,thenRGis a strongly separable extension ofRH.

(2)LetRbe any ring,then the ringMn(R)ofn×nmatrices overRis a strongly separable extension ofR.

(3)SupposeHis a finite dimensional,semisimple,cosemisimple Hopf algebra over a fieldK.IfAis anH-Galois extension ofS,thenAis a strongly separable extension ofS.

For a ring extension?:R→S,we consider the following conditions

(C1)SY|S(S?RY)for everyY∈S-Mod.

(C2)Ris anR-bimodule direct summand ofS.

(C3)HomR(RS,?)preserve all projective objects,? ?RSand??preserve all injective objects.

(C4)RSandSRare finitely generated projective.

By[7,Lemma 3.1],we know that if?:R→Sis separable,then?satisfies(C1).And hence any strongly separable extension?:R→Ssatisfies the conditions(C1)–(C4),there are some other examples satisfy the above conditions.For example,

(1)the extension?:R→A?kF=S,whereRis a finite-dimensional algebra over a fieldk,andFa finite separable field extension ofkby[6,p.6,Lemma 1]and[24,p.275,Lemma 2.3].

(2)the extension?:R→R?G=S,whereRis any ring andGis a finite group such that|G|?1∈R.

Lemma 2.3 Let?:R→Sbe a ring extension with(C1)and(C4).IfMis a leftS-module,then we have

1.Mis a projective leftR-module if and only ifMis a projective leftS-module;

2.Mis a fl at leftR-module if and only ifMis a fl at leftS-module

Proof(1)IfMis a projective leftR-module,thenS?RMis a projectiveS-module and henceMis a projective leftS-module sinceSM|S(S?RM).Conversely ifMis a projective leftS-module,thenMis a projective leftR-module by(C4).

(2)IfMis a fl at leftS-module,then it is a fl at leftR-module sinceSis projective as a leftR-module.Conversely,assumeMis a fl at leftR-module,thenS?RMis a fl at leftS-module.ButSM|S(S?RM)and henceMis a fl at leftS-module.

Lemma 2.4 Let?:R→Sbe a ring extension with(C1)and(C4).IfMis a leftS-module,then we have

1.pd(SM)=pd(RM)=pd(S(S?RM));

2.fd(SM)=fd(RM)=fd(S(S?RM)).

Proof(1)By Lemma 2.3(1)we havepd(SM)≥pd(RM).By(C1),we getpd(S(S?R M))≥pd(SM).Ifpd(RM)=n<∞,then there exists a projective resolution ofRM:

By(C4),we get a projective resolution of theS-moduleS?RM:

this impliespd(RM)≥pd(S(S?RM)),and hencepd(SM)=pd(RM)=pd(S(S?RM)).

(2)By Lemma 2.3(2),we havefd(SM)≥fd(RM).By(C1),we getfd(SM)≤fd(S(S?RM)).By(C4),we find thatfd(RM)≥fd(S(S?RM)),it follows thatfd(SM)=fd(RM)=fd(S(S?RM)).

The following theorem extends[19,Theorem 4.2].

Theorem 2.5 Let?:R→Sbe a ring extension with(C1),(C2)and(C4).ThenlD(R)=lD(S)andwD(R)=wD(S).

Proof By Lemma 2.4,we havelD(R)≥lD(S)andwD(R)≥wD(S).We now provelD(R)≤lD(S).For any leftR-moduleM,we haveRM|R(S?RM)by(C2),and hencepd(RM)≤pd(R(S?RM))=pd(S(S?RM))≤lD(S)by Lemma 2.4,that is,lD(R)≤lD(S).Similarly we havewD(R)≤wD(S).

By[7,Lemma 3.1],we get the following.

Corollary 2.6 Let?:R→Sa separable split ring extension with(C4),thenlD(R)=lD(S)andwD(R)=wD(S).

The following lemma is very useful for us.

Lemma 2.7 Let?:R→Sbe a ring extension with(C3)and(C4).

1.IfM∈R-Mod is Gorenstein projective(resp.Gorenstein flat),thenS?RMis Gorenstein projective(resp.Gorenstein flat).

2.IfM∈S-Mod is Gorenstein projective(resp.Gorenstein flat),thenRMis Gorenstein projective(resp.Gorenstein flat).

Proof(1)IfM∈R-Mod is Gorenstein projective,then we have an exact sequenceξ=···F?1→F0→F1→···of projectiveR-modules withM=ker(F0→F1)and such that it remains exact whenever HomR(?,P)is applied for every projectiveR-moduleP.SinceSis a fl at rightR-module,we get thatS?Rξis exact andS?RM=ker(S?RF0→S?RF1).We also get thatS?RFiis projective for everyi.Let us suppose finally thatP∈S-Mod is projective.Notice thatPis also a projectiveR-module by(C4)and HomS(S?RFi,P)~=HomR(Fi,HomS(S,P))~=HomR(Fi,P).ThusS?RMis Gorenstein projective.

IfM∈R-Mod is Gorenstein flat,then we have an exact sequenceξ=···F?1→F0→F1→···of fl atR-modules withM=ker(F0→F1)and such that it remains exact wheneverE?R?is applied for every injective rightR-moduleE.SinceSis a fl at rightR-module,we get thatS?Rξis exact andS?RM=ker(S?RF0→S?RF1).We also get thatS?RFiis fl at for everyi.Let us suppose finally thatE∈S-Mod is injective.Notice thatEis also an injectiveR-module by(C3)andE?SS?RFi~=E?RFi.ThusS?RMis Gorenstein flat.

(2)IfM∈S-Mod is Gorenstein projective,then we have an exact sequenceξ=···F?1→F0→F1→···of projectiveS-modules withM=ker(F0→F1)and such that it remains exact whenever HomS(?,P)is applied for every projectiveS-moduleP.EveryFiis a projective leftR-module by(C4).Let us suppose finally thatP∈RMod is projective.Notice that HomR(RS,P)is also a projectiveS-module by(C3)and HomS(Fi,HomR(RS,P))~=HomR(S?SFi,P)~=HomR(Fi,P).ThusMis a Gorenstein projectiveR-module.

IfM∈S-Mod is Gorenstein flat,then we have an exact sequenceξ=···F?1→F0→F1→···of fl atS-modules withM=ker(F0→F1)and such that it remains exact wheneverE?S?is applied for every injective rightS-moduleE.EveryFiis a fl at leftR-module by(C4).Let us suppose finally thatE∈R-Mod is injective.Notice thatE?RSis also an injectiveS-module by(C3)andE?RS?SFi~=E?RFi.ThusMis a Gorenstein flat leftR-module.

Lemma 2.8 Let?:R→Sbe a ring extension with(C1),(C2)and(C4).ThenRis right coherent if and only ifSis right coherent.

Proof LetRbe right coherent and{Mi|i∈I}a family of fl at leftS-modules.TheneveryMiis a flat leftR-module by(C4)andMiis a flatleftR-module.And henceS?RMiis a fl at leftS-module.SinceSMi|S(S?RMi),Miis a flat leftS-module which implies thatSis right coherent.Conversely,we suppose thatSis right coherent.Let{Mi|i∈I}be a family of flat leftR-modules.It is easy to see that(S?RMi)is a flat leftS-module.By(C4),it is also a fl at leftR-module.Note that(S?RMi)~=S?RMisinceSRis finitely presented.R(Mi)|R(S?RMi)by(C2).ThusMiis a flat leftR-module,and soRis right coherent.

Corollary 2.9 Let?:R→Sbe strongly separable,thenRis right coherent if and only ifSis right coherent.

We now give a Gorenstein version of Lemma 2.3.

Lemma 2.10 Let?:R→Sbe a ring extension with(C1),(C3)and(C4)andMbe a leftS-modules.

1.Mis a Gorenstein projective leftR-module if and only ifMis a Gorenstein projective leftS-module.

2.IfSis right coherent,thenMis a Gorenstein flat leftR-module if and only ifMis a Gorenstein flat leftS-module.

Proof(1)Assume thatRMis Gorenstein projective,thenS?RMis a Gorenstein projectiveS-module by Lemma 2.7.And henceSMis Gorenstein projective by[15,Theorem 2.5]and(C1).Conversely,it is immediate by Lemma 2.7.The corresponding proof for Gorenstein flat modules are analogous to that of(1).

Theorem 2.11 Let?:R→Sbe a ring extension.Then

1.If?satisfies(C1),(C3)and(C4),thenl.Ggldim(S)≤l.Ggldim(R).Moreover,if?also satisfies(C2),thenl.Ggldim(S)=l.Ggldim(R).In particular,if?:R→Sis a strongly separable extension,thenl.Ggldim(S)=l.Ggldim(R).

2.IfSis right coherent and?satisfies(C1),(C3)and(C4),thenl.wGgldim(S)≤l.wGgldim(R).Moreover,if?also satisfies(C2),thenl.wGgldim(S)=l.wGgldim(R).In particular,ifSis right coherent and?:R→Sis a strongly separable extension,thenl.wGgldim(S)=l.wGgldim(R).

Proof(1)Suppose thatl.Ggldim(R)=m<∞.LetSMbe anS-module.Thenl.Gpd(RM)≤m.So there exists a Gorenstein projective resolution ofRM:

whereGk,···,G0are Gorenstein projectiveR-modules.SinceS?RGiis a Gorenstein projectiveS-module for all 0≤i≤kby Lemma 2.7,we get a Gorenstein projective resolution of theS-moduleS?RM:

butSM|S(S?RM)by(C1).SoGpdS(SM)≤mby[15,Propositions 2.19].Thus

If?also satisfies(C2),suppose thatl.Ggldim(S)=n<∞.LetRMbe anR-module.Thenl.GpdS(S?RM)≤n.So there exists a Gorenstein projective resolution ofS(S?RM):

whereGk,···,G0are Gorenstein projectiveS-modules.SinceRGiis a Gorenstein projectiveR-module for all 0≤i≤kby Lemma 2.7,we get a Gorenstein projective resolution of theR-moduleR(S?RM):

butRM|R(S?RM)by(C2).SoGpdR(RM)by Lemma[15,Propositions 2.19].Thusl.Ggldim(R)≤l.Ggldim(S)and hencel.Ggldim(R)=l.Ggldim(S).

(2)Suppose thatl.wGgldim(R)=m<∞.LetSMbe anS-module.Thenl.Gfd(RM)≤m.So there exists a Gorenstein flat resolution ofRM:

whereGk,···,G0are Gorenstein flatR-modules.SinceS?RGiis a Gorenstein flatS-module for all 0≤i≤kby Lemma 2.7,we get a Gorenstein flat resolution of theS-moduleS?RM:

butSM|S(S?RM)by(C1).SoGfdS(SM)by[15,Propositions 3.13].Thus

If?also satisfies(C2),suppose thatl.wGgldim(S)=n<∞.LetRMbe anR-module.Thenl.GfdS(S?RM)≤n.So there exists a Gorenstein flat resolution ofS(S?RM):

whereGk,···,G0are Gorenstein flatS-modules.SinceRGiis a Gorenstein flatR-module for all 0≤i≤kby Lemma 2.7,we get a Gorenstein fl at resolution of theR-moduleR(S?RM):butRM|R(S?RM)by(C2).SoGfdR(RM)≤nby Lemma and[15,Propositions 3.13].Thusl.wGgldim(R)≤l.wGgldim(S)and hencel.wGgldim(R)=l.wGgldim(S).

It is known that a ringRis quasi-Frobenius if and only ifl.Ggldim(R)=0,so we have

Corollary 2.12[10,Proposition 5.13]Let?:R→Sbe strongly separable,thenRis quasi-Frobenius if and only ifSis quasi-Frobenius.

For an Artin algebraR,letR-mod denote the category of finitely generated leftR-modules.Recall that a moduleM∈R-mod is called an additive generator forR-mod if any indecomposable module inR-mod is in addM.Obviously,an Artin algebraRis of finite representation type if and only ifR-mod has an additive generator.LetGp(R)be the full subcategory ofR-mod consisting of Gorenstein projective modules.Clearly,RisCM- finite if and only if there exists a moduleN∈R-mod such thatGp(R)=addN.

Theorem 2.13 Let?:R→Sbe a ring extension with(C1)–(C4).IfRandSare Artin algebras,then

1.RisCM-free if and only ifSisCM-free.

2.Ris of finite representation type if and only ifSis of finite representation type.

3.RisCM- finite if and only ifSisCM- finite.

Proof(1)LetRbeCM-free and letM∈S-mod be Gorenstein projective.ThenRMis Gorenstein projective by Lemma 2.7.SoRMis projective and henceSMis also projective by Lemma 2.3(1).ThusSisCM-free.Conversely,LetSbeCM-free andM∈R-mod be Gorenstein projective.ThenS(S?RM)is Gorenstein projective by Lemma 2.7.SoS(S?RM)is projective and henceR(S?RM)is also projective by Lemma 2.3.SinceRM|R(S?RM),RMis projective and soRisCM-free.

(2)LetRbe of finite representation type andM∈R-mod an additive generator forR-mod.It suffces to prove thatS?RMis an additive generator forS-mod.LetT∈S-mod be indecomposable.ThenT∈R-mod,T|Mnfor some positive integern.SoS?RT|(S?RM)n.It follows from(C1)thatT∈add(S?RM)asS-modules andS?RMis an additive generator forS-mod.Conversely,ifSbe of finite representation type,then there exists an additive generatorN∈S-mod forS-mod.It suffces to prove thatNis an additive generator forR-mod.LetT∈R-mod be indecomposable.It follows from(C2)thatT|S?RTasR-modules.Note thatS?RT|NnasS-modules for some positive integern,soS?RT|NnasR-modules andNis an additive generator forR-mod.

(3)The proof is similar to that of(2).

Corollary 2.14 Let?:R→Sbe a strongly separable extension of Artin algebras,thenRisCM-free(resp.,CM- finite,of finite representation type)if and only if so isS.

[1]Auslander M.Anneaux de Gorenstein,et torsion en alg`ebre commutative[M].Paris:Secr′etariat Math′ematique,1967,S′eminaire d’Alg`ebre Commutative dirig′e par Pierre Samuel,1966.

[2]Auslander M,Bridger M.Stable module theory[M].Memoirs Amer.Math.Soc.,1969.

[3]Beligiannis A.Cohen-Macaulay modules,(co)torsion pairs and virtually Gorenstein algebras[J].J.Alg.,2005,288:137–211.

[4]Beligiannis A.On algebras of finite Cohen-Macaulay type[J].Adv.Math.,2011,226:1973–2019.

[5]Bennis D,Mahdou N.Global gorenstein dimension[J].Proc.Amer.Math.Soc.,2010,138(2):461–465.

[6]Bonami L.On the structure of skew group rings[M].Algebra Berichte 48,Munchen:Verlag Reinhard Fisher,1984.

[7]Caenepeel S,Zhu Bin.Separable bimodules and approximation[J].Alg.Rep.The.,2005,8:207–223.

[8]Casta?no F,Nˇastˇasescu C,Vercruysse J.Quasi-Frobenius functors,applications[J].Comm.Alg.,2010,38:3057–3077.

[9]Chen Xiaowu.Algebras with radical square zero are either self-injective or CM-free[J].Proc.Amer.Math.Soc.,2012,140:93–98.

[10]Cunningham R S.Strongly separable pairings of rings[J].Tran.Amer.Math.Soc.,1970 148(2):399–416.

[11]Enochs E E,Jenda O M G.Relative homological algebra[M].Berlin,New York:Walter de Gruyter,2000.

[12]Enochs E E,Jenda O M G.Gorenstein injective and projective modules[J].Math.Z.,1995,220(4):611–633.

[13]Enochs E E,Jenda O M G,Torrecillas B.Gorenstein flat modules[J].J.Nanjing Univ.Math.Biquart.,1993,10:1–9.

[14]Hirata K,Sugano K.On semisimple extensions and separable extensions over non-commutative rings[J].J.Math.Soc.Japan,1966,18(4):369–372.

[15]Holm H.Gorenstein homological dimensions[J].J.Pure Appl.Algebra,2004,189:167–193.

[16]Kadison L.On split,separable subalgebras with counitality condition[J].Hokkaido Math.J.,1995,24:527–549.

[17]Kadison L.New examples of Frobenius extensions[M].University Lecture Series 14,Providence RI:Amer.Math.Soc.,1999.

[18]Kasch F.Projektive Frobenius-Erweiterungen[M].Sitzungsber Heidelb.Akad Wiss,1960.

[19]Kadison L.The Jones polynomial and certain separable Frobenius extensions[J].J.Alg.,1996,186:461–475.

[20]Meng Fanyun,Sun Juxiang.Cotorsion pairs over finite graded rings[J].J.Math.,2015,35(2):227–236.

[21]Müller B.Quasi-Frobenius-Erweiterungen[J].Math.Z.,1964,85:345–368.

[22]Morita K.Adjoint pairs of functors and Frobenius extensions[J].Sc.Rep.T.K.D.A.,1965,9:40–71.

[23]N?ast?asescu C,Van den Bergh M,Van Oystaeyen F.Separable functors applied to graded rings[J].J.Alg.,1989,123:397–413.

[24]Passman D.S.The algebraic structure of group rings[M].New York.Wiley-Interscience 1977

[25]Pierce R.Associative Algebras[M].Berlin.Springer Verlag 1982.

[26]Rotman J.J.An introduction to homological algebra[M].New York:Academic Press,1979.

[27]Sugano K.Note on semisimple extensions and separable extensions[J].Osaka J.Math.,1967,4:265–270.

[28]Sugano K.Separable extensions and Frobenius extensions[J].Osaka J.Math.,1970,7:291–299.

主站蜘蛛池模板: 日韩中文精品亚洲第三区| 日韩av无码精品专区| 国产精品刺激对白在线| 91免费精品国偷自产在线在线| 欧美午夜在线视频| 亚洲一区第一页| 亚洲无码高清一区二区| 久久永久视频| 欧美日韩中文字幕在线| 日本高清免费一本在线观看| 在线欧美国产| 色老头综合网| 亚洲精品国产日韩无码AV永久免费网 | 午夜日b视频| 亚洲一区网站| 天天躁狠狠躁| www.av男人.com| 四虎成人精品| 午夜福利在线观看入口| 亚洲第一成年网| 五月天福利视频| 亚洲系列中文字幕一区二区| 久久婷婷国产综合尤物精品| 久久综合伊人77777| 99精品高清在线播放| 91福利国产成人精品导航| 免费观看亚洲人成网站| 国产尤物jk自慰制服喷水| 亚洲妓女综合网995久久| 熟女视频91| 日本亚洲成高清一区二区三区| 午夜不卡福利| 伊人色在线视频| 老熟妇喷水一区二区三区| 91视频精品| 久久精品亚洲热综合一区二区| а∨天堂一区中文字幕| 国产日本欧美在线观看| 欧美www在线观看| 免费一级成人毛片| 亚洲性影院| 亚洲精品图区| 玩两个丰满老熟女久久网| 国产欧美视频综合二区| 亚洲一级毛片免费观看| 精品国产一区91在线| 久久午夜夜伦鲁鲁片无码免费| 欧美成人精品一级在线观看| 久久免费精品琪琪| 激情综合激情| 在线日韩一区二区| 在线观看91精品国产剧情免费| 狠狠色综合网| 91外围女在线观看| 久久免费观看视频| 狠狠亚洲婷婷综合色香| 69av在线| 无码粉嫩虎白一线天在线观看| 亚洲成人高清在线观看| 香蕉伊思人视频| 97成人在线视频| 91精品情国产情侣高潮对白蜜| 国产欧美日韩综合在线第一| 国产欧美日韩在线在线不卡视频| 日本五区在线不卡精品| 精品久久久无码专区中文字幕| 九九热视频在线免费观看| 在线视频一区二区三区不卡| 国产小视频在线高清播放| 国产91视频免费观看| 国产白浆在线观看| 亚洲欧美另类色图| 狠狠色丁香婷婷| 992Tv视频国产精品| 伊人查蕉在线观看国产精品| 毛片手机在线看| 免费jizz在线播放| av尤物免费在线观看| 国产成人夜色91| 日本在线免费网站| 久久综合九九亚洲一区| 久久伊人色|