雷凱云, 秦訓鵬*, 徐 昀, 劉華明, 胡澤啟
(1.武漢理工大學 現(xiàn)代汽車零部件技術(shù)湖北省重點實驗室,武漢 430070; 2.武漢理工大學 汽車零部件技術(shù)湖北協(xié)同創(chuàng)新中心,武漢 430070;3. 武漢理工大學 能源與動力工程學院,武漢 430070)
汽車發(fā)動機連桿激光3-D打印工藝研究
雷凱云1,2, 秦訓鵬1,2*, 徐 昀3, 劉華明1,2, 胡澤啟1,2
(1.武漢理工大學 現(xiàn)代汽車零部件技術(shù)湖北省重點實驗室,武漢 430070; 2.武漢理工大學 汽車零部件技術(shù)湖北協(xié)同創(chuàng)新中心,武漢 430070;3. 武漢理工大學 能源與動力工程學院,武漢 430070)
為了研究汽車發(fā)動機連桿激光3-D打印制造工藝,采用理論分析和實驗驗證的方法,建立了連桿3-D數(shù)據(jù)模型,進行了分層切片處理,通過S型掃描和輪廓偏移掃描,規(guī)劃兩種連桿加工路徑。選用鐵基合金粉末以及相應(yīng)的工藝參量,在激光3-D打印系統(tǒng)中進行連桿打印試驗。掃描單層軌跡用時4min30s~4min56s,總用時4h20min。結(jié)果表明,連桿成形區(qū)底部的金相組織主要是柱狀晶和樹枝晶,中上部是細小的等軸晶,層間致密搭接,形成良好的冶金結(jié)合;成形連桿顯微硬度為450HV~490HV,屈服強度為754MPa,抗拉強度為1189MPa,延伸率為9%。連桿激光3-D打印成形制坯性能相比于鍛造、粉鍛制造工藝,減少了工裝成本支出并縮短了生產(chǎn)準備工時,其屈服強度、抗拉強度等力學性能超過鋼鍛連桿,與國外粉鍛連桿相比,差別不大,能滿足連桿制坯要求。
激光技術(shù); 發(fā)動機連桿; 3-D打??; 工藝研究; 試驗
連桿是活塞式內(nèi)燃機傳遞動力和轉(zhuǎn)換運動的核心零件,連桿在工作中承受著氣體壓力、往復慣性力等大小、方向周期性變化的交變載荷,因此成形連桿的尺寸精度和機械性能要求極高。目前,國內(nèi)外大量使用的發(fā)動機連桿主要采用模鍛錘、熱模鍛壓力機、電液錘等設(shè)備模鍛成形,美國、德國和日本也有采用粉末鍛造工藝批量生產(chǎn)連桿并實現(xiàn)裝機[1]。然而,汽車行業(yè)競爭的日益激烈要求了汽車包括內(nèi)燃機技術(shù)的快速升級換代,但由于連桿模鍛和粉鍛工藝中長達數(shù)月的模具研制周期以及模具使用的高損耗,都在一定程度上阻礙了內(nèi)燃機樣機的開發(fā)速度。
激光3-D打印技術(shù)是在基于快速原型技術(shù)的基礎(chǔ)上結(jié)合自動送粉、激光熔覆所發(fā)展起來的一種快速制造技術(shù)[2],通過計算機輔助設(shè)計軟件(computer aided design,CAD)設(shè)計模型采用材料逐層堆積的原理成形實體零件。與傳統(tǒng)模鍛、粉末鍛造工藝相比,激光3-D打印具有的無模具、短周期以及快速響應(yīng)能力將更適于技術(shù)快速換代的多品種、變批量零件加工。激光3-D打印直接成形金屬零件實現(xiàn)了形狀、尺寸接近或等同成品,能夠有效減少后續(xù)機械加工工序和加工量。目前國內(nèi)外眾多學者對變徑回轉(zhuǎn)體模型[3-4]、薄壁結(jié)構(gòu)模型[5-6]的激光3-D打印成形工藝參量控制,以及采用不同粉末配方的激光熔覆層顯微組織和性能[7-11]進行了大量的研究。在金屬零件激光直接快速成形方面,北京航空航天大學制造出了TA15,TC18,TC21等鈦合金材料的飛機大型整體主承力構(gòu)件以及A100等超高強度鋼飛機起落架關(guān)鍵構(gòu)件[12]。西安交通大學對激光熔化鎳基合金的沉積凝固過程進行了長期研究,并制造出高尺寸精度和高表面質(zhì)量的空心葉輪樣件[13]。
目前,金屬零件激光直接快速成形的研究主要集中于航天、航空、石油、船舶等現(xiàn)代化高端裝備的高性能大型金屬構(gòu)件的生產(chǎn)制造[12]。在汽車金屬零部件制造領(lǐng)域,激光3-D打印技術(shù)應(yīng)用較少。本文中選取汽車發(fā)動機連桿建立了連桿激光3-D打印數(shù)據(jù)模型,并采用該模型在激光3-D打印系統(tǒng)中實現(xiàn)成形,并分析了3-D打印成形連桿不同截面的微觀組織和顯微硬度分布。
根據(jù)某普及型轎車發(fā)動機連桿設(shè)計參量,建立圖1a所示的3維模型并轉(zhuǎn)換為三角形網(wǎng)格(STereo lithography,STL)文件格式,利用三角形面片表征連桿實體模型表面輪廓,生成三角形面片單元776個,三角形頂點2328個。識別連桿模型特征截面及特征線進行分層切片處理,確定模型內(nèi)外輪廓尺寸,補償激光3-D打印系統(tǒng)采用的直徑1mm圓形激光光斑,連桿模型分層切片結(jié)果如圖1b所示。單一片層成形過程就是對內(nèi)外輪廓線包絡(luò)區(qū)域掃描填充的過程。根據(jù)連桿結(jié)構(gòu)特點,采用如圖2a所示的S型掃描和圖2b所示的輪廓偏移掃描。S型掃描是采用等間距平行線往復掃描的方式填充輪廓內(nèi)部區(qū)域;輪廓偏移掃描是將單一片層內(nèi)外輪廓線向?qū)嶓w內(nèi)部等距偏移并逐段連接,從而形成填充線。
激光3-D打印模型的分層切片高度和填充路徑間距等參量是由連桿的設(shè)計尺寸(見圖3)和3-D打印系統(tǒng)工藝實驗決定。連桿3-D打印模型切片高度為0.3mm,單層等距掃描,規(guī)劃S型掃描和輪廓偏移掃描填充路徑如圖4所示。掃描路徑坐標點不能直接輸入激光3-D打印系統(tǒng)控制器執(zhí)行,將路徑代碼與激光功率、掃描速率、送粉速率等相關(guān)工藝參量進行組合后輸出控制文件。

Fig.1 3-D model and slices of connecting rod

Fig.2 Principles of S-type scanning and contour offset scanning

Fig.3 Main dimension of connecting rod

Fig.4 Filling routes of connecting rod with S-type scanning and contour offset scanning
試驗基體為尺寸300mm×200mm×20mm的板材,表面進行打磨處理以減少激光反射,粉末選用JG-3型Fe基合金粉末,成分如表1所示。

Table 1 Chemical compositions of JG-3 iron-based alloy powder
試驗中采用圖5所示的激光3-D打印系統(tǒng)。圖5a為電源,控制系統(tǒng)開閉;圖5b為控制器,主要作用是控制加工系統(tǒng)的運動軌跡、激光功率、送粉速率以及監(jiān)控激光實際功率、冷卻水溫度等各項指標;圖5c為三軸式數(shù)控工作臺,采用廣州數(shù)控GSK 980MDc加工設(shè)備,配以激光發(fā)射器、光外側(cè)向同軸送粉頭等裝置;圖5d為YFL 1000-CS大功率光纖激光器,激光束通過光學元件擴束、聚焦,在加工表面形成直徑1mm的圓形光斑;圖5e為載氣式送粉裝置;圖5f為循環(huán)水冷裝置。

Fig.5 Laser 3-D printing system
連桿模型的加工軌跡規(guī)劃形成了兩種掃描路徑,S型掃描形成的填充線運行軌跡簡單,但由于激光熔化
金屬粉末快速凝固形成橢圓形熔道,片層內(nèi)單一方向熔道多次搭接會直接影響成形件的徑向力學性能,并且填充線方向相同會引起收縮方向應(yīng)力一致,導致表面翹曲程度增加,甚至在填充線方向突變處出現(xiàn) “結(jié)瘤”現(xiàn)象,從而影響成形件的成形精度和表面光滑度。輪廓偏移填充線的掃描方向不斷變化,成形區(qū)域內(nèi)應(yīng)力發(fā)散,能有效減小收縮率,而且成形件內(nèi)外表面輪廓線是一條完整的封閉曲線,以模型主要尺寸確定的內(nèi)外輪廓向成形件內(nèi)部等距偏置規(guī)劃填充路徑,能提高成形件的尺寸精度,減少后續(xù)加工余量。試驗中選取連桿輪廓偏移掃描路徑。
試驗表明,激光功率、送粉速率和掃描速率等工藝參量對熔池形貌以及性能有顯著影響[14-15]。多道搭接熔覆過程中,每道熔覆層相互影響,熔覆層及其整體內(nèi)部的應(yīng)力狀態(tài)相對復雜[16]。結(jié)合激光3-D打印系統(tǒng)的單道熔覆實驗數(shù)據(jù)及相關(guān)結(jié)論,選取試驗主要工藝參量見表2。

Table 2 Processing parameters of 3-D printing experiment
按照確定的工藝方案,將加工路徑與工藝參量組合生成控制文件,輸入激光3-D打印系統(tǒng)控制器。試驗前對基板進行預熱,減小初始打印過程中熔覆層與基板間的溫度梯度,完成對刀后啟動控制程序打印發(fā)動機連桿。圖6a~圖6c為激光3-D打印連桿不同時刻的形貌。隨著加工過程的推進,連桿片層不斷堆積,成形高度增大,整體3維結(jié)構(gòu)逐漸顯現(xiàn)。圖6d為激光3-D打印連桿。激光掃描單層軌跡用時為4min30s~4min56s,連桿毛坯模型總層數(shù)為50層,打印總用時4h20min。

Fig.6 Process and result of 3-D printing connecting rod
連桿打印成形后,根據(jù)連桿不同工況下受力狀況的理論分析確定危險截面,選取如圖7a所示的連桿大頭截面A-A,B-B,E-E,連桿桿身截面C-C,D-D,以及連桿小頭截面E-E制備試樣,采用電火花線切割切取表面積10mm×10mm的試樣進行組織結(jié)構(gòu)與性能分析。

Fig.7 Samples and microstructure of laser 3-D printing connecting rod
選用粒度由小到大的金相砂紙進行打磨,然后在金相研磨機上用拋光劑對試樣表面進行拋光,采用HV-1000A顯微硬度計測試其維氏硬度,加載壓力500g,保持時間5s。拋光后的金相試樣用現(xiàn)配王水(鹽酸和硝酸按照3∶1比例混合物)進行金相腐蝕,然后立即用水沖洗、無水乙醇洗凈、吹風機吹干,采用金相顯微鏡觀察試樣的微觀組織形貌。在桿身處制備室溫拉伸試樣(GB/T 228.1-2010),取樣位置如圖7a所示,試樣標距L0=8mm。用Reger電子萬能試驗機進行室溫拉伸實驗,拉伸時加載變形速率為0.5mm/min。
激光3-D打印過程熔池內(nèi)傳熱、傳質(zhì)情況復雜,同時還伴隨著組織相變的發(fā)生。圖7b為低倍鏡下連桿截面試樣的微觀形貌,可以看出,層內(nèi)、層間熔道相互致密搭接,形成良好的冶金結(jié)合。圖中部分區(qū)域存在少量氣孔,產(chǎn)生的原因主要是合金粉末在激光加工前氧化、受潮或者有的元素在高溫下發(fā)生氧化反應(yīng),多道搭接過程的搭接率等工藝參量設(shè)置不合理也會導致孔洞的產(chǎn)生。為了提高成形連桿質(zhì)量,可以采取的工藝措施有優(yōu)化激光加工系統(tǒng)、設(shè)置保護氣氛、粉末輸送前烘干去濕。
圖7c為連桿截面試樣底部的金相組織,可以看出,靠近基體的底部組織為柱狀晶,且生長方向與基體結(jié)合面垂直。由金屬凝固理論可知,溫度梯度與凝固速率的比值G/R決定凝固組織的形貌[17]。連桿堆積初始基體材料溫度較低,熔池主要依靠基體傳導散熱,熔池與基體之間的界面結(jié)合處存在較大的正溫度梯度G,并且溫度梯度和主熱流方向主要沿沉積方向,即垂直于基體結(jié)合面,晶粒長大過程中,與主熱流方向偏差較大的晶粒被淘汰。圖7d為連桿截面試樣中部的金相組織,可以看出,底層中部組織為垂直于基體結(jié)合面方向的樹枝晶,由于Fe基合金粉末熔化凝固過程中各種成分的凝固點不同,熔點高的溶質(zhì)元素先凝固,凝固過程伴隨著固液界面前沿溶質(zhì)的再分配,溶質(zhì)濃度發(fā)生變化導致金屬液體凝固溫度的改變,即成分過冷。隨著距固液界面的距離增大,溫度梯度G減小,成分過冷增大,在連桿截面中部形成樹枝晶組織。圖7e為連桿截面試樣中上部的金相組織,為細小的等軸晶。連桿多層堆積成形的部分已經(jīng)具有了較高的溫度,并且在連桿成形上部,熱量通過熱傳導、熱輻射以及空氣對流等多種方式散發(fā),溫度梯度與凝固速率的比值G/R逐漸減小,成分過冷極大,在固液界面前沿生成許多沿各個方向生長的晶核,晶粒自由生長形成細小的等軸晶。由于成分及組織分布不均會在熔覆層內(nèi)部形成組織應(yīng)力和相變應(yīng)力,影響成形連桿質(zhì)量,在后續(xù)工序中會配套相應(yīng)的熱處理工藝,消除內(nèi)應(yīng)力。
對成形連桿不同截面試樣的分層高度方向上和單層軌跡內(nèi)取點測試了維氏硬度,以結(jié)合面中心為原點,沿縱向和橫向每間隔0.5mm選取有限個點,硬度分布曲線如圖8所示。
可知,顯微硬度從結(jié)合區(qū)-連桿打印區(qū)呈梯度分布,結(jié)合區(qū)顯微硬度較低,F(xiàn)e基合金粉末中添加了大量Cr,Si等元素(見表1),激光加熱熔化合金粉末生成金屬化合物,進入熔池迅速擴散并凝固形成硬質(zhì)點,造成連桿打印區(qū)顯微硬度大幅度提高。連桿打印區(qū)的顯微硬度由低到高、再由高到低不斷變化,是由于在激光按照加工軌跡成形每一層時,使已經(jīng)凝固成形的上一層熔池發(fā)生部分重熔,相互間形成冶金結(jié)合,成形部分熱傳導使縱向上分別形成回火區(qū)和重熔區(qū),顯微硬度逐漸降低。單層軌跡內(nèi)顯微硬度值變化不大、較為均勻,穩(wěn)定在450HV~490HV。由于激光3-D打印成形精度較高,其形狀、尺寸接近成形連桿,配套后續(xù)銑削、磨削等機械加工工序,提高連桿的幾何精度和表面質(zhì)量。目前,以超細晶粒硬質(zhì)合金為基體的涂層刀具的銑削硬度可達510HV[18],且成本較低,采用高速銑削工藝能夠?qū)す?-D打印連桿進行高效的后處理。

Fig.8 Hardness distribution of connecting rod samples
室溫拉伸實驗結(jié)果表明,F(xiàn)e基粉末激光3-D打印連桿的屈服強度為754MPa,抗拉強度為1189MPa,延伸率為9%。將獲得的激光3-D打印連桿的硬度、拉伸性能與模鍛、粉鍛連桿的性能進行比較,如表3所示。連桿模鍛工藝常用材料有調(diào)質(zhì)鋼40Cr,35CrMo,非調(diào)質(zhì)鋼36MnVS4,C70S6[19];粉鍛工藝通常采用3Cu5C,3Cu6C,3Cu7C等Fe-C-Cu系合金粉末[20]??梢钥闯?,F(xiàn)e基合金粉末激光3-D打印連桿的硬度稍高,屈服強度、抗拉強度以及延伸率與3Cu7C粉末鍛造連桿相當。
Table 3 Comparison of mechanical properties of connectingrods with different manufacturing processes

manufacturingprocesseshardness/HVyieldstrength/MPatensilestrength/MPaelongation/%C70forged260550950~1050>10C70S6forged[19]280~330580~630970~1010123Cu7Cpowderforged[20]34577011209H16powderforged[21]295703103811JG?33?Dprinting450~49075411899
(1)選用Fe基合金粉末、激光功率1000W、掃描速率1000mm/min、送粉速率15g/min等工藝參量,采用輪廓偏移掃描規(guī)劃的連桿加工路徑,在激光3-D打印系統(tǒng)中進行連桿激光3-D打印試驗,得到成形連桿,掃描單層軌跡用時4min30s~4min56s,連桿激光3-D打印成形總用時4h20min,相比于鍛造、粉鍛制造工藝,減少了模具制造成本和周期。
(2)激光3-D打印成形連桿層間致密搭接,形成良好的冶金結(jié)合。連桿成形區(qū)底部由于與基體存在較大的溫度梯度,金相組織主要是柱狀晶,隨著距固液相的距離逐漸變大,溫度梯度減小,成分過冷增大,中部形成樹枝晶組織,連桿成形上部晶粒自由生長成細小的等軸晶。
(3)測試激光3-D打印連桿各方向的顯微硬度,由于激光成形過程中熔池重熔的原因,顯微硬度在分層方向上出現(xiàn)規(guī)律性波動。對比激光3-D打印連桿與傳統(tǒng)制造工藝成形連桿的力學性能,發(fā)現(xiàn)其屈服強度、抗拉強度高于鋼鍛連桿,與粉鍛連桿相差不大。結(jié)果表明,激光3-D打印連桿經(jīng)過后續(xù)配套的銑削、磨削等機械加工工序后,提高成形連桿的幾何精度和表面質(zhì)量,能達到連桿制造的要求。
[1] JIANG H Y. Materials and production techniques applied in engine connecting rod[J]. Internal Combustion Engine & Parts, 2013, 34(10): 23-26 (in Chinese).
[2] HUANG W D, LI Y M, FENG L P,etal. laser solid forming of metal powder materials[J]. Journal of Materials Engineering, 2002, 30(3): 40-43 (in Chinese).
[3] LI H Y, SHI Sh H, FU G Y,etal. Control of process parameters of reducing solid of revolution with coaxial inside-beam powder feeding accumulation[J]. Chinese Journal of Lasers, 2011, 38(8): 0803012 (in Chinese).
[4] CAI W, FU G Y, SHI Sh H,etal. Research on thickness control of variable diameter solid with coaxial inside-beam powder feeding laser cladding by defocusing technique[J]. Chinese Journal of Lasers, 2012, 39(7): 0703003 (in Chinese).
[5] WANG K, YANG H O, LIU F Ch,etal. Stress and deformation finite element method simulation of thin wall part with pre-deformation subtract during laser solid forming[J]. Chinese Journal of Lasers, 2012, 39(6): 0603002 (in Chinese).
[6] FANG Q Q, FU G Y, WANG C,etal. Laser direct forming technology of double thin-wallet parts with connecting ribs[J]. Chinese Journal of Lasers, 2017, 44(2): 0202005(in Chinese).
[7] SONG X H, ZHOU Y F, XING J K,etal. Comparison between laser cladding Fe-based and Ni-based alloy coatings on 35CrMo[J]. Laser Technology, 2015, 39(1): 39-45 (in Chinese).
[8] SHI B F, ZHANG A F, QI B L,etal. Influence of heat accumulation on microstructure and property of Ti-6Al-4V in laser direct forming[J]. Laser Technology, 2016, 40(1): 29-32 (in Chinese).
[9] ZHOU S, DAI X, ZHENG H. Microstructure and wear resistance of Fe-based WC coating by multi-track overlapping laser induction hybrid rapid cladding[J]. Optics & Laser Technology, 2012, 44(1): 190-197.
[10] CUI Z Q, YANG H W, WANG W X,etal. Laser cladding Al-Si/Al2O3-TiO2composite coatings on AZ31B magnesium alloy[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2012, 27(6): 1042-1047.
[11] CHEN J F, WANG J T, ZHOU J Y. Research process of laser cladding on magnesium alloy surface[J]. Laser Technology, 2015, 39(5): 631-636 (in Chinese).
[12] WANG H M. Materials’ fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698 (in Chinese).
[13] LU Z L, LI D C, LU B H,etal. Investigation into the direct laser forming process of steam turbine blade[J]. Optics and Laser in Engineering, 2011, 49(9/10): 1101-1110.
[14] LIU S Q, GUO Y Sh, YANG Y L,etal. Investigation on orthogonal experiments of laser cladding anti-wear resistance coating on H13 steel[J]. Laser Technology, 2015, 39(3): 399-404 (in Chinese).
[15] GAO J, SONG D Y, FENG J W. Influence of processing parameters on geometrical features of CBN coatings by laser cladding on titanium alloy surface[J]. Surface Technology, 2015, 44(1): 77-80 (in Chinese).
[16] CHEN L, TAO R, LOU D Y,etal. Analysis of the mechanism cracking during the multipass laps cladding experiment[J].Laser & Optoelectronics Progress, 2014, 51(10): 101401 (in Chinese).
[17] XIE J X. New technique and new technology of material processing[M]. Beijing: Metallurgical Industry Press, 2004: 16-20 (in Chinese).
[18] ZHU X M. Study of development and application of high-apeed cutting tool materials[J]. Machinery Design & Manufacture, 2012, 50(11): 244-245 (in Chinese).
[19] WANG Zh H, LI Sh, GE Y,etal. Research on micstructure and mechanical properties and fracture splitting properties of forged connecting rod of C70S6 non-quenched and tempered steel[J]. Hot Working Technology, 2015, 44(19): 39-43 (in Chinese).
[20] ILIA E, LANNI G, XIN J,etal. Investigation on high strength powder metal forged connecting rods[J]. Transactions of CSICE, 2008, 26(5): 463-469 (in Chinese).
[21] BAI L N, LIU F P, WANG S,etal. Micstructure and mechanical properties of Fe-C-Cu powder-forged connecting rod[J]. Acta Metallurgica Sinica, 2016, 52(1): 41-50 (in Chinese).
Studyonlaser3-Dprintingprocessofautomotiveengineconnectingrods
LEIKaiyun1,2,QINXunpeng1,2,XUYun3,LIUHuaming1,2,HUZeqi1,2
(1. Hubei Key Laboratory of Advanced Technology of Automobile Parts, Wuhan University of Technology, Wuhan 430070, China; 2. Hubei Collaborative Innovation Center for Automotive Components Technology, Wuhan University of Technology, Wuhan 430070, China; 3. School of Energy and Power Engineering, Wuhan University of Technology, Wuhan 430070, China)
In order to study the manufacturing process of laser 3-D printing for automobile engine connecting rods, by means of theoretical analysis and experimental verification, 3-D model of a connecting rod was established and slicing was done. By S-type scanning and contour offset scanning, two machining paths of connecting rods were planned. Alloy powders based on iron and the corresponding technological parameters were selected to carry out the rod print test in a laser 3-D printing system. It took 4min30s~4min56s to scanning a single layer and it took 4h20min totally. The results show that the metallographic structure at the bottom of the forming zone of the connecting rod is mainly columnar crystal and dendritic crystal. The middle and upper part are small equiaxed crystal. Interlayer is dense and good metallurgical bonding had been formed. The microhardness of the formed connecting rod is 450HV~490HV, yield strength is 754MPa, tensile strength is 1189MPa, and elongation rate was 9%. Compared to forging, powder forging manufacturing processes, laser 3-D printing forming reduces tooling costs and shortens the production preparation time. Its mechanical properties, such as yield strength and tensile strength, exceed those of steel forging links. Compared with foreign powder forged connecting rod, the difference is not very big. The process can meet the requirements of connecting rod blank making.
laser technique; engine connecting rod; 3-D printing; process study; experiment
1001-3806(2018)01-0136-05
國家自然科學基金資助項目(51575415)
雷凱云(1994-),男,碩士研究生,現(xiàn)主要從事激光加工方面的研究。
*通訊聯(lián)系人。E-mail:qxpwhut@qq.com
2017-02-16;
2017-03-31
TG665
A
10.7510/jgjs.issn.1001-3806.2018.01.027