999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

A NOTE ON HILBERT TRANSFORM OF A CHARACTERISTIC FUNCTION

2018-01-15 06:35:11QUMengJIANGManru
數學雜志 2018年1期

QU Meng,JIANG Man-ru

(School of Mathematics and Computer Science,Anhui Normal University,Wuhu 241003,China)

1 Introduction

The Hilbert transform is the operatorHdefined by

initially forf∈S(R).A very straight calculus via Fourier transform and Plancherel’s equality show thatHcan be extended to an isomorphic onL2;i.e.,

There were also several other ways to prove(1.1),see[2,7]and references therein.Halso satisfies so called Kolmogorov’s inequality;i.e.,for anyλ>0,there exists a positive constantCsuch that

The best possible constantCin(1.2)was obtained by Davis in[4].Moreover by interpolation technique and duality argument,Hcan be extended to a bounded operator onLp(R)for allp>1.We can refer to the nice textbooks[3,5]and[9]for more properties of Hilbert transform.

LetEbe a Lebesgue measurable set with|E|<∞and denoteH(χE)be the Hilbert transform of the characteristic function of the setE.In 1959,Stein and Weiss[8]proved that the distribution function ofH(χE)does not depend on the structure of the setEbut only on its measure|E|.More precisely,for anyλ>0,

In[1],Colzani,Laeng and Monz′on gave an exact formula for theLpintegral ofH(χE).For 1<p<∞,

Theorem 1.1 LetEbe a Lebesgue measurable subset of R with|E|<∞and letHbe the Hilbert transform.For all 1<p<∞,

Theorem 1.2 LetEbe a Lebesgue measurable subset of R with|E|<∞and letHbe the Hilbert transform.For anyλ>0,

We note that in the proof of Theorem 1.2,Laeng used an argument taking Theorem 1.1 for granted.This argument(Lemma 1.4 in[1])reads

If‖f‖p=‖g‖pforp1<p<p2then the distrubtion functions offandgequals;i.e.,|{x∈E:|f(x)|>λ}|=|{x∈E:|f(x)|>λ}|for allλ>0.

Also as pointed in[1],this argument is based on a Mellin transform.However as in the usual way,theLp(X)norm has layer cake representation

Once we proved the distribution function result(Theorem 1.2)in a direct way,Theorem 1.1 is proved with the help of“layer cake representation”.

This short note is just based on the upon argument.In Section 2,we prove Theorem 1.2 which relies on a refinement of the key lemma in[8]by Stein and Weiss.The proof of Theorem 1.2 also relies on a limiting argument.In Section 3,by using Theorem 1.2,we give the proof of Theorem 1.1 on the straight-forward way.

2 Proof of Theorem 1.2

We first recall the following result in[8].

Lemma 2.1 LetEbe a compact set in R withwherea1<b1<a2<b2<···<an<bn.Denotebe a rational function.Then for anyξ>1,

Remark 2.2 LetEas in Lemma 2.1,an observation is for anyξ>0,

which implies that the set{x∈E:f(x)>ξ}is at most the collection of finite elementsb1,···,bnand then is a set of measure zero.

With(2.1)and(2.3),we immediately have

Similar way as discussed above,we also have

and

By(2.2)and(2.5),we have

Similar to Lemma 2.1 and Remark 2.2,we immediate have

Lemma 2.3 LetEas in the Lemma 2.1.Denotewe have

The following lemma asserts that Theorem 1.2 is right for a compact setE?R.

Lemma 2.4 LetEbe a compact set,equations(1.7)and(1.8)preserve.

Proof For any compact setE,we can writewitha1<b1<a2<b2<···<an<bn.De fi neandg(x)=as introduced in Lemma 2.1.By the property of Hilbert transformHχ[a,b](x)(see Example 5.1.3 in[5]),we have

So for anyλ>0,the set{x∈R:|H(χE)(x)|>λ}can be rewrite as

We note thatWiintersect empty each other.Therefore

The same way,by(2.3),(2.5),(2.7)and(2.8)withξ=eπλ,

The lemma is proved.

Now we turn to the proof of Theorem 1.2.SinceEis finite measurable set,there exists a sequence of compact sets{Fn},suqch that for anyn,Fn?EandWith which we immediately getand then(1.1).Now for any fixedλ>0,we write

Then for anyu∈(0,1),by Chebyshev’s inequality and Lemma 2.4,we have

Letn→∞,and then letu→1,we have

On the other hand,for anynand anyu∈(0,1),Chebyshev’s inequality and Lemma 2.4 gives

Letn→∞and then letu→1,we haveBoth(2.10)and(2.11)give|{x∈E:|H(χE)(x)|>λ}|This is just the equation(1.7).We end the proof of Theorem 1.2 since the proof of(1.8)is the similar one.

3 Proof of Theorem 1.1

Proof We only prove(1.5)since we can prove(1.6)in the similar way.Forp>1,

Then by Theorem 1.2,we have

and

In the last equality in(3.3),we useCombining(3.1)–(3.3),(1.5)follows.

[1]Colzani L,Laeng E,Monz′on L.Variations on a theme of Boole and Stein-Weiss[J].J.Math.Anal.Appl.,2010,363:225–229

[2]Duoandikoetxea J.The Hilbert transform and Hermite functions:a real variabel proof of theL2-isometry[J].J.Math.Anal.Appl.,2008,347:592–596.

[3]Duoandikoetxea J.Fourier analysis[M].Providence,RI:American Math.Soc.,2001.

[4]Davis B.On the weak type(1,1)inequality for conjugate functions[J].P.Amer.Math.Soci.,1974,44:307–311.

[5]Grafakos L.Classical Fourier analysis(3nd ed.)[M].GTM 249,New York:Springer,2014.

[6]Laeng E.On theLpnorm of the Hilbert transform of a characteristic function[J].J.Func.Anal.,2012,262:4534–4539.

[7]Laeng E.A simple real-variable proof that the Hilbert transform is anL2-isometry[J].C.R.Math.Acad.Sci.Paris.,2010,348(17-18):977–980.

[8]Stein E,Weiss G.An extension of a theorem of Marcinkiewicz and some of its application[J].J.Math.Mech.,1959,8:263–284.

[9]Wei D.Boundedness of the Hilbert transform on Banach valued Hardy spaces[J].J.Math.,1999,19(1):117–120.

主站蜘蛛池模板: 蜜桃视频一区二区三区| 久久久噜噜噜| 国产欧美高清| 美女内射视频WWW网站午夜| 国产原创演绎剧情有字幕的| 午夜少妇精品视频小电影| 久久人搡人人玩人妻精品一| 亚洲精品卡2卡3卡4卡5卡区| 欧美伦理一区| 国产成人精品在线1区| 国产乱论视频| 久久精品电影| 中文无码精品a∨在线观看| 亚洲91精品视频| 亚洲中文制服丝袜欧美精品| 免费jizz在线播放| 国产不卡网| 国产一区成人| 国产黄色片在线看| 青青草欧美| 国产精品久久精品| 国产极品美女在线播放| 成年看免费观看视频拍拍| 亚洲日韩在线满18点击进入| 国产91在线免费视频| a天堂视频在线| 99热这里只有精品免费国产| 亚洲国产精品VA在线看黑人| 色悠久久综合| 亚洲人成网站色7799在线播放 | 丝袜美女被出水视频一区| 亚洲精品制服丝袜二区| 国产产在线精品亚洲aavv| 午夜少妇精品视频小电影| 亚洲人成在线免费观看| 欧美成一级| 日韩av手机在线| 狠狠色狠狠色综合久久第一次| 日韩人妻少妇一区二区| 精品国产亚洲人成在线| 国产在线91在线电影| 极品国产一区二区三区| 在线无码av一区二区三区| 精品三级网站| 国产欧美在线观看精品一区污| 日韩天堂在线观看| 亚洲国产天堂在线观看| 亚洲成a人片7777| 青草免费在线观看| 欧美一区福利| 久久这里只有精品8| 国产尤物视频网址导航| 日本人妻一区二区三区不卡影院| 国产噜噜噜视频在线观看| 看你懂的巨臀中文字幕一区二区 | 国产欧美在线观看一区| www.av男人.com| 国产日韩精品欧美一区喷| 精品人妻无码中字系列| 91蝌蚪视频在线观看| 精品91在线| 午夜无码一区二区三区| 久久久精品国产亚洲AV日韩| 国产免费久久精品44| 国产AV无码专区亚洲A∨毛片| 又粗又硬又大又爽免费视频播放| 99爱在线| 香蕉eeww99国产精选播放| 中文字幕无码av专区久久| 亚洲自拍另类| 亚洲综合国产一区二区三区| 久久成人18免费| 亚洲色图另类| 免费又爽又刺激高潮网址| 天天躁夜夜躁狠狠躁躁88| 狠狠干欧美| 日本免费福利视频| 人妻丰满熟妇啪啪| 欧美 国产 人人视频| 一级毛片在线播放| 免费xxxxx在线观看网站| 国产办公室秘书无码精品|