陳祖興,曾志剛,王曉媛,殷學博,陳帥,李曉輝,齊海燕
沖繩海槽南部流紋巖中角閃石的化學特征及其對巖石成因的指示
陳祖興1,3,曾志剛1,2,3*,王曉媛1,2,殷學博1,陳帥1,2,李曉輝1,3,齊海燕1
(1.中國科學院海洋研究所 中國科學院海洋地質與環境重點實驗室,山東青島266071;2.青島海洋科學與技術國家實驗室 海底礦產資源評價與探測技術功能實驗室,山東 青島266071;3.中國科學院大學,北京100049)
為了揭示沖繩海槽西南端流紋巖成因,利用電子探針和LA-ICP-MS對該流紋巖中角閃石進行了主量和微量元素測定。所有角閃石主量元素成分變化范圍小,晶體化學特征主要表現為:CaB>1.60,CaA=0,(Na+K)A<0.33,NaB介于0.23~0.39之間,均為鈣質鎂閃石。微量元素以富集Sc、V、Cr、Co、Ni和REE,虧損Rb、Sr、Ba、Zr、Th、U和Pb為特征,這些元素的富集與虧損與復雜的類質同象作用有關。由角閃石溫壓計得出其結晶時的溫度范圍為775~839℃,壓力為0.12 GPa,大致相當于4 k m的深度。角閃石的成因礦物學研究顯示該流紋巖中角閃石為殼-幔混合成因,進一步表明沖繩海槽南部流紋巖由幔源玄武質巖漿與殼源長英質巖漿混合形成的中基性巖漿在淺層巖漿房中結晶分異而形成,且殼?;旌显春芸赡苁菦_繩海槽西南端火山巖巖漿的主要來源。
角閃石;主量與微量元素;流紋巖;沖繩海槽
角閃石族礦物廣泛產出于各種巖漿巖、變質巖[1-2]以及河流與近海沉積物中[3-4],少量出現于上地幔中,成為地幔水的載體[5]。在角閃石系列礦物中,由于存在著Fe2+-Mg-Mn,Si-A1-Fe-Ti及Na+-K+等多元素的廣泛類質同象替換,在不同的成巖條件下,形成不同的角閃石亞種,這些礦物亞種的成分變化則記錄了巖漿起源和演化等成巖方面的重要信息[6],因此,研究角閃石的化學成分對反映巖漿的起源、演化及巖石的成因具有重要意義。此外,角閃石中的某些組分對巖漿結晶的溫度、壓力、氧逸度等有重要指示意義,如角閃石中AlⅥ和Ti含量隨溫度增加而增加,而AlⅣ和M4位置上的Na含量隨壓力增加而增加,AlⅣ隨壓力增加而增加,氧逸度的升高將使其(Na+K)A增加而Ti降低[7-8]。為此,不同學者提出適合不同條件下的角閃石溫壓計及氧逸度計[9-14],這為我們根據角閃石的成分探討其結晶條件成為可能。
沖繩海槽是西太平洋邊緣年輕的弧后盆地,而目前對沖繩海槽火山巖的研究主要基于全巖地球化學[15-26],對礦物化學研究較少,且主要集中于對斜長石[27-29]及輝石化學成分的研究[30-31],而對角閃石的研究鮮有報道。另一方面,關于沖繩海槽酸性巖的成因,目前主要認為其是玄武質巖漿結晶分異的產物,存在少量或無地殼混染作用影響[16,20,22—23,26,32]。目前,這些認識主要是基于全巖的Sr-Nd同位素分析結果,無法消除由于海底火山巖Sr同位素易受海水蝕變影響,而可能難以反映其源區性質的缺陷。為此,本文采用EPMA(電子探針分析)和LA-ICPMS(激光剝蝕電感耦合等離子質譜儀)測試分析了沖繩海槽南端流紋巖中角閃石的主、微量元素組成,探討其結晶環境及成因,可為揭示其寄主巖石——流紋巖的成因提供研究基礎。
沖繩海槽位于東海大陸架東緣,北起日本九州南至中國臺灣,延伸達1 200 k m,與琉球海溝、琉球島弧構成完整的溝-弧-盆體系(圖1)。海槽內巖漿作用與熱液活動發育[15,33],其由西北向延伸的吐喀喇斷裂和宮古斷裂分為北、中、南3段[34-35]。從北至南,海槽內地殼厚度逐漸減薄,從北部厚約30 k m減至南部厚約12 k m[36]。這種明顯減薄的趨勢與海槽的張裂歷史有關,主要有2個階段:(1)中中新世至晚中新世,(2)早更新世至晚更新世[37-38],而海槽張裂的停止與重啟,則與臺灣北部的弧陸碰撞有關:大約在10 Ma BP,呂宋島弧與歐亞大陸碰撞,導致海槽第一階段張裂的停止;大約在2.8 Ma BP,臺灣北部造山帶碰撞后垮塌導致海槽第二階段擴張的重啟,同時海槽向南延伸[39]。而沖繩海槽最南端與海槽其他部位存在不同的構造演化模式[40],Sibuet等[41]認為其張裂可以分為2個階段:2~0.1 Ma BP和0.1 Ma BP至今,Chung等[18]則指出第四紀才開始發育的沖繩海槽最南端是一個胚胎張裂區,其地殼厚度(25~30 k m)并無明顯減薄[38,42]。
此外,巖漿作用與構造作用密切相關。沖繩海槽火山巖的分布類型從北到南也存在明顯差異,北段主要出露流紋巖和英安巖[34];中段出露流紋巖和玄武巖,伴有少量的安山巖[15-16];南段地塹中主要出露玄武巖或玄武質安山巖[15,24-25],而海槽的南端主要分布中酸性火山巖[17-18]。

圖1 沖繩海槽海底地形與取樣站位Fig.1 Bathy metric of the Okinawa Trough and sampling position
3.1 樣品特征
研究的流紋巖樣品是由“科學”號科考船2014年通過實施HOBAB3航次,在沖繩海槽南段T9’站位(24°50'57.774″N,122°41'55.877″E)用電視抓斗取得,水深約1 382 m(圖1),位于唐印熱液區。該樣品為致密塊狀,呈不規則長方體,長約7~11 c m,寬4~5 c m,高約6 c m(圖2a),斑狀結構,斑晶主要為石英、斜長石、角閃石、斜方輝石(圖2b,2c),基質中氣孔呈定向排列,具有流紋構造(圖2b)。角閃石呈自形-半自形結構,可見兩組完全解理,夾角56°,背散射圖像上角閃石未見環帶,即無成分變化(圖2d,2e,2f)。
3.2 測試方法
流紋巖樣品電子探針薄片、激光片的制備在河北省地質礦產勘查院磨片室完成。具體制作流程如下:首先將巖石樣品表面蝕變部分切除,將里面新鮮部分切割成大小合適的塊狀,放在超聲波清洗機內清洗約45 min,以去除氣孔內的松散沉積物。烘干后進行粗磨、細磨后利用環氧樹脂膠粘在載玻片上,繼續粗磨、細磨,待厚度合適后利用拋光材料對其進行拋光,直至樣品厚度一致(探針片和激光片分別為60μm和80μm左右),細微麻坑和擦痕消失為止。
角閃石主量元素成分分析在中國海洋大學海底科學與探測技術教育部重點實驗室完成,電子探針型號為JXA-8230(日本JEOL公司)。測試條件為:電壓15 k V,電子束束流20 n A,束斑大小5μm。以自然礦物鈉長石對Na、Al和Si,透輝石對Mg和Ca,透長石對K,金紅石對Ti,鐵鋁榴石對Fe,鈣薔薇輝石對Mn以及綠泥石對Cr分別進行校正,主要氧化物的分析誤差小于1%,詳細測試方法見Lai等[29]。

圖2 沖繩海槽南部流紋巖手標本及顯微照片Fig.2 Hand speci men and microphotograph of the rhyolite fro mthe southern Okinawa Troughb~f為斑晶礦物背散射圖像,其中e、f角閃石上序號為LA-ICP-MS測試點的位置b-f are back scattering i mages of phenocrysts,serial nu mber on the amphiboles in i mage e and f is the positions analyzed by LA-ICP-MS
礦物原位分析在中國科學技術大學中國科學院殼幔物質與環境重點實驗室的激光剝蝕電感耦合等離子體質譜(LA-ICP-MS)上完成。該分析系統的激光器為GeoZosi Vo Ar F激發紫外激光,激光波長為193 n m。分析質譜為Perkin El mer Elan DRCⅡ型四極桿質譜。分析過程中采用氦氣(He)作為載氣,氬氣(Ar)作為輔助氣。激光斑束直徑為32~60μm。剝蝕過程中樣品表面的激光能量為10 mJ/c m2,激光頻率為10 Hz。分析過程中采用人工合成硅酸鹽玻璃標樣NIST SRM610作為外部標準,每隔5個樣品間插一個標樣,對儀器狀態進行控制和校正。對于大部分微量元素的分析誤差小于10%。
4.1 主量元素
角閃石類礦物的化學成分相當復雜,其標準的晶體化學式可表示為:A0-1B2VIC5IVT8O22(OH)2[43]。其中T位是四面體位置,以Si、Al、Ti為序,使其總原子數為8;C位是八面體配位,用T位過剩的Al、Ti,依次還有 Fe3+、V、Cr、Mn3+、Zr、Mg、Zn、Ni、Co、Fe2+、Mn2+和Li可指派給C位,至總數為5;B位也是八面體配位,首先用C位過剩的原子充填,充填順序與C位相反,即Li、Mn2+等,然后是Ca、Sr、Ba和Na指派給B位,使其總數為2;A位用B位過剩的Na,然后是所有的K充填,其原子總數在0~1之間[44]。其中,□(空位)和K僅出現在A位,Na出現在B位或A位[43]。本文使用Win Amphcal軟件[45]進行了角閃石數據的陽離子數計算及配位,Fe2+和Fe3+校正采用陽離子為Cations-13CNK和Cations-15 NK平均算法求得[46]。該流紋巖中角閃石主量元素電子探針分析結果及晶體化學計算結果列于表1中,從表中可以看出:角閃石主要氧化物含量變化范圍不大,如Si O2為44.68~46.91 wt%(平均為46.13 wt%;n=30);Al2O3為7.04~8.82 wt%(7.45wt%)和Mg O為9.27~12.77 wt%(10.47 wt%);Ca O為10.02~10.79 wt%(10.55 wt%);Fe O為16.63~22.48 wt%(20.16 wt%)。角閃石礦物的晶體化學特征主要表現為:CaB>1.60,CaA=0,(Na+K)A<0.33,NaB介于0.23~0.39之間(表1),根據國際礦物協會和礦物名稱委員會的角閃石分類方案[43-44],本區角閃石均屬于鈣質角閃石亞類,為鎂閃石(圖3)。

表1 沖繩海槽南部流紋巖中角閃石的主要氧化物組成(wt%)Tab.1 Major oxides of amphibole in the r hyolite fromthe southern Okinawa Trough(wt%)

續表1

續表1

續表1

圖3 鈣角閃石分類圖解Fig.3 Classification of the calcic amphiboles
4.2 微量及稀土元素
沖繩海槽南部流紋巖中角閃石微量及稀土元素由激光探針(LA-ICP-MS)分析獲得,分析點位見圖2e、2f,結果列于表2中。各分析點位微量元素及稀土元素組成相似,其中Rb含量變化范圍為0.98×10-6~2.08×10-6(平均1.32×10-6),Sr含量在28×10-6~39×10-6(平均34×10-6)之間;Th、U和Pb的變化范圍分別為0.09×10-6~0.48×10-6(平均0.24×10-6)、0.01×10-6~0.1×10-6(平均0.05×10-6)和0.43×10-6~1.54×10-6(平均0.94×10-6);Zr變化范圍為65×10-6~90×10-6(平均75×10-6)。角閃石中 Rb、Sr、Th、U、Pb、Zr的含量均遠低于角閃石賦存母巖(流紋巖)(分別為Rb=121×10-6、Sr=128×10-6、Th=12.5×10-6、U=2.67×10-6、Pb=17×10-6、Zr=95×10-6;表2)。在原始地幔標準化曲線上各點位顯示相似的變化趨勢,均虧損Th、U、Pb、Zr和Sr(圖4a)。
角閃石的稀土元素總量變化范圍為353×10-6~626×10-6。在球粒隕石標準化曲線上表現出相似性,均呈現“弓型”特征(圖4b;標準化值引自Sun和Mc Donough[47])。輕稀土稍微虧損(La/Sm)N≈0.61),重稀土稍微富集(Gd/Yb)N≈1.55),具明顯的Eu負異常(δEu=0.16~0.30)。
值得注意的是角閃石中過渡族元素相對富集,如Sc、V、Cr、Co和Ni的變化范圍分別為199×10-6~422×10-6(平均301×10-6)、141×10-6~316×10-6(平均238×10-6)、2×10-6~61×10-6(平均23×10-6)、50×10-6~56×10-6(平均53×10-6)和14×10-6~33×10-6(平均23×10-6)均遠高于賦存母巖(流紋巖)中同一元素的含量(分別為Sc=8×10-6、V=7.31×10-6、Cr<0.5×10-6、Co=2.27×10-6和Ni=0.561×10-6;表2)。

圖4 原始地幔標準化的角閃石微量元素蛛網圖(a)和角閃石稀土元素球粒隕石標準化配分型式(b)Fig.4 Pri mitive mantle nor malized trace element patterns for amphiboles(a)and chondrite nor malized REE patterns(b)

表2 沖繩海槽南部流紋巖中角閃石微量元素激光探針分析結果(×10-6)Tab.2 The LA-ICP-MStrace element analysis result for amphiboles in the rhyolite fromthe southern Okinawa Trough(×10-6)
5.1 角閃石中的微量元素組成
為了便于對比,將角閃石中微量元素對流紋巖全巖微量元素含量進行了標準化(圖5),結果表明該角閃石中過渡族元素Sc、V、Cr、Co和Ni的富集程度相比流紋巖高達30倍。然而,過渡族元素在巖漿巖中通常富集于基性巖及超基性巖中,隨著巖漿的演化逐漸降低,至少其在中酸性巖和堿性巖中豐度值低[48]。其在角閃石中的富集,主要與復雜的類質同象作用有關。由于Ti和Al在角閃石晶體化學結構中是T位和C位的重要占位離子之一,而Fe和Mg是C位和B位的重要占位離子之一[43]。Sc在自然界通常是Sc3+,易替代Fe2+、Mg2+(Sc3++Al3+=Fe2++Si4+),V3+(0.74?,1?=10-10m)易以類質同象替代Fe3+(0.67?)和Al3+(0.57?),Cr3+(0.62?)易以類質同象替代Fe3+(0.67?)和Al3+(0.57?)(Cr3++Fe3+/Al3+=Fe2+/Mg2++Si4+),Co和Ni通常是2價離子,類質同象替代 Mg2+、Fe2+、Mn2+,因此Sc、V、Cr、Co和Ni可以類質同象的形式取代角閃石中Ti、Al、Fe和Mg,從而在角閃石中形成富集[49]。
該流紋巖中角閃石的稀土元素總量變化范圍為353×10-6~626×10-6,比流紋巖的稀土元素總量要富集(∑REE=126;表2),且重稀土元素的富集程度要明顯高于輕稀土元素(圖5)。由于三價稀土元素的離子半徑和Ca2+很接近,且Ca是角閃石B位的重要占位離子之一[43],因此,很容易以各種類質同象形式進入含鈣礦物中。然而,稀土元素之間離子半徑的差異(鑭系收縮),即從La到Lu離子半徑逐漸減小[50],如從La3+(1.22?),Ce3+(1.18?)降至Lu3+(0.99?),逐漸與Ca2+(0.99?)[49],由于半徑相似的離子更易發生類質同像,因此該角閃石中重稀土元素的富集程度更高。這與流紋巖中角閃石/熔體間的分配系數結果一致,即角閃石中重稀土元素的分配系數高[51]。在稀土元素配分曲線上,角閃石強烈虧損Eu元素(圖4b),且在角閃石微量元素全巖標準化配分型式上,Eu元素顯示下凹的模式且富集程度較低(圖5),稀土元素Eu的富集與虧損主要取決于含鈣造巖礦物的聚集和遷移[52]。含鈣的造巖礦物主要有偏基性的斜長石、磷灰石和含鈣輝石等。這類礦物中Ca2+離子半徑與Eu2+、Eu3+相近,且與Eu2+電價相同,故晶體化學性質決定了Eu主要以類質同象的形式進入斜長石、磷灰石、單斜輝石等造巖礦物[53]。而該流紋巖中部分斜長石結晶早于角閃石(圖2b),從而造成殘余熔體中Eu含量的降低。因此,結晶相對較晚的角閃石中Eu的含量低。
流紋巖中角閃石的微量元素組成在原始地幔標準化曲線及微量元素全巖標準化配分型式上,均表現出Rb、Sr、Zr、Ba、Th、U和Pb負異常(圖4a,圖5),說明角閃石并不是流紋巖中這些元素的富集礦物相。由于Rb+的離子半徑(1.47?),Sr2+(1.12~1.27?)、Ba2+(1.34~1.43?)以及Pb2+(1.18~1.32?)與K+(1.33?)相近,因此上述離子可以在許多造巖礦物的晶格中置換K+,易于被含鉀礦物捕獲[49]。由于K離子只分布在角閃石的A占位[43],且該流紋巖中A占位K離子數很低(0.07~0.09;表1),所以,上述離子的虧損主要與其他含鉀礦物的分離結晶有關。Zr在巖漿中易形成獨立礦物相,如鋯石(Zr Si O4),因此角閃石中Zr含量較低。

圖5 角閃石微量元素全巖標準化配分型式Fig.5 Whole-rock nor malized trace element patterns for amphiboles
5.2 角閃石的結晶條件
角閃石的化學成分除受其寄主巖漿總成分的影響外,還與巖漿的結晶條件有關(如溫度、壓力、氧逸度等),因而角閃石的化學成分可以用來指示巖漿的結晶條件。
如何定量地獲得火山巖斑晶礦物結晶時的壓力,估算出巖漿房深度,對于探討巖漿作用過程有著重要的意義[54]。角閃石地質壓力計主要有線性關系角閃石全鋁壓力計[9-13]。Hammarstrom和Zen[9]最早觀察到火成巖中角閃石的Al含量與平衡壓力之間存在較好地線性關系,并得到如下經驗公式:P=-0.392+0.503n(Altot)。其中P的單位是GPa,n(Altot)為角閃石分子式中全部Al(即包括Ⅳ和Ⅵ次配位的Al)的摩爾分數。隨后Hollister等[10],Johnson和Rutherford[11-12],Sch midt[55]分別通過實驗對該經驗公式進行了改進:P=-0.476+0.564n(Altot),P=-0.354+0.428n(Altot)和P=-0.346+0.423n(Altot),以及P=-0.301+0.476n(Altot)。Anderson和Smith[13]認為,應用角閃石全鋁壓力計時還應該考慮溫度和氧逸度對角閃石陽離子占位的影響,且采用內插法,得到了含溫度矯正項的全鋁壓力計。但是上述各線性角閃石全鋁壓力計公式僅適用于結晶壓力大于0.2 GPa的鈣堿性侵入巖類的壓力估算,且另一個重要前提是該鈣堿性巖石具有的礦物組合應為角閃石+黑云母+斜長石+堿性長石+石英+Fe-Ti氧化物+榍石,當巖石礦物組合中缺少堿性長石和黑云母時則不適用[56]。沖繩海槽南部流紋巖斑晶主要為石英、斜長石、角閃石、斜方輝石,不含堿性長石和黑云母,因此不適用線性關系角閃石全鋁壓力計。
Ridolfi等[14]根據前人實驗結果提出適用于火山巖的指數關系角閃石全鋁壓力計:P=19.209×exp[1.438n(Altot)],其中P的單位是MPa,該公式適用于鈣堿性火山巖中產出的鈣質角閃石,要求其成分滿足:Al#≤0.21(Al#=[6]Al/AlT)≤0.21),且n(Mg)/[n(Mg)+n(Fe2+)]>0.5。本研究中,流紋巖的Al#遠小于0.21,且n(Mg)/[n(Mg)+n(Fe2+)]介于0.61~0.65之間,遠大于0.5(表1)。以此經驗公式來估算沖繩海槽南部流紋巖巖中角閃石結晶時的壓力,顯示其結晶時的壓力約為0.12 GPa,大致相當于4 k m的深度,表明該巖漿房的位置較淺。進一步,從角閃石晶體化學式的A位占位情況看,當A=1時(即全部被鉀,鈉占滿)反映其處于最強的還原狀態;當A=0時(即全部的鉀,鈉都進入B位)反映其處在最強的氧化狀態[48],該角閃石A位陽離子數(A=0.15~0.33)(表1),表明其氧化程度較高。上述分析結果,表明沖繩海槽南段T9站位的角閃石,其來源于巖漿就位相對較淺的部位。
溫度根據Ridolfi等[14]提出的公式:T=-151.487Si*+2.041(其中Si*=Si+[4]Al/15-2[4]Ti-[6]Al/2-[6]Ti/1.8+Fe3+/9+Fe2+/3.3+Mg/26+BCa/5+BNa/1.3-ANa/1.5+A[空位]/2.3),計算獲得,溫度范圍為775~839℃。此外,T9站位位于唐印熱液區[57],因此較淺的巖漿房,一方面可為角閃石等斑晶礦物的結晶提供了場所,另一方面也為表層的熱液噴口提供了主要熱源。
5.3 角閃石成因探討
酸性巖中可能存在的角閃石類型,主要包括由巖漿結晶作用所形成的結晶角閃石、巖漿上升過程中攜帶的角閃石捕虜晶以及成巖作用后期發生蝕變的角閃石。區分角閃石的不同類型是探討其對寄主巖石成因指示意義的前提。沖繩海槽南部流紋巖中角閃石偏光鏡下顯示無反應邊,背散射圖片下也未顯示出明顯的成分變化(圖2b~f),因此排除后期蝕變交代等作用對其化學成分的改造。在馬昌前等[58]的角閃石Si-Ti圖解上(圖6a),所有樣品均落在結晶角閃石區域內,且根據陳光遠等[59]提出的Mg-(Fe2++Fe3+)-(Na+K+Li+Ca)角閃石成因礦物族三角圖解(圖6b),本區角閃石均落入中酸性巖成因區內,說明它們為一組中酸性原始熔體結晶產物。因此該流紋巖中角閃石的成因相對單一,即由該流紋質巖漿結晶所形成。
巖漿巖中角閃石的成分特征能夠反映巖漿的起源、演化及巖石成因[6]。馬潤則等[61]指出巖漿巖中鈣質角閃石的化學成分與巖漿來源之間密切相關,且隨著溫度和壓力的增高,鈣質角閃石的Si含量有規律地降低,而且角閃石的Si/(Si+Ti+A1)值在殼源區和幔源區之間出現間斷,殼源角閃石的Si/(Si+Ti+A1)值不低于0.775,而幔源角閃石則不大于0.765,幔源角閃石的A12O3含量一般不低于10%[60],且高壓實驗模擬結果顯示幔源角閃石成分上主要是韭閃石,含有少量的凍藍閃石[14]。沖繩海槽南部流紋巖中角閃石均為鈣質鎂閃石(圖3),A12O3均小于10%,Si/(Si+Ti+A1)值的范圍為0.80~0.83(表1),應屬殼源或殼?;旌显唇情W石。在角閃石的Ti O2-A12O3關系圖上(圖6c),流紋巖中角閃石均位于殼?;旌显磪^,表明巖漿應來源于地幔,但存在地殼物質的混入。謝應雯和張玉泉[62]研究發現角閃石中的M值[M=Mg/(Mg+Fe2+)]是區分殼型、殼幔型和幔型角閃石的可靠標志,幔型角閃石的M值大于0.7,殼型角閃石的M值小于0.5,殼幔型角閃石的M值介于0.5~0.7之間,該流紋巖中角閃石的M值為0.61~0.65,分布在殼幔型角閃石的范圍內,反映了殼?;旌系奶卣鳌4送?殼型角閃石稀土元素最富集(∑REE>900×10-6),而幔型及殼幔型中則較貧[62]。該流紋巖中角閃石的稀土元素總量變化范圍為353×10-6~626×10-6比殼型角閃石低,應該屬于幔源或殼?;旌铣梢?。

圖6 角閃石成因礦物學圖解Fig.6 Diagrams for genetic mineralogy of the amphibolesa為角閃石的Ti-Si變異圖解(據文獻[58]);b為角閃石成因礦物族三角圖解(據文獻[59]),I.巖漿成因區、區域正變質成因區、超變質成因區:I 1.超基性-基性成因區,I 2.中-酸性成因區,I 3.堿性成因區;Ⅱ.接觸交代成因區;Ⅲ.區域負變質成因區;c為角閃石Ti O2-Al 2 O3圖解(據文獻[60]),C.殼源,MC.殼?;旌显?M.幔源a is Ti-Si variation diagram of amphiboles(after reference[58]);b is diagram for t he amphibole genesis diseri mination(after reference[59]),I.mag ma genesis area,regional genesis of orthometamorphismarea,ultra-metamorphic genesisarea:I 1.basic-ultrabasic genesis area,I 2.inter mediate-acidic genesis area,I 3.alkaline genesis area;Ⅱ.contact metaso matic genesis area;Ⅲ.regional parametamorphic genesis area;cis Ti O2-Al 2 O3 diagram of amphiboles(after reference[61]),C.crust resource,MC.crust-mantle mixing source,M.mantle source
酸性巖的巖漿來源主要有殼源、幔源和殼幔相互作用3種類型。對于沖繩海槽的中酸性火成巖,目前大多數學者支持沖繩海槽酸性巖和基性巖具有統一的巖漿物質來源,酸性巖是玄武質巖漿結晶分異的產物,存在少量或無地殼混染作用影響[16,20,22—23,26,32]。該流紋巖中角閃石化學成分進一步佐證了沖繩海槽西南端酸性巖母巖漿源于地幔,且在巖漿上升過程中存在地殼物質的混染,與其寄主巖石全巖Sr-Nd同位素模擬結果一致,即由幔源玄武質巖漿混染20%左右的上地殼物質形成[32],且Chen等[17]認為沖繩海槽西南端龜山島安山巖為幔源玄武質巖漿混染了30%左右的上地殼物質形成。這在一定程度上也反映出殼?;旌显词菦_繩海槽西南端火山巖巖漿來源的主要特征。
(1)沖繩海槽西南端流紋巖中角閃石主量元素成分變化范圍小,均為鈣質-鎂閃石;微量元素以富集Sc、V、Cr、Co、Ni和REE,虧損Rb、Sr、Ba、Zr、Th、U和Pb為特征。
(2)角閃石形成溫度為775~839℃,壓力為0.12 GPa,對應深度約為4 k m的上地殼淺層巖漿房。
(3)角閃石化學組成指示其由幔源玄武質巖漿與殼源長英質巖漿混合形成的中基性巖漿結晶分異形成,與其寄主巖石Sr-Nd同位素結果一致。也進一步佐證了殼?;旌显春芸赡苁菦_繩海槽西南端火山巖巖漿來源的主要特征。
[1] 趙一鳴,李大新.中國夕卡巖礦床中的角閃石[J].礦床地質,2003,22(4):345-359.Zhao Yi ming,Li Daxin.Amphiboles in skarn deposits of China[J].Mineral Deposits,2003,22(4):345-359.
[2] 翟媛媛,謝錦程,董國臣.太行山北段王安鎮巖基超鎂鐵質巖中角閃石成因意義[J].巖石礦物學雜志,2014,33(2):273-282.Zhai Yuanyuan,Xie Jincheng,Dong Guochen.The genetic significance of amphiboles fromthe ultramafic rocks of Wang'anzhen batholith in northern Taihang Mountains[J].Acta Petrologica et Mineralogica,2014,33(2):273-282.
[3] 楊群慧,林振宏,張富元,等.南海東部表層沉積物中普通角閃石和磁鐵礦的特征及其成因[J].海洋地質與第四紀地質,2004,24(2):29-35.Yang Qunhui,Lin Zhenhong,Zang Fuyuan,et al.Mineral characteristics of hornblende and magnetitein surface sedi mentsin t he East of the sout h China Sea and their genesis[J].Marine Geology&Quaternary Geology,2004,24(2):29-35.
[4] 金秉福,岳偉,王昆山.黃河、遼河和鴨綠江沉積角閃石礦物化學特征對比及物源識別[J].海洋學報,2014,36(4):11-21.Jin Bingf u,Yue Wei,Wang Kunshan.Chemical composition of detrital amphibolein t he sedi ments of t he Huanghe River,Liao River and Yalu River,and its i mplication for sedi ment provenance[J].Haiyang Xuebao,2014,36(4):11-21.
[5] 樊祺誠,劉若新,馬寶林.中國上地幔角閃石及其成因意義[J].礦物學報,1992(4):352-358.Fan Qicheng,Liu Ruoxin,Ma Baolin.Upper-mantle amphiboles from China and their genetic i mplications[J].Acta Mineralogica Sinica,1992(4):352-358.
[6] 呂志成,段國正,郝立波,等.大興安嶺中南段燕山期兩類不同成礦花崗巖類角閃石的化學成分及其成巖成礦意義[J].礦物巖石,2003,23(1):5-10.LüZhicheng,Duan Guozheng,Hao Libo,et al.Mineral chemistry of amphiboles from granites related to different mineralization and occurred in t wo stages of Yenshanina period in south-middle part of the Daxing’an mountains and its genetic and metallogenic significance[J].Journal of Mineralogy and Petrology,2003,23(1):5-10.
[7] Leake B E.Nomenclature of amphiboles[J].The Canadian Mineralogist,1978,16(4):501-520.
[8] Ague JJ.The distribution of Fe and Mg bet ween biotite and amphibolein granitic rocks:Effects of temperature,pressure and amphibole composition[J].Geochemical Journal,1989,23(6):279-293.
[9] Hammarstrom J M,Zen E.Alu minu min hor nblende:an empirical igneous geobaro meter[J].American Mineralogist,1986,71(11/12):1297-1313.
[10] Hollister L S,Grisso m G C,Peters E K,et al.Confir mation of the empirical correlation of Al in hornblende with pressure of solidification of calcalkaline plutons[J].American Mineralogist,1987,72:231-239.
[11] Johnson M C,Rutherford MJ.Experi mental calibration of an aluminum-in-hornblende geobarometer applicable to calcic-alkaline rocks[J].EOS,1988,69:1511.
[12] Johnson M C,Rutherford M J.Experi mental calibration of the alu minu m-in-hornblende geobarometer wit h application to Long Valley caldera(California)volcanic rocks[J].Geology,1989,17(9):837-841.
[13] Anderson J L,Smith D R.The effect of temperatures and oxygen fugacity on Al-in-hornblende barometry[J].American Mineralogist,1995,87:125-138.
[14] Ridolfi F,Renzulli A,Puerini M.Stability and chemical equilibrium of amphibolein calc-alkaline mag mas:an overview,new ther mobarometric for mulations and application to subduction-related volcanoes[J].Contributions to Mineralogy and Petrology,2010,160(1):45-66.
[15] Shinjo R,Chung S L,Kato Y,et al.Geochemical and Sr-Nd isotopic characteristics of volcanic rocks fromthe Okinawa Trough and Ryukyu Arc:Implications for the evolution of a young,intracontinental back arc basin[J].Journal of Geophysical Research:Solid Earth,1999,104(B5):10591-10608.
[16] Shinjo R,Kato Y.Geochemical constraints on the origin of bi modal magmatismat the Okinawa Trough,an incipient back-arc basin[J].Lithos,2000,54(3):117-137.
[17] Chen C H,Typhoon L,Yuch-Ning S,et al.Mag matismat the onset of back-arc basin spreading in the Okinawa Trough[J].Journal of Volcanology&Geother mal Research,1995,69(3/4):313-322.
[18] Chung S L,Wang S L,Shinjo R,et al.Initiation of arc mag matismin an embryonic continental rifting zone of the southernmost part of Okinawa Trough[J].Terra Nova,2000,12(5):225-230.
[19] Hon ma H,Kusakabe M,Kagami H,et al.Major and trace element chemistry and D/H,18O/16O,87Sr/86Sr and143Nd/144Nd ratios of rocks fromthe spreading center of the Okinawa Trough,a marginal back-arc basin[J].Geochemical Journal,1991,25(2):121-136.
[20] Zeng Zhigang,Yu Shaoxiong,Wang Xiaoyuan,et al.Geochemical and isotopic characteristics of volcanic rocks fromthe northern East China Sea shelf margin and the Okinawa Trough[J].Acta Oceanologica Sinica,2010,29(4):48-61.
[21] Zhao Guangtao,Luo Wenqiang,Lai Zhiqing,et al.Influence of subduction components on magma composition in back-arc basins:a comparison bet ween the Mariana and Okinawa troughs[J].Geological Journal,2016,51(S1):357-367.
[22] Guo K,Zhai S,Yu Z,et al.Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks fro mthe Okinawa Trough:Implications for the influence of subduction components and the contamination of crustal materials[J].Journal of Marine Systems,2016,doi.org/10.1016/j.j marsys.2016.11.009.
[23] 孟憲偉,杜德文,吳金龍,等.沖繩海槽中段火山巖系Sr和Nd同位素地球化學特征及其地質意義[J].中國科學:地球科學,1999,29(4):367-371.Meng Xianwei,Du Dewen,Wu Jinlong,et al.Sr-Nd isotopic geochemistry andits geological significances of volcanic rock seriesfromthe middle part of Okinawa Trough[J].Sciencein China:Series D,1999,29(4):367-371.
[24] 李巍然,楊作升,王永吉,等.沖繩海槽火山巖巖石化學特征及其地質意義[J].巖石學報,1997,13(4):538-550.Li Weiran,Yang Zuosheng,Wang Yongji,et al.The petrochemical features of t he volcanic rocks in Okinawa Trough and their geological significance[J].Acta Petrologica Sinica,1997,13(4):538-550.
[25] 馬維林,王先蘭,金翔龍,等.沖繩海槽中部和南部玄武巖的區域性差異及其成因研究[J].地質學報,2004,78(6):758-769.Ma Weilin,Wang Xianlan,Jin Xianglong,et al.Areal difference of middle and southern basalts fromthe Okinawa Trough and its genesis study[J].Acta Geologica Sinica,2004,78(6):758-769.
[26] 黃朋,李安春,蔣恒毅.沖繩海槽北、中段火山巖地球化學特征及其地質意義[J].巖石學報,2006,22(6):1703-1712.Huang Peng,Li Anchun,Jiang Hengyi,et al.Geochemical features and their geological i mplications of volcanic rocks fromthe northern and middle Okinawa Trough[J].Acta Petrologica Sinica,2006,22(6):1703-1712.
[27] 翟世奎.沖繩海槽浮巖的分布及其斑晶礦物學特征[J].海洋與湖沼,1986,17(6):504-512.Zhai Shikui.The distribution and mineralogical characteristics of the pu mice in the Okinawa Trough[J].Oceanologia et Li mnologia Sinica,1986,17(6):504-512.
[28] 陳小明,譚清泉,趙廣濤.海底玄武巖中斜長石研究及其巖石學意義[J].巖石學報,2002,18(4):482-488.Chen Xiao ming,Tan Qingquan,Zhao Guangtao,et al.Plagioclases fromthe basalt of Okinawa Trough and its petrogenesis significance[J].Acta Petrologica Sinica,2002,18(4):482-488.
[29] Lai Zhiqing,Zhao Guangtao,Han Zongzhu,et al.Back-arc magma processes in the Okinawa Trough:new insights fro mtextural and compositional variations of plagioclasein basalts[J].Geological Journal,2016,51(S1):346-356.
[30] 譚清泉,陳小明.沖繩海槽玄武巖中單斜輝石的特征及其意義[J].高校地質學報,2002,8(4):416-422.Tan Qingquan,Chen Xiaoming.Clinopyroxenein the basalt from Okinawa Trough and its petrological significance[J].Geological Journal of China Universities,2002,8(4):416-422.
[31] Liao R,Huang P,Hu N.A complex mag matic system beneath the middle and nort hern Okinawa Trough:evidence from pyroxene characteristics[J].Geological Journal,2016,doi:10.1002/gj.2873.
[32] 曾志剛,張玉祥,陳祖興,等.西太平洋典型弧后盆地的地質構造,巖漿作用與熱液活動[J].海洋科學集刊,2016,51:3-36.Zeng Zhigang,Zhang Yuxiang,Chen Zuxing,et al.Geological tectonics,mag matism and seafloor hydrot her mal activity in t he back-arc basins of the Western Pacfic[J].Studia Marina Sinica,2016,51:3-36.
[33] Yamano M,Uyeda S,Foucher J P,et al.Heat flow anomaly in the middle Okinawa Trough[J].Tectonophysics,1989,159(3/4):307-318.
[34] Yan Quanshu,Shi Xuefa.Petrologic perspectives on tectonic evolution of a nascent basin(Okinawa Trough)behind Ryukyu Arc:A review[J].Acta Oceanologica Sinica,2014,33(4):1-12.
[35] 金翔龍,喻普之.沖繩海槽的構造特征與演化[J].中國科學,1987,2(2):86-93.Jin Xianglong,Yu Puzhi.The structural features and evolution of the Okinawa Trough[J].China Sciences,1987,2(2):196-203.
[36] Lee C S,Shor G G,Bibee L D,et al.Okinawa Trough:origin of a back-arc basin[J].Marine Geology,1980,35(1/3):219-241.
[37] Letouzey J,Ki mura M.The Okinawa Trough:genesis of a back-arc basin developing along a continental margin[J].Tectonophysics,1986,125(1/3):209-230.
[38] Sibuet J C,Jean L,Florence B,et al.Back arc extension in the Okinawa Trough[J].Journal of Geophysical Research,1987,92(B13):14041-14063.
[39] Wang K L,Chung S L,Chen C H,et al.Post-collisional magmatism around northern Taiwan and its relation with opening of the Okinawa Trough[J].Tectonophysics,1999,308(3):363-376.
[40] Hsu S K,Sibuet J C,Monti S,et al.Transition bet ween the Okinawa trough backarc extension and the Taiwan collision:new insights on the southern most Ryukyu subduction zone[J].Marine Geophysical Researches,1996,18(2/4):163-187.
[41] Sibuet J C,Deffontaines B,Hsu S K,et al.Okinawa Trough backarc basin:Early tectonic and magmatic evolution[J].Journal of Geophysical Research Solid Eart h,1998,103(B12):30245-30267.
[42] Shinjo R,Hokakubo S,Haraguchi S,et al.Geochemical characteristics of volcanic rocks fromt he southern Okinawa Trough and its i mplications for tectono-mag matic evolution[C]//AGU Fall Meeting Abstracts.2003.
[43] Leake B E,Woolley A R,Arps CE S.Nomenclature of amphiboles report of the Subcommittee on Amphiboles of the International Mineralogical Association,Co mmission on New Mineral and Mineral Names[J].American Mineralogist,1997,82:1019-1037.
[44] Leake B E.Nomenclature of amphiboles:Additions and revisions to the International Mineralogical Association's 1997 recommendations[J].Mineralogical Magazine,2012,41(1):1355-1362.
[45] Yavuz F.Win Amphcal:A Windows programfor the IMA04 amphibole classification[J].Geochemistry Geophysics Geosystems,2007,8(1):534-535.
[46] Schu macher J C.The esti mation of ferric iron in electron microprobe analysis of amphiboles[J].Mineralogical Magazine,1997,61:312-321.
[47] Sun SS,Mc Donough WF.Chemical and isotopic systematics of oceanic basalts:i mplications for mantle composition and processes[J].Mag matism in the Ocean Basins,Geological Society Special Publication,1989,42:313-345.
[48] 王濮,潘兆櫓,翁玲寶,等.系統礦物學[M].北京:地質出版社,1982:488-491.Wang Pu,Pan Zhaolu,Weng Lingbao,et al.Systematic Mineralogy[M].Beijing:Geology Press,1982:488-491.
[49] 劉英俊.元素地球化學[M].北京:科學出版社,1984:50-372.Liu Yingjun.Element Geochemistry[M].Beijing:Science Press,1984:50-372.
[50] 韓吟文.地球化學[M].北京:地質出版社,2008:190-195.Han Yinwen.Geochemistry[M].Beijing:Geology Press,2008:190-195.
[51] Hanson G N.The application of trace elements to the petrogenesis of igneous rocks of granitic composition[J].Earth and Planetary Science Letters,1978,38(1):26-43.
[52] 賴紹聰,伊海生,劉池陽,等.青藏高原北羌塘新生代高鉀鈣堿巖系火山巖角閃石類型及痕量元素地球化學[J].巖石學報,2002,18(1):17-24.Lai Shaocong,Yi Haisheng,Liu Chiyang,et al.Trace element geochemistry and classification of amphiboles of the Cenozoic high-Potassiu mcalcalkaline volcanic rock series from north Qiangtang,Qinghai-Tibetan Plateau[J].Acta Petorlogica Sinica,2002,18(l):17-24.
[53] 王中剛,于學元,趙振華,等.稀土元素地球化學[M].北京:科學出版社,1989:133-246.Wang Zhonggang,Yu Xueyuan,Zhao Zhenhua,et al.Rare Earth Element Geochemistry[M].Beijing:Science Press,1989:133-246.
[54] Anderson J L,Barth A P,Wooden J L,et al.Ther mometers and ther mobarometersin granitic systems[J].Reviewsin Mineralogy and Geochemistry,2008,69(1):121-142.
[55] Sch midt M W.Amphibole co mposition in tonalite as a f unction of pressure:an experi mental calibration of the Al-in-hornblende baro meter[J].Contributions to Mineralogy and Petrology,1992,110(2/3):304-310.
[56] 汪洋.鈣堿性火成巖的角閃石全鋁壓力計——回顧、評價和應用實例[J].地質論評,2014,60(4):839-850.Wang Yang.The Al-in-hornblende barometry for calc-alkalineigneous rocks:retrospect,evaluation and applications[J].Geological Review,2014,60(4):839-850.
[57] Zeng Zhigang,Chen Shuai,Ma Yao,et al.Chemical compositions of mussels and clams fromthe Tangyin and Yonaguni Knoll IV hydrother mal fields in the southwestern Okinawa Trough[J].Ore Geology Reviews,2016,87(9):172-191.
[58] 馬昌前,楊坤光,唐仲華,等.花崗巖類巖漿動力學:理論方法及鄂東花崗巖類例析[M].武漢:中國地質大學出版社,1994.Ma Changqian,Yang Kunguang,Tang Zhonghua,et al.Magma-Dynamics Granitoids:Theory,Met hods and A Case Study of the Eastern Hubei Granitoids[M].Wuhan:China University of Geosciences Press,1994.
[59] 陳光遠,孫岱生,殷輝安.成因礦物學與找礦礦物學[M].重慶:重慶出版社,1987:555-649.Chen Guangyuan,Sun Daisheng,Yin Huian.Genetic Mineralogy and Prospecting Mineralogy[M].Chongqing:Chongqing Press,1987:555-649.
[60] 姜常義,安三元.論火成巖中鈣質角閃石的化學組成特征及其巖石學意義[J].礦物巖石,1984(3):1-9.Jiang Changyi,An Sanyuan.On chemical characteristics of calcic amphiboles fromigneous rocks and their petrogenesis significance[J].Journal of Mineralogy and Petrology,1984(3):1-9.
[61] 馬潤則,肖淵甫,魏顯貴,等.四川米倉山地區晉寧期基性超基性巖地球化學性質及其成因研究[J].礦物巖石,1997(S1):38-50.Ma Runze,Xiao Yuanf u,Wei Xiangui,et al.Research on the geochemical property and genesis of basic and ultrabasic rocks of Jinning Period in the Micangshan area,Sichuan Province[J].Journal of Mineralogy and Petrology,1997(S1):38-50.
[62] 謝應雯,張玉泉.橫斷山區花崗巖類中角閃石的標型特征及其成因意義[J].礦物學報,1990,10(1):35-45.Xie Yingwen,Zhang Yuquan.Peculiarities and genetic significance of hornblendefromgranitein the Heng Duansan region[J].Acta Mineralogica Sinica,1990,10(1):35-45.
Geochemical characteristics of amphiboles in the rhyolite fromthe southern Okinawa Trough,and its i mplication for petrogenesis
Chen Zuxing1,3,Zeng Zhigang1,2,3,Wang Xiaoyuan1,2,Yin Xuebo1,Chen Shuai1,2,Li Xiaohui1,3,Qi Haiyan1
(1.Seaf loor Hydrother mal Activity Laborator y of the Key Labor ator y of Marine Geology and Environ ment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China;2.Laborator y for Marine Mineral Resources,Qingdao National Laborator y for Marine Science and Technology,Qingdao 266061,China;3.Graduate School of Chinese Academy of Sciences,Beijing 100049,China)
In order to reveal the petrogenesis of the rhyolitefromthe southwestern Okinawa Trough,the major and trace elements of the amphibole phenocrysts in the rhyolite were measured by electron probe and LA-ICP-MS.The composition variation range of major elements of all the amphiboles is small,the crystal chemistry show CaB>1.60,CaA=0,(Na+K)A<0.33,NaBis bet ween 0.23 and 0.39,that belong to calcic series and classify as magnesiohornblendes.Trace elements are characterized by enrichment of Sc,V,Cr,Co,Ni and REE,loss Rb,Sr,Ba,Zr,Th,U and Pb.The enrich ment and loss of these elements are related to complex role of iso morphic replacement.Based on the amphibole geother mobarometer,the temperatures and pressures are 775 to 839℃and 0.12 GPa,roughly equivalent to the depth of 4 k m.Genetic mineralogy studies have shown that amphibolitein the rhyoliteis a crust-mantle mixing origin,further indicating that the rhyolite was most likely for med by mixing a mantle-derived basaltic magma with a crustal felsic magma,followed by extensive fractional crystallization in the shallow chamber,and crust-mantle mixed sourceis likely to be the main source of the volcanic rocks fromsouthwest Okinawa Trough.
amphibole;major and trace elements;rhyolite;Okinawa Trough
P736.4
A
0253-4193(2017)12-0074-16
陳祖興,曾志剛,王曉媛,等.沖繩海槽南部流紋巖中角閃石的化學特征及其對巖石成因的指示[J].海洋學報,2017,39(12):74-89,
10.3969/j.issn.0253-4193.2017.12.008
Chen Zuxing,Zeng Zhigang,Wang Xiaoyuan,et al.Geochemical characteristics of amphibolesin therhyolitefromthe southern Okinawa Trough,and its i mplication for petrogenesis[J].Haiyang Xuebao,2017,39(12):74-89,doi:10.3969/j.issn.0253-4193.2017.12.008
2017-03-28;
2017-06-18。
國家重點基礎研究發展計劃(973)(2013CB429700);國家自然科學基金項目(41325021,41306053);全球變化與海氣相互作用專項(GASI-GEOGE-02);中國科學院戰略性先導科技專項(XDA11030302);泰山學者工程專項(ts201511061);青島海洋科學與技術國家實驗室“鰲山人才”計劃項目(2015 ASTP-0S17);創新人才推進計劃(2012RA2191);青島海洋科學與技術國家實驗室鰲山科技創新計劃項目(2015 ASKJ03,2016 ASKJ13)。
陳祖興(1990—),男,安徽省桐城市人,從事海底火山巖地球化學研究。E-mail:chenzuxing14@mails.ucas.ac.cn
*通信作者:曾志剛,男,研究員,主要從事海底熱液硫化物等研究。E-mail:zgzeng@ms.qdio.ac.cn