胡紅青,黃益宗,黃巧云,劉永紅,胡超
(1 華中農業大學資源與環境學院,武漢 430070;2 農業部環境保護科研監測所,天津 300191)
農田土壤重金屬污染化學鈍化修復研究進展
胡紅青1,黃益宗2,黃巧云1,劉永紅1,胡超1
(1 華中農業大學資源與環境學院,武漢 430070;2 農業部環境保護科研監測所,天津 300191)
土壤重金屬化學鈍化修復是指向污染土壤中添加鈍化劑,使重金屬由活性向穩定化形態轉化,以降低重金屬的遷移和生物可利用性,從而修復重金屬污染土壤的方法。本文綜述了近些年國內外各類鈍化材料修復重金屬污染土壤的作用效果和機理、實例等方面的研究進展,并討論了原位修復土壤重金屬中亟待解決的問題,旨在為農田土壤重金屬污染的化學鈍化劑篩選與應用提供參考依據。
重金屬;土壤污染;化學鈍化;鈍化材料
隨著城鎮化、工業化的發展和城市污泥、廢棄物進入農業生態系統,土壤重金屬污染態勢日趨嚴峻。據國家環保部、國土資源部等的調查[1],我國土壤各種污染物超標點位占調查總點位的16.1%;而耕地土壤點位超標率高達19.4%,污染情形不容樂觀。
由于我國人口壓力大,優質耕地資源短缺與糧食生產需求的矛盾異常突出,不可能將污染土壤進行大規模休閑、種植非糧食作物或開展植物修復;工程措施則代價高昂難以實施,且污染土壤填埋并不去除重金屬類污染物,所以對農田重金屬污染土壤而言,切實可行且能保證作物安全生產的修復措施應是化學鈍化,尤其是對中輕度污染的農田土壤。
化學鈍化修復是向污染土壤中施入各種鈍化劑,利用吸附、沉淀、氧化還原、絡合等機制,改變污染物的形態與活性,使其轉化成非活性、植物難吸收的組分,從而實現修復利用的技術。目前采用的鈍化劑主要包括各類含磷物質、粘土礦物、生物炭、氧化物、有機物等,它們對不同污染物以及土壤類型、污染程度的修復效果有一定差異,相關綜述論文也常見報道。本文就一些主要的化學鈍化材料修復重金屬污染研究進展作一概述,為進一步推動農田重金屬污染土壤修復研究與應用提供參考。
含磷物質除提供植物磷營養外,對重金屬的鈍化修復是當前土壤重金屬污染修復研究的熱點領域之一,也是一種廉價、環境友好的修復材料[2],其可以通過釋放磷來有效地固定土壤中的重金屬。在實際應用中,常見的含磷材料有磷酸及可溶性磷酸鹽,磷酸鈣、磷灰石、磷礦粉、骨粉等難溶含磷材料[3–5],以及活化磷礦粉、溶磷菌–磷礦粉、動物糞便–磷礦粉堆肥等復合含磷材料[6–9]。含磷材料修復的對象主要包括 Pb、Cd、Cu、Zn、Ni、Hg、Cr、Co 以及 As 等[2–9]。
磷酸鹽可以直接參與土壤重金屬的鈍化,也常與其他礦物材料混合使用。采用磷酸酸化磷礦粉處理Pb污染的土壤,可將土壤中非殘渣態Pb轉化為殘渣態,降低土壤中Pb的淋溶毒性[10]。Pb與磷形成了極穩定的磷氯鉛礦[Pb5(PO4)3Cl],明顯降低了植物對Pb的吸收[11]。另外,用磷酸化生物炭處理鉛污染土壤,發現其有很好的修復效果[12]。與磷酸的鈍化作用相比較,可溶性磷酸鹽 (如磷酸銨、磷酸氫鉀) 等也可直接參與重金屬的鈍化作用。用磷酸氫二銨處理土壤60天后,Cd的溶出量從306 mg/kg降低到34 mg/kg,磷含量增加會相應提高Cd的穩定效果[13]。雷鳴等[14]研究了磷酸氫二鈉對污染土壤中重金屬(Pb、Cd、Zn) 向水稻遷移的影響,發現其顯著提高了土壤pH值,降低了土壤中交換態Pb、Cd、Zn含量,同時明顯降低了水稻各器官中Pb、Cd的含量。
過磷酸鈣和重過磷酸鈣等也被用于修復重金屬污染的土壤。用過磷酸鈣修復Pb、Cu污染的土壤,一段時間培養后,Pb和Cu大幅度轉化為殘渣態[15]。重過磷酸鈣用于鈍化修復Pb、Cu和Zn復合污染土壤,4周后發現可有效地降低提取態Pb和Cu,但對土壤中Zn的穩定化影響較小;磷處理可抑制Pb和Cu在土壤剖面中的徑向遷移[16]。在Pb、Cd、Cu和Ni污染的土壤中施加重過磷酸鈣處理后,Pb和Cd向殘渣態轉化[17],降低大白菜對重金屬的吸收[18]。林笠等[19]采用盆栽試驗研究了重金屬Cd、Pb復合污染土壤中添加磷對草莓累積重金屬的影響,結果表明,添磷后不僅能顯著降低Cd、Pb對草莓產量和品質的影響,還能降低Cd、Pb在各組織中的累積。
含磷材料還包括磷酸鈣、天然磷灰石、磷礦粉、骨粉等難溶磷酸鹽礦物,它們是堿性礦物,有效磷遠低于可溶性磷酸鹽及磷肥。用磷礦粉處理重金屬污染的土壤能增加植物對As的吸收,降低蕨類植物體內Pb、Cd含量[20]。羥基磷灰石可顯著降低土壤中Pb、Zn、Cd、Co和Ni的生物有效性,增強它們的地球化學穩定性[21–22]。納米磷材料的性質有別于普通含磷礦物,用納米Ca3(PO4)2處理射擊場的重金屬Pb、Cu、Zn污染后,土壤中可提取態重金屬大幅度降低,部分Cu和Pb結合在納米磷酸鈣表面[23];而用負載納米羥基磷灰石的生物炭原位修復Pb污染土壤,Pb的固定率達到74.8%,殘渣態增加到66.6%,土壤中生物有效性Pb顯著減少[24]。
難溶磷礦物的磷有效性低,為提高有效磷的釋放,溶磷菌–磷礦粉、有機酸活化磷礦粉、動物糞便–磷礦粉堆肥等也被用于處理不同污染程度的土壤。磷礦粉經處理后,有效磷含量提高,對重金屬的鈍化效率也高于原磷礦粉。Park等[6]利用溶磷菌處理磷礦粉后,固定污染土壤中的Pb效果更強。與溶磷菌相比,草酸處理磷礦粉后,能更好地鈍化土壤中重金屬Pb、Cu、Cd,毒性淋溶分析顯示Pb含量低于美國EPA標準[9];磚紅壤中施加磷礦粉和草酸活化磷礦粉后,交換態鉛含量下降,穩定態Pb、Cu含量增加,且活化磷礦粉的效果更佳[7]。許學慧等[8]在Cd、Cu污染的礦區土壤中添加磷礦粉和活化磷礦粉,可降低土壤中交換態重金屬的含量,減少萵苣對重金屬Cd和Cu的吸收;施加活化磷礦粉后萵苣根和地上部重金屬含量比對照最高可降低55%和59%。
含磷材料在土壤重金屬原位修復中具有重要的實際意義。該方法對土壤環境的擾動少,除了提供磷素外,大部分磷材料可提高土壤的pH,影響重金屬在土壤中的形態,加快重金屬由可溶性向難溶性的轉化,減少植物對重金屬的吸收。現有研究表明,含磷材料主要對重金屬Pb、Cd、Cu等有較好的鈍化效果,其機理表現在以下方面[3, 24–25]:提高土壤pH,使重金屬離子生成氫氧化物沉淀;利用釋放的磷酸根與重金屬離子作用,生成溶解度更小的磷酸鹽礦物 (磷氯鉛礦等);土壤重金屬離子與含磷礦物晶格中的陽離子發生同晶置換而被固定;金屬陽離子在礦物表面發生靜電吸附和共沉淀作用被固定(圖1),實際環境中這幾種作用機理可能是共存的。
無機礦物也常用于土壤重金屬的化學鈍化,主要包括膨潤土、凹凸棒石、海泡石、沸石等無機礦物,赤泥、飛灰、磷石膏和白云石殘渣等工業副產物。此外,還有一些化學制品,如硫酸亞鐵等。這些通常不提供植物營養成分,而且可以改良土壤性質。
用于土壤污染物鈍化的粘土礦物主要包括海泡石、凹凸棒石、膨潤土 (蒙脫石) 等,它們較大的比表面積決定了其良好的吸附性能,可通過吸附、離子交換、配位反應和共沉淀等反應鈍化重金屬[26]。

圖1 含磷材料對土壤中重金屬的鈍化作用機理Fig. 1 Immobilization of heavy metals in soil by phosphorous-containing materials
凹凸棒石也稱坡縷石,對Cd、Pb和Cu污染土壤具有良好的修復效果[27]。其對Zn的鈍化以吸附和表面絡合為主[28],對Cd以碳酸鹽、氫氧化物或表面絡合的形式固定[29]。謝晶晶等[30]認為,Zn2+在凹凸棒石表面先發生快速吸附,其后為慢速沉淀,表面快速水化時可提高懸浮液的pH值,誘導了Zn2+水解沉淀。
Zhang等[31]實驗證明凹凸棒石添加量為紅壤的1%~4% (質量比) 時,土壤中可提取態重金屬的濃度都有明顯降低。殷飛等[28]發現添加20%凹凸棒石降低可提取態 Pb、Cd、Cu、As的比例最高達35%~54%,植物易吸收的可交換態Pb顯著減少,殘渣態Pb顯著增加。Liang等[29]也表明,凹凸棒石能降低水稻土中Cd的可交換態,增加碳酸鹽結合態和殘渣態,并降低糙米中23%~56%的Cd。
凹凸棒石對重金屬的吸附能力可通過改性得到加強。將凹凸棒石改性成微納米網加入污染土壤,能明顯降低土壤 Cr (Ⅵ) 的淋洗量,并能將 Cr (Ⅵ) 還原成Cr (Ⅲ)[32]。添加10%富鈣凹凸棒石可以分別降低土壤酸溶態 Cd 56% 和 Pb 82%[33]。凹凸棒石–磁鐵復合物在去除U (Ⅵ) 方面比單一組分更優越[34]。
蒙脫石摻入沉積物后可固定Zn,但不能提高Cu的穩定性[35]。0.5%膨潤土可明顯降低Pb、Zn和Cd的水溶性[36]。Zhang等[31]發現蒙脫石對Cu吸附量可達3741 mg/kg,按2%施入土壤可降低對蚯蚓60%的重金屬毒性。
相比較單一蒙脫石,其改性產物的環境應用正引起更多關注。蒙脫石–OR–SH (鈣基蒙脫石酸活化后,在乙醇–水–巰基硅烷溶液中分散) 飽和吸附的Cd無毒性,在連續盆栽4季作物后,對土壤Cd仍保持顯著的鈍化效果[37]。施加巰基化改性膨潤土能有效固定土壤Cd和Pb,顯著降低土壤中重金屬的活性態含量,并將其轉化為穩定的鐵錳結合態,有較好的鈍化長效性。另外,蒙脫石與有機聚合物的復合研究也有大量報道[38–39]。將殼聚糖加載到蒙脫石后,該復合物對Pb2+、Cu2+和Cd2+的最大吸附量分別為 49.3、28.2 和 20.6 mg/g[40–41]。
海泡石有較好的重金屬吸附能力[42],能降低水稻土中可交換態Cd并增加碳酸鹽結合態和殘渣態,使Cd以碳酸鹽、氫氧化物或者表面絡合的形式被固定[29]。添加0.5%~5%的海泡石可降低菠菜對Cd吸收量的28.0%~72.1%,當5%海泡石加入土壤,酶活性和微生物量也得以恢復[43]。海泡石的添加可使TCLP-Cd降低0.6%~49.6%,而植物吸收降低14.4%~84.1%[44]。將1%~5%海泡石加入土壤后,Cd、Zn和Pb的淋洗量降低60%~70%,而苜蓿莖稈中Zn的濃度最高降低45%。當添加量為5%時,土壤呼吸活性、脫氫酶和堿性磷酸酶活性分別增加了25%、138% 和42%[45]。Li等[46]的實驗則表明,可交換態Cd降低14.3%~49.0%,而糙米中的Cd含量降低34.5%~44.4%。海泡石改性后有更好的鈍化效果,如經過氧化氫改性后可極大地促進其對Pb的吸附,比天然海泡石提高43.5%[47]。
粉煤灰顆粒呈多孔型蜂窩狀結構,比表面積大,堿性,具有較高的吸附重金屬能力[48]。可施入污染土壤以固定重金屬[49]。實驗表明,經粉煤灰改良后,土壤中Hg、Cd和Pb有效態含量平均降低 24.4%~31.8%,鈍化作用明顯[50]。
自然沸石或改性沸石均可用于穩定土壤中重金屬污染物[51]。其作用機理是通過增加堿度而促進表面對重金屬的吸附;或重金屬離子與沸石內陽離子的交換。通過在沸石的孔口附近交換陽離子來改變其孔道的尺寸,可賦予沸石新的吸附性能[52]。研究表明,2%沸石在土壤中培養一個月可導致Zn、Pb的生物有效性降低 15.9%和6.1%[43]。污染土壤中添加沸石可增加淋出液pH并降低Pb的生物有效性[53]。硝酸鉀、氫氧化鈉改性沸石比天然沸石能更顯著地降低土壤酸提取態Zn的含量[52]。
赤泥是鋁土礦經強堿浸出氧化鋁后產生的殘渣。在含Pb 913 mg/kg的土壤中加入1%赤泥,可以使NH4NO3提取Pb降低90%[54]。添加5%赤泥可使土壤交換態Pb和Zn降低99%以上[55]。2個月赤泥處理使生物有效性Cu含量比對照降低 13.2%[56]。但也有研究表明,5%的赤泥添加使Cd、Ni、Pb和Zn的不穩定態降低22%~80%,而As和Cu的不穩定態卻分別增加了24%和47%,當赤泥添加量為5%或更高時,Cd、Ni、Pb和Zn流動性的降低更甚于 As、Cu、Cr和 V[54]。
一些鐵基材料也用于土壤重金屬的鈍化。如鋼渣具有較高的pH值,導致重金屬形成化學沉淀。據殷飛等[28]報道,添加20%鋼渣能顯著降低土壤中可交換態Cd以及可交換態和碳酸鹽結合態Zn含量,并顯著增加殘渣態Cu含量。據報道,硫酸亞鐵加入土壤1個月后,土壤酸提取態As含量比對照處理降低86.6%,2個月后,土壤As的生物有效性含量比對照降低90.8%,優于骨炭、磷酸二氫鈣和堆肥[57]。隨硫酸鐵用量增加,對有效態As的固定效果明顯增加;當Fe3+/ PO43–摩爾比為 7.2 時,7 d 后土壤有效態Pb、Cd、As去除率分別為99%、41%、69%。
Rinklebe等[58]比較了活性炭、膨潤土、生物炭、殼聚糖、粉煤灰、有機粘土、沸石等對Cu污染土壤的修復能力。除有機粘土和沸石外,其他改良劑均明顯增加土壤pH。Tica等[59]比較了磷灰石和Slovakite (白云巖、膨潤土、沸石等的混合物) 的鈍化效果,兩者均能有效降低重金屬Pb、Zn、Cu和Cd的毒性,而Slovakite效果更佳。
大量天然及廢棄物材料因廉價易得吸引了許多研究者的關注。目前對這些材料的應用特性和效能已有許多試驗,但以下方面尚需進一步加強研究:1) 單一礦物對重金屬的微觀穩定機制;2) 鈍化劑加入后重金屬的長期穩定性;3) 粘土礦物的改性及產物的效能。
生物炭是土壤重金屬修復研究中的一種重要材料。田間試驗證明,小麥秸稈生物炭可有效固定土壤中的Cd和Pb[60]。將稻稈和稻殼生物炭施入土壤,短期內可以有效鈍化重金屬[61–62]。生物炭對重金屬生物有效性的影響源于改變土壤pH,增加土壤有機質含量,改變土壤氧化還原狀況及微生物群落組成等多種機制的協同作用,而生物炭對重金屬的吸附機理主要有靜電作用、離子交換、陽離子π鍵、沉淀反應等[63]。
生物炭對重金屬的鈍化效果受到多因素的影響,如生物炭的來源、制備條件 (溫度、炭化時間等)、土壤性質、重金屬種類及污染程度等。生物炭的表觀性質在一定程度上決定了其對重金屬的固定能力。不同原材料和熱解溫度會得到性質不同的生物炭,對土壤重金屬的修復效果和機制也有差別。硬木在600℃時制得的生物炭對Cu和Zn的吸附量高于棉花秸稈450℃時制得的生物炭[64]。將竹炭和水稻秸稈生物炭按不同比例施加到Cu、Pb、Zn、Cd污染土壤中,發現后者鈍化效果更好[65]。
生物炭因其在高溫裂解過程中部分基團損失、吸附后分離難等不足,已有學者開始研究將生物炭與其他材料復合或者進行化學改性,加強其吸附能力。主要有以下方法:1) 用 KOH、H2O2、O3、H2SO4/HNO3等改性生物炭,提高生物炭的比表面積,增加其表面官能團 (如羧基),提高對污染物的固定能力[66–67]; 2) 與磁性吸附劑 (如納米氧化鐵、零價鐵等)復合,可以賦予生物炭磁性[68],利于回收;3) 結合納米技術制備新型復合材料,提高生物炭的封存和處理能力;4) 用化學修飾法將錳或鎂氧化物、過磷酸鈣等與生物炭復合,在生物炭表面添加一些能與污染物相互作用的基團,提高吸附效果[69–70]。
Inyang等[67]對比了甘蔗渣生物炭與經厭氧消化的甘蔗渣制備的生物炭對水中Pb2+的去除效果,發現后者對Pb2+的最大吸附量是前者的20倍。Agrafioti等[71]分別將CaO溶液、FeO粉末、FeCl3溶液與稻殼、有機固體廢棄物混合,用于As (V) 的去除,發現其對As的去除率顯著高于原始生物炭。Zhao等[70]研究表明用生物炭與磷肥共熱解后增加生物炭對重金屬的固定率。
鈣可與鎘發生同晶替代作用。試驗表明,施用生石灰處理在2年中可使糙米中鎘含量降低至國家食品衛生標準限值 (0.2 mg/kg) 以下[72]。Pandit等[73]研究發現施石灰能降低菠菜中鎘的濃度。Tan等[74]研究石灰鈍化土壤后5種蔬菜 (萵苣、大白菜、花椰菜等) 體內含鎘量的變化,發現其降低40%~50%。
施用石灰可降低土壤中有效態銅含量[75]。鉛污染土壤經石灰處理后,玉米對鉛的吸收明顯下降,其籽粒含鉛量可達到國家食品衛生標準[76]。吳烈善等[77]在人工污染的黃色黏土中添加石灰處理,土壤Pb、Cu、Cd、Zn的穩定率可達98.5%~99.8%。石灰對鉻 (Cr6+) 和汞 (Hg2+) 的吸附很穩定[78],施用 6% 石灰后,土壤能固定69%的Cr6+和63%的Hg2+。
石灰通過降低土壤中H+濃度,增加土壤顆粒表面負電荷,促進對重金屬離子的吸附,降低重金屬的遷移性。另外,石灰可改變重金屬形態,促進金屬碳酸鹽形成,減少活性重金屬的比例[79]。
2% 石灰–燒石膏–木炭 (質量比 3∶1∶2) 施用在湖南衡陽一土壤中,鎘固定率達58.9%[80]。2%天然腐熟牛糞 +2%石灰組合施用,Pb、Cu、Cd、Zn穩定效率達95.9%~99.4%[77]。石灰和有機肥復合施用使土壤中交換態Cd含量降低54.7%,遠高于單獨施用石灰的[81]。Wang等[82]在草甸土進行Cd的鈍化實驗,0.2%石灰 +5%蛇紋石復配的效果最好,處理60 d后有效態Cd含量降低29.1%。He等[83]研究施用石灰、礦渣和甘蔗渣在第四紀紅黏土的鈍化效果,發現復合施用效果最佳,鎘含量降低58.3%~70.9%,結合種植低Cd積累的水稻品種,可使糙米中的Cd含量降至污染物限度。
有機物料不僅提供植物養分,改良土壤,同時也是有效的土壤重金屬吸附、絡合劑,被廣泛應用于土壤重金屬污染修復中。有機物通過提升土壤pH、增加土壤陽離子交換量、形成難溶性金屬–有機絡合物等方式來降低土壤重金屬的生物可利用性[84–86]。目前常用的有機鈍化劑主要包括植物秸稈[87–88]、畜禽糞便[89–90]、城市污泥和有機堆肥等[84, 91]。
紫云英施入農田中,土壤有效銅和鎘的含量降低,同時降低了稻草和谷粒中銅和鎘的含量[87]。水稻秸稈和磷肥混施可降低土壤中重金屬的植物有效性[92]。水稻秸稈堆肥施用增加了農田土壤中重金屬Zn、Cd和Pb的碳酸鹽結合態、鐵錳氧化物結合態、有機質結合態和殘渣態重金屬的比例,也降低了農田土壤中重金屬的生物有效性[88]。
家禽糞便、生物固體等可增加土壤中溶解性有機質含量,并與重金屬形成較穩定的金屬–有機絡合物,降低重金屬的生物可利用性,特別是腐熟度較高的有機質可通過形成粘土–金屬–有機質三元復合物增加重金屬吸附量[93]。施用豬糞后,稻麥兩季表層土壤重金屬Cu、Zn含量略有升高,靜態環境容量均降低[94]。家禽糞便、生物固體等使用后,可強烈地與Hg結合而固定之[95]。在農田土壤中添加豬糞,可使土壤有效銅、鎘顯著降低,同時也極大降低稻草和谷粒中銅、鎘的含量[87]。
Hashimoto等[89]研究了畜禽糞便對Pb淋溶的影響,發現畜禽糞便能顯著降低土壤水溶態及可交換態Pb含量,促使其向殘留態轉化,降低其遷移和生物可利用性。張亞麗等[90]向Cd污染土壤施加豬糞等有機物,也得到類似結果。施用15 g/kg的糞肥和壓濾泥漿均降低了土壤外源Ni的植物有效性[86]。
腐熟堆肥施入土壤后可減少重金屬的生物有效性[96],不但可以顯著降低污染土壤中As、Cd、Pb、Zn等的生物有效態含量,還可顯著降低植物對重金屬的吸收[96]。添加生物堆肥到銅污染土壤中,顯著降低了CaCl2提取的銅含量,增加了土壤的pH值[97]。
腐殖酸能與重金屬結合,也是土壤重金屬的鈍化劑。用腐植酸與膨潤土 (或過磷酸鈣) 處理Pb污染土壤,發現分別投加20%腐植酸與20%膨潤土、10%腐植酸與6%過磷酸鈣,固定40 d后土壤中有效態鉛含量均大幅降低[98]。添加主要成分為腐殖酸的褐煤到銅污染土壤中,顯著降低了土壤中CaCl2提取的銅含量[97]。
納米鐵或含鐵納米材料在土壤重金屬治理過程中也發揮著重要的作用。有研究者利用零價納米鐵降低污染土壤中Cd、Cr和Zn的有效性,發現其能明顯提高金屬的穩定性,對Cr的修復效果和穩定性很好[98]。研究證實,有機堆肥配合鐵砂等在鈍化重金屬污染物時表現出加和作用,可顯著降低重金屬的生物有效性,并可能超過無機鈍化劑的單獨作用[91]。
納米零價鐵粉施于砷污染土壤中,能使砷由水溶態和吸附態向非晶質鐵鋁氧化物結合態和晶質鐵鋁氧化物態轉化,其中水溶態和吸附態砷可減少70%和18%,而非晶質鐵鋁氧化物結合態和晶質鐵鋁氧化物態砷分別最大增加42%和51%,并顯著降低三七中的砷含量[99]。磷酸鐵納米材料可以顯著降低土壤中水溶態、可交換態和碳酸鹽結合態Cu含量,促使Cu向殘渣態轉化;鐵納米材料可顯著降低土壤淋洗液中Cr含量[100]。
納米零價鐵配合低分子量有機酸施用可增加農田土壤中鉛的去除,0.2 mol/L檸檬酸配合2.0 g/L零價鐵對農田土壤鉛的去除效率能增加83%[101]。生物炭負載納米零價鐵能有效固定土壤中鉻,當施用8 g/kg生物炭負載納米零價鐵于土壤中15 d后,土壤中六價鉻不可檢出,進而降低鉻在土壤–植物系統的轉移[102]。
隨著我國農田土壤重金屬污染面積的增加,尋找切實可行的處置方法刻不容緩。從國內外的研究與實踐來看,土壤重金屬的化學鈍化措施可以較好地固定重金屬,降低重金屬的活性和環境風險,但是該技術在實際應用中尚有一些亟待深入研究的問題。
1) 鈍化與其他技術聯用 鈍化能使重金屬的形態暫時改變,但并未從土壤中徹底根除。當外界條件改變時,固定的重金屬還可能重新釋放,導致二次污染。微生物修復技術利用微生物產生的硫化物等來固定土壤中重金屬,具有持久性作用。此外,利用作物輪作–磷修復措施也可以較好地修復農田重金屬污染。
2) 方案優選及鈍化劑改性 污染土壤常是多種重金屬共存的體系,同時地域、氣候等環境因素對鈍化劑的要求不完全相同。因此,必須結合每種重金屬的性質來選擇不同的鈍化劑和修復措施。鈍化劑改性可以根據不同重金屬特性增強其鈍化功能,形成廣譜性多功能鈍化材料。
3) 新型高效環保鈍化劑研發 鈍化劑包括人工合成的材料和天然材料,有些天然材料中含有重金屬以及放射性物質,遺留在土壤環境中也會對環境造成一定的副作用,當它們累積到一定量時,這些材料的環境負效應就需要考慮了。因此在選用不同材料修復被重金屬污染的土壤時,必須環境友好,同時要提高其修復效率。
4) 鈍化機理與產物穩定性 鈍化劑的性質是決定鈍化重金屬機理的主要因素。當前,宜對不同材料鈍化重金屬機制開展深入研究,為進一步的實踐奠定理論基礎。在所形成的重金屬難溶物中,氫氧化物和碳酸鹽的溶解度要大于磷酸鹽沉淀物的溶解度,所以,利用重金屬的溶解性選用不同的鈍化劑和措施可以有效地降低重金屬的生物活性,更多地將重金屬離子轉化為活性更低的難溶礦物,以達到更強的鈍化效果。
[1]環境保護部. 全國土壤污染狀況調查公報[E B/O L].http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm Ministry of Environmental Protection of the People’s Republic of China. National soil pollution survey bulletin[EB/OL].http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm
[2]Guo G L, Zhou Q X, Ma L Q. Availability and assessment of fixing additives for the in situ remediation of heavy metal contaminated soils: A review[J]. Environmental Monitoring and Assessment,2006, 116: 513–528.
[3]Park J H, Bolan N S, Chung J W, et al. Environmental monitoring of the role of phosphate compounds in enhancing immobilization and reducing bioavailability of lead in contaminated soils[J]. Journal of Environmental Monitoring, 2011, 13: 2234–2242.
[4]梁媛, 王曉春, 曹心德. 基于磷酸鹽、碳酸鹽和硅酸鹽材料化學鈍化修復重金屬污染土壤的研究進展[J]. 環境化學, 2012, 31(1):16–25.Liang Y, Wang X C, Cao X D. Immobilization of heavy metals in contaminated soils with phosphate-, carbonate-,and silicate-based amendments: A review[J]. Environmental Chemistry, 2012, 31(1):16–25.
[5]Hafsteinsdóttir E G, Fryirs K A, Stark S C, Gore D B. Remediation of metal-contaminated soil in polar environments: Phosphate fixation at Casey Station, East Antarctica[J]. Applied Geochemistry,2014, 51: 33–43.
[6]Park J H, Bolan N, Megharaj M, Naidu R. Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil[J]. Journal of Hazardous Materials, 2011, 185: 829–836.
[7]姜冠杰, 胡紅青, 張峻清, 等. 草酸活化磷礦粉對磚紅壤中外源鉛的鈍化效果[J]. 農業工程學報, 2012, 28(24): 205–213.Jiang G J, Hu H Q, Zhang J Q, et al. Immobilization effects of phosphate rock activated by oxalic acid on exogenous lead in latosol[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(24): 205–213.
[8]許學慧, 姜冠杰, 付慶靈, 等. 活化磷礦粉對重金屬污染土壤上萵苣生長與品質的影響[J]. 植物營養與肥料學報, 2013, 19(2):361–369.Xu X H, Jiang G J, Fu Q L, et al. Effect of activated phosphate rocks on growth and quality of lettuce in heavy metal contaminated soils[J]. Plant Nutrition and Fertilizer Science, 2013, 19(2):361–369.
[9]Huang G Y, Su X J, Rizwan M S, et al. Chemical immobilization of Pb, Cu, and Cd by phosphate materials and calcium carbonate in contaminated soils[J]. Environmental Science and Pollution Research, 2016, 23: 16845–16856.
[10]Melamed R, Cao X D, Chen M, Ma L Q. Field assessment of lead immobilization in a contaminated soil after phosphate application[J]. Science of the Total Environment, 2003, 305:117–127.
[11]Cao X D, Ma L Q, Chen M, et al. Impacts of phosphate amendments on lead biogeochemistry at a contaminated site[J].Environmental Science and Technology, 2002, 36: 5296–5304.
[12]Liang Y, Cao X D, Zhao L, Arellano E. Biochar- and phosphateinduced immobilization of heavy metals in contaminated soil and water: implication on simultaneous remediation of contaminated soil and groundwater[J]. Environmental Science and Pollution Research,2014, 21: 4665–4674.
[13]Thawornchaisit U, Polprasert C. Evaluation of phosphate fertilizers for the stabilization of cadmium in highly contaminated soils[J].Journal of Hazardous Materials, 2009, 165: 1109–1113.
[14]雷鳴, 曾敏, 胡立瓊, 等. 不同含磷物質對重金屬污染土壤–水稻系統中重金屬遷移的影響[J]. 環境科學學報, 2014, 34(6):1527–1533.Lei M, Zeng M, Hu L Q, et al. Effects of different phosphoruscontaining substances on heavy metals migration in soil- rice system[J]. Acta Scientiae Circumstantiae, 2014, 34(6): 1527–1533.
[15]Rizwan M S, Imtiaz M, Huang G Y, et al. Immobilization of Pb and Cu in polluted soil by superphosphate, multi-walled carbon nanotube, rice straw and its derived biochar[J]. Environmental Science and Pollution Research, 2016, 23: 15532–15543.
[16]施堯, 曹心德, 魏曉欣, 等. 含磷材料鈍化修復重金屬Pb 、Cu 、Zn 復合污染土壤[J]. 上海交通大學學報(農業科學版), 2011,29(3): 62–68.Shi Y, Cao X D, Wei X X, et al. Immobilization of Pb, Cu, Zn in a multi-metal contaminated soil with phosphorus bearing materials[J].Journal of Shanghai Jiaotong University (Agricultural Science Edition), 2011, 29(3): 62–68.
[17]Valipour M, Shahbazi K, Khanmirzaei A. Chemical immobilization of lead, cadmium, copper, and nickel in contaminated soils by phosphate amendments[J]. Clean-Soil, Air, Water, 2016, 44(5):572–578.
[18]Fang Y Y, Cao X D, Zhao L. Effects of phosphorus amendments and plant growth on the mobility of Pb, Cu, and Zn in a multi-metalcontaminated soil[J]. Environmental Science and Pollution Research, 2012, 19: 1659–1667.
[19]林笠, 周婷, 湯帆, 等. 鎘鉛污染灰潮土中添加磷對草莓生長及重金屬累積的影響[J]. 農業環境科學學報, 2013, 32(3): 503–507.Lin L, Zhou T, Tang F, et al. Effects of phosphorus on growth and uptake of heavy metals in strawberry grown in the soil contaminated by Cd and Pb[J]. Journal of Agro-Environment Science, 2013,32(3): 503–507.
[20]Fayiga A O, Ma L Q. Using phosphate rock to immobilize metals in soil and increase arsenic uptake by hyperaccumulator Pteris vittata[J]. Science of the Total Environment, 2006, 359: 17–25.
[21]Chen S B, Xu M G, Ma Y B, Yang J C. Evaluation of different phosphate amendments on availability of metals in contaminated soil[J]. Ecotoxicology and Environmental Safety, 2007, 67:278–285.
[22]Mignardi S, Corami A, Ferrini V. Immobilization of Co and Ni in mining-impacted soils using phosphate amendments[J]. Water Air and Soil Pollution, 2013, 224: 1447–1456.
[23]Arenas-Lago D, Rodríguez-Seijo A, Lago-Vila M, et al. Using Ca3(PO4)2 nanoparticles to reduce metal mobility in shooting range soils[J]. Science of the Total Environment, 2016, 571: 1136–1146.
[24]Yang Z M, Fang Z Q, Tsang P E, et al. In situ remediation and phytotoxicity assessment of lead-contaminated soil by biocharsupported nHAP[J]. Journal of Environmental Management, 2016,182: 247–251.
[25]Austruy A, Shahid M, Xiong T T, et al. Mechanisms of metalphosphates formation in the rhizosphere soils of pea and tomato:environmental and sanitary consequences[J]. Journal of Soils and Sediments, 2014, 14: 666–678.
[26]Xu Y, Liang X F, Xu Y M, et al. Remediation of heavy metalpolluted agricultural soils using clay minerals: A review[J].Pedosphere, 2017, 27(2): 193–204.
[27]戴榮玲, 章鋼婭, 胡鐘勝, 等. 凹凸棒石黏土對Cd2+的吸附作用及影響因素[J]. 非金屬礦, 2006, 29(5): 47–50.Dai R L, Zhang G Y, Hu Z S, et al. Adsorption and affecting factors of attapulgite to Cd2+[J]. Non-Metallic Mines, 2006, 29(5): 47–50.
[28]殷飛, 王海娟, 李燕燕, 等. 不同鈍化劑對重金屬復合污染土壤的修復效應研究[J]. 農業環境科學學報, 2015, 34(3): 438–448.Yin F, Wang H J, Li Y Y, et al. Remediation of multiple heavy metal polluted soil using different immobilizing agents[J]. Journal of Agro-Environment Science, 2015, 34(3): 438–448.
[29]Liang X, Han J, Xu Y, et al. In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite[J]. Geoderma,2014, 235/236: 9–18.
[30]謝晶晶, 陳天虎, 王健, 等. 凹凸棒石與Zn2+的長期作用研究[J].礦物學報, 2011, 31(4): 738–741.Xie J J, Chen T H, Wang J, et al. A study on long-term interaction between palygorskite and Zn2+[J]. Acta Mineralogica Sinica, 2011,31(4): 738–741.
[31]Zhang G, Lin Y, Wang M. Remediation of copper polluted red soils with clay materials[J]. Journal of Environmental Science, 2011, 23:461–467.
[32]He L, Wang M, Zhang G, et al. Remediation of Cr(VI)contaminated soil using long-duration sodium thiosulfate supported by micro-nano networks[J]. Journal of Hazardous Material, 2015,294: 64–69.
[33]Yin H, Zhu J. In situ remediation of metal contaminated lake sediment using naturally occurring, calcium-rich clay mineral-based low-cost amendment[J]. Chemical Engineering Journal, 2016, 285:112–120.
[34]Fan Q, Li P, Chen Y, et al. Preparation and application of attapulgite/iron oxide magnetic composites for the removal of U(VI) from aqueous solution[J]. Journal of Hazardous Material, 2011,192: 1851–1859.
[35]王曉麗, 李魚, 王一喆, 等. 粘土礦物的摻雜對沉積物吸持Cu、Zn能力的影響[J]. 吉林大學學報(地球科學版), 2010, 40(1):183–187.Wang X L, Li Y, Wang Y Z, et al. Effect of clay minerals adulterated in sediments on sorption ability of Cu and Zn[J]. Journal of Jilin University (Geology Science Edition), 2010, 40(1):183–187.
[36]Argiri A, Ioannou Z, Dimirkou A. Impact of new soil amendments on the uptake of lead by crops[J]. Communication in Soil Science and Plant Analysis, 2013, 44: 566–573.
[37]趙秋香, 劉文華, 馮超等. 蒙脫石-OR-SH復合材料修復鎘污染土壤的環境風險及時效性評價[J]. 環境化學, 2015, (2): 333–339.Zhao Q X, Liu W H, Feng C, et al. Environmental risk and timeliness assessments on a smectite-OR-SH compound for reducing cadmium uptake in contaminated soils[J]. Environmental Chemistry, 2015, (2): 333–339.
[38]Hou D, Gui R, Hu S, et al. Preparation and characterization of novel drug-inserted-montmorillonite chitosan carriers for ocular drug delivery[J]. Advances in Nanoparticles, 2015, 4: 70–84.
[39]Wang J L, Chen C. Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides[J].Bioresource Technology, 2014, 160: 129–141.
[40]Hu C, Deng Y, Hu H, et al. Adsorption and intercalation of low and medium molar mass chitosans on/in the sodium montmorillonite[J].International Journal Biological Macromolecular, 2016, 92:1191–1196.
[41]Hu C, Zhu P, Cai M, et al. Comparative adsorption of Pb(II), Cu(II)and Cd(II) on chitosan saturated montmorillonite: Kinetic,thermodynamic and equilibrium studies[J]. Applied Clay Sciences,2017, 143: 320–326.
[42]徐應明, 梁學峰, 孫國紅, 等. 海泡石表面化學特性及其對重金屬Pb2+, Cd2+, Cu2+吸附機理研究[J]. 農業環境科學學報, 2009, (10):2057–2063.Xu Y M, Liang X F, Sun G H, et al. Surface chemical characteristics of sepiolites and their adsorption mechanisms of Pb2+, Cd2+and Cu2+[J]. Journal of Agro-Environment Science, 2009,(10): 2057–2063.
[43]Sun Y B, Sun G H, Xu Y M, et al. Assessment of sepiolite for immobilization of cadmium-contaminated soils[J]. Geoderma, 2013,193: 149–155.
[44]Sun Y B, Xu Y, Xu Y M, et al. Reliability and stability of immobilization remediation of Cd polluted soils using sepiolite under pot and field trials[J]. Environmental Pollution, 2016, 208:739–746.
[45]Abad-Valle P, álvarez-Ayuso E, Murciego A, et al. Assessment of the use of sepiolite amendment to restore heavy metal polluted mine soil[J]. Geoderma, 2016, 280: 57–66.
[46]Li J, Xu Y. Use of clay to remediate cadmium contaminated soil under different water management regimes[J]. Ecotoxicology and Environmental Safety, 2017, 141: 107–112.
[47]劉崇敏, 黃益宗, 于方明, 等. 改性沸石對土壤鉛、鋅賦存形態的影響[J]. 環境工程學報, 2014, 8(2): 767–774.Liu C M, Huang Y Z, Yu F M, et al. Effects of modified zeolite on fractionation of Pb and Zn in contaminated soil[J]. Chinese Journal of Environmental Engineering, 2014, 8(2): 767–774.
[48]Basu M, Pande M, Bhadoria P B S, et al. Potential fly-ash utilization in agriculture: A global review[J]. Progress Natural Science, 2009, 19: 1173–1186.
[49]Belviso C, Cavalcante F, Ragone P, et al. Immobilization of Ni by synthesizing zeolite at low temperatures in a polluted soil[J].Chemosphere, 2010, 78: 1172–1176.
[50]李念, 李榮華, 馮靜, 等. 粉煤灰改良重金屬污染農田的修復效果植物甄別[J]. 農業工程學報, 2015, 31(6): 213–219.Li N, Li R H, Feng J, et al. Remediation effects of heavy metals contaminated farmland using fly ash based on bioavailability test[J].Transactions of the Chinese Society of Agricultural Engineering,2015, 31(6): 213–219.
[51]Misaelides P. Application of natural zeolites in environmental remediation: A short review[J]. Microporous and Mesoporous Materials, 2011, 144: 15–18.
[52]劉崇敏, 黃益宗, 于方明, 等. 改性沸石及添加CaCl2和MgCl2對重金屬離子 Pb2+吸附特性的影響[J]. 環境化學, 2013, (5): 803–809.Liu C M, Huang Y Z, Yu F M, et al. Adsorption of aqueous Pb(Ⅱ)by natural and modified zeolite and the effect of CaCl2and MgCl2[J]. Environmental Chemistry, 2013, (5): 803–809.
[53]Shi W, Li H, Du S, et al. Immobilization of lead by application of zeolite: Leaching column and rhizobox incubation studies[J].Applied Clay Science, 2013, 85: 103–108.
[54]Friesl–Hanl W, Platzer K, Horak O, et al. Immobilizing of Cd, Pb,and Zn contaminated arable soils close to a former Pb/Zn smelter: a field study in Austria over 5 years[J]. Environmental Geochemistry and Health, 2009, 31: 581–594.
[55]Lee S, Kim E, Park H, et al. In situ stabilization of arsenic and metal–contaminated agricultural soil using industrial by–products[J]. Geoderma, 2011, 161: 1–7.
[56]李季, 黃益宗, 胡瑩, 等. 改良劑對土壤Cu形態轉化及其生物可給性的影響[J]. 環境工程學報, 2016, 10(4): 2057–2063.Li J, Huang Y Z, Hu Y, et al. Effect of several amendments on transformation of Cu speciation and bio-accessibility in contaminated soil[J]. Chinese Journal of Environmental Engineering, 2016, 10(4): 2057–2063.
[57]向猛, 黃益宗, 蔡立群, 等. 改良劑對土壤As鈍化作用及生物可給性的影響[J]. 環境化學, 2016, 35(2): 317–322.Xiang M, Huang Y Z, Cai L Q, et al. Influence of amendments on inactivation and bio-accessibility of arsenic in soils[J].Environmental Chemistry, 2016, 35(2): 317–322.
[58]Rinklebe J J, Shaheen S M. Miscellaneous additives can enhance plant uptake and affect geochemical fractions of copper in a heavily polluted riparian grassland soil[J]. Ecotoxicology and Environmental Safety, 2015, 119: 58–65.
[59]Tica D, Udovic M, Lestan D. Immobilization of potentially toxic metals using different soil amendments[J]. Chemosphere, 2011, 85:577–583.
[60]Bian R, Joseph S, Cui L, et al. A three-year experiment confirms continuous immobilization of cadmium and lead in contaminated paddy field with biochar amendment[J]. Journal of Hazardous Materials, 2014, 272: 121–128.
[61]高瑞麗, 唐茂, 付慶靈, 等. 生物炭, 蒙脫石及其混合添加對復合污染土壤中重金屬形態的影響[J]. 環境科學, 2017, 38(1): 361–367.Gao R L, Tang M, Fu Q L, et al. Fractions transformation of heavy metals in compound contaminated soil treated with biochar,montmorillonite and mixed addition[J]. Environment Science, 2017,38(1): 361–367.
[62]高瑞麗, 朱俊, 湯帆, 等. 水稻秸稈生物炭對鎘, 鉛復合污染土壤中重金屬形態轉化的短期影響[J]. 環境科學學報, 2016, 36(1):251–256.Gao R L, Zhu J, Tang F, et al. Fractions transformation of Cd, Pb in contaminated soil after short-term application of rice straw biochar[J]. Acta Scientiae Circumstantiae, 2016, 36(1): 251–256.
[63]Inyang M, Gao B, Yao Y, et al. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal[J]. Critical Reviews in Environmental Science and Technology, 2016, 46(4): 406–433.
[64]Chen L, Long X H, Zhang Z H. Cadmium accumulation and translocation in two Jerusalem Artichoke (Heliauthus tuberosus L.)cuhivars[J]. Pedosphere, 2011, 21(5): 573–580.
[65]Lu K, Yang X, Gielen G, et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu,Pb and Zn) in contaminated soil[J]. Journal of Environmental Management, 2017, 186: 285–292.
[66]Regmi P, Moscoso J L G, Kumar S, et al. Removal of copper and cadmium from aqueous solution using switchgrass biochar produced via hydrothermal carbonization process[J]. Journal of Environmental Management, 2012, 109: 61–69.
[67]Inyang M, Gao B, Ding W C, et al. Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse[J].Separation Science and Technology, 2011, 46: 1950–1956.
[68]Zhang M, Gao B, Varnoosfaderani S, et al. Preparation and characterization of a novel magnetic biochar for arsenic removal[J].Bioresource Technology, 2013, 130: 457–462.
[69]Song Z G, Lian F, Yu Z H, et al. Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+in aqueous solution[J]. Chemical Engineering Journal, 2014, 242:36–42.
[70]Zhao L, Cao X, Zheng W, et al. Co-pyrolysis of biomass with phosphate fertilizers to improve biochar carbon retention, slow nutrient release, and stabilize heavy metals in soil[J]. ACS Sustainable Chemistry and Engineering, 2016, 4(3): 1630–1636.
[71]Agrafioti E, Kalderis D, Diamadopoulos E. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions[J]. Journal of Environmental Management, 2014, 146:444–450.
[72]劉大鍔, 郭明選, 高漢清, 等. 施用生石灰對鎘污染酸性土壤中水稻鎘積累的影響[J]. 湖南農業科學, 2016, (12): 24–26.Liu D E, Guo M X, Gao H Q, et al. Effects of lime application on cadmium accumulation of rice in acidic Cd-contaminated paddy soils[J]. Hunan Agricultural Sciences, 2016, (12): 24–26.
[73]Pandit T K, Naik S K, Patra P K, et al. Influence of lime and organic matter on the mobility of cadmium in cadmium-contaminated soil in relation to nutrition of spinach[J]. Soil and Sediment Contamination,2012, 21(4): 419–433.
[74]Tan W N, Li Z A, Qiu J, et al. Lime and phosphate could reduce cadmium uptake by five vegetables commonly grown in south China[J]. Pedosphere, 2011, 21(2): 223–229.
[75]施培俊, 王冠華, 吳迪, 等. 幾種有機、無機鈍化劑對銅污染土壤的鈍化效果研究[J]. 環境工程, 2016, 34(6): 173–176.Shi P J, Wang G H, Wu D, et al. Research on passivation effects of several organic and inorganic passivating agents on copper contaminated soil[J]. Environmental Engineering, 2016, 34(6):173–176.
[76]李建東, 顧紅, 高永剛, 等. 石灰對重金屬鉛影響玉米生長的抑制效應研究[J]. 生態環境學報, 2006, 15(2): 312–314.Li J D, Gu H, Gao Y G, et al. Effect of lime on maize growth under lead pollution[J]. Ecology and Environment, 2006, 15(2): 312–314.
[77]吳烈善, 曾東梅, 莫小榮, 等. 不同鈍化劑對重金屬污染土壤穩定化效應的研究[J]. 環境科學, 2015, 36(1): 309–313.Wu L S, Zeng D M, Mo X R, et al. Immobilization impact of different fixatives on heavy metals contaminated soil[J].Environmental Science, 2015, 36(1): 309–313.
[78]Moghal A A B, Reddy K R, Mohammed S A S, et al. Sorptive response of chromium (Cr6+) and mercury (Hg2+) from aqueous solutions using chemically modified soils[J]. Journal of Testing and Evaluation, 2017, 45(1): 105–119.
[79]Kim S C, Hong Y K, Oh S J, et al. Effect of chemical amendments on remediation of potentially toxic trace elements (PTEs) and soil quality improvement in paddy fields[J]. Environmental Geochemistry and Health, 2017, 39(2): 345–352.
[80]Huang S, Yang Y, Li Q, et al. Evaluation of the effects of limebassanite-charcoal amendment on the immobilization of cadmium in contaminated soil[J]. Bulletin of Environmental Contamination and Toxicology, 2016, : 1–6.
[81]Kumarpandit T, Kumarnaik S, Patra P K, et al. Influence of organic manure and lime on cadmium mobility in soil and uptake by spinach(Spinacia oleracea L.)[J]. Communication in Soil Science and Plant Analysis, 2017, 48(4): 357–369.
[82]Wang X, Liang C H, Yin Y. Distribution and transformation of cadmium formations amended with serpentine and lime in contaminated meadow soil[J]. Journal of Soils and Sediments, 2015,15(7): 1531–1537.
[83]He Y B, Huang D Y, Zhu Q H, et al. A three-season field study on the in-situ remediation of Cd-contaminated paddy soil using lime,two industrial by-products, and a low-Cd-accumulation rice cultivar[J]. Ecotoxicology and Environmental Safety, 2017, 136:135–141.
[84]Brown S, Chaney R L, Hallfrisch J G, Xue Q. Effect of biosolids processing on lead bioavailability in an urban soil[J]. Journal of Environmental Quality, 2003, 32(1): 100–108.
[85]O'Dell R, Silk W, Green P, Claassen V. Compost amendment of Cu-Zn mine spoil reduces toxic bioavailable heavy metal concentrations and promotes establishment and biomass production of Bromus carinatus (Hook and Arn.)[J]. Environmental Pollution, 2007,148(1): 115–124.
[86]Shahid M, Sabir M, Arif A M, Ghafoor A. Effect of organic amendments on phytoavailability of nickel and growth of berseem(Trifolium alexandrinum) under nickel contaminated soil conditions[J]. Chemical Speciation Bioavailability, 2014, 26(1):37–42.
[87]Li P, Wang X X, Zhang T, et al. Effects of several amendments on rice growth and uptake of copper and cadmium from a contaminated soil[J]. Journal of Environmental Sciences, 2008, 20(4): 449–455.
[88]Zhou R, Liu X, Luo L, Zhou Y. Remediation of Cu, Pb, Zn and Cdcontaminated agricultural soil using a combined red mud and compost amendment[J]. International Biodeterioration and Biodegradation, 2017, 118: 73–81.
[89]Hashimoto Y, Matsufuru H, Sato T. Attenuation of lead leachability in shooting range soils using poultry waste amendments in combination with indigenous plant species[J]. Chemosphere, 2008,73(5): 643–649.
[90]張亞麗, 沈其榮, 姜洋. 有機肥料對鎘污染土壤的改良效應[J]. 土壤學報, 2001, 38(2): 212–218.Zhang Y L, Shen Q R, Jiang Y. Effects of organic manure on the amelioration of Cd-polluted soil[J]. Acta Pedologica Sinica, 2001,38(2): 212–218.
[91]Ruttens A, Mench M, Colpaert J V, et al. Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals[J]. Environmental Pollution, 2006,144(2): 524–532.
[92]胡星明, 袁新松, 王麗平, 等. 磷肥和稻草對土壤重金屬形態, 微生物活性和植物有效性的影響[J]. 環境科學研究, 2012, 25(1):77–82.Hu X M, Yuan X S, Wang L P, et al. Effects of phosphate fertilizer and rice straw on soil heavy metal fraction, microbial activity and phytoavailability[J]. Research of Environmental Sciences, 2012,25(1): 77–82.
[93]Arias M, Barral M T, Mejuto J C. Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids[J].Chemosphere, 2002, 48(10): 1081–1088.
[94]王瓊瑤, 李森, 周玲, 王貴胤. 豬糞-秸稈還田對土壤-作物重金屬銅鋅積累及環境容量影響研究[J]. 農業環境科學學報, 2016,35(9): 1764–1772.Wang Q Y, Li S, Zhou L, Wang G Y. Accumulation and environmental capacity of Cu and Zn in soil-crop with swine manure applying and straw returning[J]. Journal of Agro-Environment Science, 2016, 35(9): 1764–1772.
[95]Tipping E, Lofts S, Hooper H, et al. Critical limits for Hg (II) in soils, derived from chronic toxicity data[J]. Environmental Pollution, 2010, 158(7): 2465–2471.
[96]Castaldi P, Santona L, Melis P. Heavy metal immobilization by chemical amendments in a polluted soil and influence on white lupin growth[J]. Chemosphere, 2005, 60(3): 365–371.
[97]Soler-Rovira P, Madejón E, Madejón P, Plaza C. In situ remediation of metal-contaminated soils with organic amendments: role of humic acids in copper bioavailability[J]. Chemosphere, 2010, 79(8):844–849.
[98]Gil-Díaz M, Gonzalez A, Alonso J, Lobo M C. Evaluation of the stability of a nanoremediation strategy using barley plants[J].Journal of Environmental Management, 2016, 165: 150–158.
[99]Yan X L, Lin L Y, Liao X Y, et al. Arsenic stabilization by zerovalent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng[J]. Chemosphere, 2013, 93(4):661–667.
[100]Xu Y, Zhao D. Reductive immobilization of chromate in water and soil using stabilized iron nanoparticles[J]. Water Research, 2007,41(10): 2101–2108.
[101]Wang G, Zhang S, Xu X, et al. Efficiency of nanoscale zero-valent iron on the enhanced low molecular weight organic acid removal Pb from contaminated soil[J]. Chemosphere, 2014, 117: 617–624.
[102]Su H, Fang Z, Tsang P E, et al. Stabilisation of nanoscale zerovalent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J]. Environmental Pollution, 2016, 214: 94–100.
Research progress of heavy metals chemical immobilization in farm land
HU Hong-qing1, HUANG Yi-zong2, HUANG Qiao-yun1, LIU Yong-hong1, HU Chao1
( 1 College of Resource and Environment, Huazhong Agricultural University, Wuhan 430070, China;2 Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin 300191, China )
Soil heavy metal pollution remediation by chemical immobilization is a method that applies immobilization reagent to reduce the mobilization and availability of heavy metals. This paper summarized the research progress of efficiency and mechanism of various immobilization materials to agricultural land, and discussed the main problems for in situ remediation. The purpose of the paper is to provide base for choice and application of immobilization materials.
heavy metal; soil pollution; chemical immobilization; immobilization materials
2017–07–31 接受日期:2017–09–29
國家科技支撐計劃課題(2015BAD05B02)資助。
胡紅青(1966—),男,湖北荊門市人,博士,教授,主要從事土壤重金屬污染修復領域研究。E-mail:hqhu@mail.hzau.edu.cn