章順虎,姜興睿
(蘇州大學 沙鋼鋼鐵學院,江蘇 蘇州 215021)
MY準則解析受內壓薄圓環(huán)極限壓力
章順虎,姜興睿
(蘇州大學 沙鋼鋼鐵學院,江蘇 蘇州 215021)
目的 探明受內壓薄圓環(huán)極限承壓能力。方法 首次以MY(平均屈服)準則對受內壓薄圓環(huán)進行彈塑性分析,克服Mises準則數(shù)學求解的困難性,導出塑性區(qū)內的應力場,并獲得塑性極限壓力的解析解。此外,還給出了彈塑性臨界半徑與內壓之間的依賴關系,并分析了二者間的變化規(guī)律。結果 塑性極限壓力的解析解表明,塑性極限壓力是材料屈服強度、半徑比值的函數(shù);與已有的Tresca、TSS準則獲得的結果比較表明,Tresca準則給出極限壓力下限,TSS屈服準則給出極限壓力上限,MY準則給出極限壓力居于兩者之間,可作為Mises解的替代。結論 文中結果對于充分發(fā)揮材料性能,進而對薄圓環(huán)的設計、選材以及安全評估具有實際工程意義。
MY準則;薄圓環(huán);應力場;極限壓力;解析解
金屬薄圓環(huán)是一種典型的工程結構件,在建筑、航空、機械等領域具有較為廣泛的應用[1]。薄圓環(huán)受內壓作用是其常見的受力形式,求解該載荷作用下的塑性極限壓力對充分發(fā)揮材料潛力具有實際工程意義[2]。目前通過聯(lián)解平衡微分方程、屈服條件及邊界條件求解薄圓環(huán)極限壓力的傳統(tǒng)方法已近成熟[3—4],Tresca準則因忽略中間主應力的影響而常給出偏低結果;TSS準則給出結果偏高,浪費材料;Mises屈服條件由于其非線性,獲得解析解困難,目前鮮見報道[5—6]。基于以上考慮,文中采用與Mises非線性屈服準則非常逼近的線性 MY屈服準則對受內壓作用薄圓環(huán)進行彈塑性極限分析,獲得了薄圓環(huán)全部進入塑性狀態(tài)時極限壓力解析解,并定量分析了彈塑性臨界半徑與內壓之間的變化規(guī)律。文中研究可為薄圓環(huán)的選材、設計以及安全評估提供理論依據(jù)。
MY準則[7]已在材料成形[8—10]和爆破壓力[11]等領域獲得應用。設主應力其表達式見式(1)。該準則在π平面上屈服軌跡見圖1,其中雙剪應力(TSS)屈服軌跡是 Mises圓的外切正六邊形[12],Tresca屈服軌跡為Mises圓的內接正六邊形,而MY屈服軌跡是非常逼近Mises圓的十二邊形[7],其屈服函數(shù)為TSS與 Tresca屈服函數(shù)的平均值。平面應力下的屈服軌跡見圖2。由式(1)可得MY準則在平面應力下(σ2=0)的表達式見式(2)。

圖1 π平面上的MY屈服軌跡Fig.1 MY yield locus in π-plane

圖2 雙軸應力的MY屈服軌跡Fig.2 MY yield locus in biaxial stress

受內壓p作用的薄圓環(huán)見圖3。其中,ra和rb分別為薄圓環(huán)的內徑與外徑,rc為彈塑性臨界半徑。

圖3 受內壓薄圓環(huán)Fig.3 Thin ring under internal pressure
當內壓較小時,此時整個薄圓環(huán)均處于彈性狀態(tài),此時圓環(huán)的應力場為[13]:



由式(5)可見,載荷p在區(qū)間[ra,rb]為r的單調增函數(shù),因此,圓環(huán)內壁處對應的內壓最小,彈性極限壓力pe在r=ra處取得,為:

彈性極限壓力隨著半徑比值的變化曲線見圖4。可見,隨著半徑比值的增加,彈性極限壓力增加。

圖4 彈性極限壓力與半徑比值的關系Fig.4 Relationship between elastic limit load and radius ratio
當內壓p大于彈性極限壓力后,圓環(huán)的塑性區(qū)將從內壁向外壁擴展,形成如圖 3所示的內層塑性區(qū)和外層彈性區(qū)其中,在塑性區(qū)中,應力分量滿足如下平衡微分方程和邊界條件:

聯(lián)立式(2)的第一式、式(7)和式(8),可得塑性區(qū)應力場為:

在彈性區(qū)內,參照應力場表達式(3),可設預先滿足微分方程(7)的通解表達式為:

式(10)在r=rc時,σr連續(xù),且滿足應力邊界條件于是,待定系數(shù)A,B如下:


將式(11)、(12)代入到式(10),可得塑性區(qū)范圍內應力場為:

隨著內壓p增加,塑性區(qū)逐漸從rc范圍內擴展到外徑rb,因此,極限壓力在整個圓環(huán)進入塑性狀態(tài)時求得,見式(14),該式表明,塑性極限壓力是屈服強度與半徑比值的函數(shù)。

對于本文求解對象,采用相同的解析方法,趙均海給出的Treaca解[5]和劉協(xié)權給出的TSS解[6]如下:

MY解與Tresca解、TSS解的對比情況見圖5。可見,隨著半徑比值的增大,極限壓力均增大,其中TSS提供極限壓力上限,Tresca提供下限,MY準則居于二者之間。考慮MY準則對Mises準則具有較高的線性逼近程度,因此本文MY解可作為Mises解的替代。時的值從1開始,每隔0.5(增量)遞增至比值為5條件下的關系曲線見圖6。圖6表明,內壓隨著彈塑性臨界半徑的增大而增大,當rc=rb,內壓達到最大,為塑性極限壓力條件下,塑性區(qū)內應力場分布見圖7,可知,徑向應力σr為負,為壓應力,且隨著半徑r的增大而減小;周向應力σθ為正,為拉應力,且隨著半徑r的增大而增大。此外,因最大主應力為σθ,兩應力始終存在著的大小關系。

圖5 依賴于屈服準則的塑性極限壓力Fig.5 Plastic limit pressure depending on yield criteria

圖6 內壓與彈塑性臨界半徑間的變化關系Fig 6. Relationship between internal pressure and elastic-plastic critical radius

圖7 塑性區(qū)內應力場分布Fig.7 Stress field distribution in plastic zone
1) 圓環(huán)內壁處最先達到彈性極限狀態(tài),求得的彈性極限壓力依賴于半徑比值與屈服強度,隨著半徑比值的增大而增大。
2) 理論導出了受內壓作用薄圓環(huán)塑性區(qū)內的應力場。分析表明,塑性區(qū)內的徑向應力為負,周向應力為正。
3) 首次以 MY準則獲得圓環(huán)內壓條件下塑性極限壓力解析解。結果表明,極限壓力是半徑比值與屈服強度的函數(shù),隨著半徑比值的增大而增大。MY準則預測的塑性極限壓力介于Tresca與TSS極限壓力之間,可作為Mises解的替代。
4) 內壓與彈塑性臨界半徑的關系表明,內壓隨著臨界半徑由內徑向外徑推移,不斷增大,最終在外徑處獲得塑性極限壓力。
[1] 葉開沅, 湯任基, 甄繼慶. 非均勻變截面彈性圓環(huán)在任意載荷下的彎曲問題[J]. 應用數(shù)學和力學, 1981, 2(1):1—12.YE Kai-yuan, TANG Ren-ji, ZHEN Ji-qing. Bending of Non-homogeneous Variable Thickness Elastic Circular Ring Under Arbitrarily Distributed Loads[J]. Applied Mathematics and Mechanics, 1981, 2(1): 1—12.
[2] KIM N H, OH C S, KIM Y J, et al. Limit Loads and Fracture Mechanics Parameters for Thick-walled Pipes[J].International Journal of Pressure Vessels and Piping, 2011,88(10): 403—414.
[3] SAVE M A. Plastic Analysis and Design of Plates, Shells and Disks[M]. Netherland: North Holland Pub Co., 1972.
[4] BOYLE J T, HAMILTON R, SHI J, et al. A Simple Method of Calculating Lower Bound Limit Loads for Axisymmetric Thin Shells[J]. Journal of Pressure Vessel Technology, 1997, 119(2): 236—242.
[5] 趙均海, 顧強. 薄圓環(huán)極限載荷統(tǒng)一解[J]. 西安建筑工程學院學報(自然科學版), 2001, 18(1): 1—4.ZHAO Jun-hai, GU Qiang. Unified Ultimate Load Solution of Thin Ring[J]. Journal of Architecture and Civil Engineering (Natural Sciences), 2001, 18(1): 1—4.
[6] 劉協(xié)權, 倪新華, 焦耀斌. 用雙剪強度理論計算拉壓異形材料薄圓環(huán)的極限載荷[C].“力學2000”學術大會論文集, 2000年.LIU Xie-quan, NI Xin-hua, JIAO Yao-bin. Limit Load Calculation of Thin Ring of S-D Effect Material with TSS Theory[C]. “Mechanics 2000” Conference Prceedings of Academic Conference, 2000.
[7] 趙德文, 劉相華, 王國棟. 依賴Tresca與雙剪屈服函數(shù)均值的屈服準則[J]. 東北大學學報(自然科學版), 2002,23(10): 976—980.ZHAO De-wen, LIU Xiang-hua, WANG Guo-dong.Yield Criterion Based on the Mean Function of Tresca and Twin Shear Stress Yield Functions[J]. Journal of Northeastern University: Natural Science, 2002, 23(10):976—979.
[8] ZHAO De-wen, XIE Ying-jie, WANG Xiao-wen, et al.Derivation of Plastic Work Rate Per Unit Volume for Mean yield Criterion and Its Application[J]. Journal of Material Science Technology, 2005, 21(4): 433—437.
[9] ZHANG Shun-hu, SONG Bin-na, WANG Xiao-dong, et al. Analysis of Plate Rolling by MY Criterion and Global Weighted Velocity Field[J]. Applied Mathematical Mod-eling, 2014, 38(14): 3485—3494.
[10] ZHANG Shun-hu, CHEN Xiao-dong, HOU Ji-xin. Analysis of Broadside Rolling for Heavy Plate by Weighted Velocity Field and Mean Yield Criterion[J]. Meccanica,2016, 51(5): 1189—1199.
[11] 李燦明, 趙德文, 章順虎, 等. MY準則解析 X80鋼油氣輸送管道爆破壓力[J]. 東北大學學報(自然科學版),2011, 32(7): 964—967.LI Can-ming, ZHAO De-wen, ZHANG Shun-hu, et al.Analysis of Burst Pressure for X80 Steel Pipeline with MY Criterion[J]. Journal of Northeastern University(Natural Science), 2011, 32(7): 964—967.
[12] YU M H. Twin Shear Stress Yield Criterion[J]. International Journal of Mechanical Science, 1983, 25: 71—74.
[13] 劉士光, 張濤. 彈塑性力學基礎理論[M]. 武漢: 華中科技大學出版社, 2008.LIU Shi-guang, ZHANG Tao. Elastoplastic Mechanics Theory[M]. Wuhan: Huazhong University of Science and Technology Press, 2008.
[14] 同濟大學數(shù)學系. 高等數(shù)學(下冊)[M]. 北京: 高等教育出版社, 2009.Mathematics Department of Tongji University. Advanced Mathematics[M]. Beijing: Higher Education Press, 2009.
[15] 章順虎, 趙德文, 王力, 等. MY準則解析線性和均布載荷下簡支圓板的極限載荷[J]. 東北大學學報(自然科學版), 2012, 33(7): 975—978.ZHANG Shun-hu, ZHAO De-wen, WANG Li, et al. Limit Load Analysis of Simply Supported Circular Plate Under Linearly and Uniformly Distributed Load with MY Criterion[J]. Journal of Northeastern University (Natural Science), 2012, 33(7): 975—978.
Analysis of Limit Pressure for Thin Ring Subjected to Internal Pressure with MY Criterion
ZHANG Shun-hu,JIANG Xing-rui
(Shagang School of Iron and Steel, Soochow University, Suzhou 215021, China)
To clarify the ultimate loading capacity of thin ring subjected to internal pressure, the elastic-plastic analysis of thin ring under internal pressure was first carried out with MY criterion to overcome the difficulty of mathematical solving of Mises criterion. The stress field in the plastic zone was derived, and an analytical solution of plastic limit load was then deduced.The dependency relationship between elastic-plastic critical radius and internal pressure was given. And the change rules of them were analyzed. It was shown in the solution that the plastic limit pressure was a function of yield stress and radius ratio. By comparing the plastic limit pressure with those obtained based on Tresca and TSS, Tresca criterion provided a lower bound, TSS provided an upper bound, while the solution of the MY criterion lay between them, and could be taken as the approximation of Mises solution. The present result has realistic engineering significance in full using of material properties, and further in guiding of the design, material selecting, and safety assessment of thin ring.
MY criterion; thin ring; stress field; limit pressure; analytical solution
2017-11-15
國家自然科學基金(51504156);江蘇省基礎研究計劃(自然科學基金)(BK20140334);江蘇省高校自然科學研究(14KJB460024);中國博士后科學基金(2014M561707)
章順虎(1986—),男,副教授,主要研究方向為塑性成形理論與工藝。
10.3969/j.issn.1674-6457.2018.01.015
TG301
A
1674-6457(2018)01-0122-05