姜冬梅,王 瑤,姜 楠,韋迪哲,馬 帥,王 蒙*
(北京農(nóng)業(yè)質(zhì)量標準與檢測技術(shù)研究中心,農(nóng)業(yè)部農(nóng)產(chǎn)品質(zhì)量安全風(fēng)險評估實驗室(北京),北京 100097)
農(nóng)產(chǎn)品及其制品中交鏈孢酚和交鏈孢酚單甲醚研究進展
姜冬梅,王 瑤,姜 楠,韋迪哲,馬 帥,王 蒙*
(北京農(nóng)業(yè)質(zhì)量標準與檢測技術(shù)研究中心,農(nóng)業(yè)部農(nóng)產(chǎn)品質(zhì)量安全風(fēng)險評估實驗室(北京),北京 100097)
交鏈孢菌(Alternaria spp.)是一類重要的植物病原體,能產(chǎn)生多種毒素,其中交鏈孢酚(alternariol,AOH)和交鏈孢酚單甲醚(alternariol monomethyl ether,AME)是目前從食物中檢出的比較普遍和主要的2 種交鏈孢毒素,可廣泛污染蔬菜、水果及谷物等農(nóng)產(chǎn)品及其制品。本文對AOH和AME的結(jié)構(gòu)及理化性質(zhì)、毒性、產(chǎn)生影響因素、生物及化學(xué)合成和污染現(xiàn)狀等進行了綜述,并對交鏈孢毒素限量標準的制定、快速檢測方法等進行了展望。
交鏈孢菌;真菌毒素;交鏈孢酚;交鏈孢酚單甲醚
交鏈孢菌(Alternaria spp.)是污染農(nóng)產(chǎn)品及其制品最普遍的真菌之一,廣泛分布于自然界,能寄生與腐生,具有植物致病性,可在生產(chǎn)前、生產(chǎn)中及生產(chǎn)后貯運過程中引起農(nóng)作物霉變。由于該菌可在低溫潮濕的環(huán)境下生長繁殖,因此是導(dǎo)致冷藏貯存或長途運輸過程中水果、蔬菜、谷物等腐敗變質(zhì)的主要微生物。交鏈孢毒素是由交鏈孢菌產(chǎn)生的一系列有毒代謝產(chǎn)物的總稱。交鏈孢酚(alternariol,AOH)和交鏈孢酚單甲醚(alternariol monomethyl ether,AME)屬于二苯-α-吡喃酮類化合物,由Raistrick等[1]首次從Alternaria Tenuis中分離得到,是交鏈孢菌的主要毒性代謝產(chǎn)物,也是農(nóng)產(chǎn)品及其制品中檢出率較高的兩種交鏈孢毒素。研究表明,AOH、AME具有誘變性和致癌性,隨膳食攝入的AOH和AME對公眾健康存在風(fēng)險[2]。本文將對AOH和AME毒素的理化性質(zhì)及其毒性、產(chǎn)毒影響因素、生物合成和污染現(xiàn)狀等方面進行綜述。
1.1 理化性質(zhì)
AOH是無色針狀結(jié)晶,相對分子質(zhì)量為258.23,分子式C14H10O5,熔點350 ℃;AME同樣是無色針狀結(jié)晶,相對分子質(zhì)量為272.25,分子式C15H12O5,熔點267 ℃;紫外光照射下,這2 種毒素呈藍紫色熒光[2]。Siegel等[3]研究了AOH和AME的化學(xué)穩(wěn)定性,結(jié)果表明,在pH值為5.0的0.15 mol/L磷酸鹽緩沖液中,2 種毒素均十分穩(wěn)定,但在0.1 mol/L KOH中卻都降解為未知的棕色產(chǎn)物;在pH值為7.0、濃度為0.18 mol/L的磷酸鹽/檸檬酸鹽緩沖液中,AOH和AME則通過水解和脫羧反應(yīng)分別降解為6-甲基聯(lián)苯-2,3’,4,5’-四醇和5’-甲氧基-6-甲基聯(lián)苯-2,3’,4-四醇。
1.2 毒性
AOH、AME等二苯-α-吡喃酮類化合物是多種交鏈孢菌的主要代謝產(chǎn)物,目前研究表明AOH和AME對實驗動物的急性毒性較低,但AOH和AME已被證明具有遺傳毒性和致突變性。Pollock等[4]研究了AME的亞急性毒性作用和致畸性,將Alternaria solani產(chǎn)生的AME對敘利亞金色倉鼠進行腹腔注射,劑量為50 mg/kg mb與100 mg/kg mb時,不產(chǎn)生毒性效應(yīng),但當劑量增大到200 mg/kg mb時,AME對母鼠和胚胎的毒性效應(yīng)明顯,胎鼠平均體質(zhì)量減少,內(nèi)臟嚴重壞死,但AOH、AME和交鏈孢烯(altenuene,ALT)對雞胚、雛雞和大鼠卻沒有毒性[5],因此,AOH、AME和ALT的毒性作用可能具有動物種屬特異性;Davis等[6]發(fā)現(xiàn)AME對鼠傷寒沙門氏菌TA98的誘變性較弱,AOH則無誘變性,也未觀察到兩者的協(xié)同作用;而An Yuhui等[7]的研究結(jié)果表明,AME對E. coli ND-160有很強的誘變性,因此,AME可能對不同的基因位點或DNA序列有選擇性的誘變作用;大鼠和小鼠的動物實驗表明AME對食管下段及前胃有較高的親和力,說明其致癌作用存在器官特異性[8]。Pero等[9]發(fā)現(xiàn)AOH和AME存在協(xié)同效應(yīng),單獨的AOH或AME對HeLa細胞的毒性作用之和比它們混合物的毒性作用要弱,AME可以增強AOH的胚胎毒性,反之亦然,且AME與其他交鏈孢毒素也存在協(xié)同效應(yīng)[10],因此交鏈孢菌培養(yǎng)物粗提液的毒性較單一毒素的毒性強。體外細胞實驗結(jié)果表明[11],AOH和AME的毒性作用機制是可抑制DNA拓撲異構(gòu)酶的活性而引起細胞DNA損傷,DNA拓撲異構(gòu)酶與DNA的超螺旋調(diào)節(jié)有關(guān),并參與細胞的復(fù)制、轉(zhuǎn)錄和修復(fù)等。
此外,AOH和AME可能與某些癌癥相關(guān)。Liu Guiting[12-13]、Dong Zigang[14]等用AOH處理人胚食管組織細胞,然后將其移植至小鼠中,可引發(fā)小鼠鱗狀細胞瘤;AOH和AME可導(dǎo)致2BS細胞DNA的斷裂,還可與人胚胎食管上皮細胞的DNA結(jié)合,誘導(dǎo)人胚胎食管上皮細胞的增生,經(jīng)AOH和AME處理的人胚胎食管上皮細胞中可檢出活化的癌基因;且研究發(fā)現(xiàn)食品中交鏈孢毒素污染率高的地區(qū)食管癌發(fā)病率也較高,因此,認為我國一些地區(qū)食管癌高發(fā)可能與交鏈孢毒素污染有關(guān)。利用人工培養(yǎng)的哺乳動物細胞對AOH的毒性進行研究的結(jié)果表明,AOH能夠引起人工培養(yǎng)的哺乳動物細胞雌激素分泌異常,抑制細胞增殖從而引發(fā)遺傳毒性效應(yīng),這可能與AOH具有致癌性相關(guān)[15-16]。AOH的致癌機理與癌基因的激活和抑癌基因的變異有密切關(guān)系,特別是能導(dǎo)致DNA聚合酶β的基因發(fā)生突變,并可能導(dǎo)致蛋白結(jié)構(gòu)的變化而使DNA聚合酶β的基因修復(fù)功能異常[15,17-18]。同時,研究還發(fā)現(xiàn)AOH的致癌機制與其濃度水平有關(guān),低濃度的AOH不引起細胞的DNA聚合酶β基因發(fā)生突變,較高濃度的AOH才會引起突變,因此較高濃度的AOH存在于食物中,可能造成細胞內(nèi)基因突變而引發(fā)腫瘤[19-21]。
2.1 產(chǎn)毒菌株
研究表明,多種交鏈孢菌可產(chǎn)生AOH和AME,如A. alternata是最常見的交鏈孢菌種類,也是最重要的交鏈孢毒素產(chǎn)生菌,它能產(chǎn)生包括AOH和AME在內(nèi)的多種交鏈孢毒素[22];其他種類的交鏈孢菌如A. tenuissima、A. arborescens、A. brassicae、A. capsici-annui、A. citri、A. cucumerina、A. dauci、A. kikuchiana、A. longipes、A. porri、A. solani和A. tomato也能產(chǎn)生AOH和AME[23-26]。
2.2 環(huán)境因素
AOH和AME毒素產(chǎn)生不僅與產(chǎn)毒菌株有關(guān),還與培養(yǎng)基質(zhì)、培養(yǎng)狀態(tài)、溫度、pH值、水活度等環(huán)境條件息息相關(guān)[22]。
Maas等[27]對A. alternata在不同培養(yǎng)基基質(zhì)上的產(chǎn)毒情況進行了分析,結(jié)果表明,A. alternata在復(fù)雜的液態(tài)基質(zhì)及固態(tài)大米培養(yǎng)基上主要產(chǎn)生AOH和AME,雖然產(chǎn)毒菌株分離物不同,但AOH和AME均在固態(tài)大米培養(yǎng)基上達到最高產(chǎn)量;在合成和半合成培養(yǎng)基上,A. alternata在生長后期產(chǎn)生AOH、AME,且在半合成培養(yǎng)基上的產(chǎn)量較高,這是因為在半合成培養(yǎng)基中存在酵母膏提取物等利于交鏈孢菌產(chǎn)毒的物質(zhì),能夠為其新陳代謝提供多種營養(yǎng)成分及生長因子[28]。
Brzonkalik等[29]首次研究了不同形態(tài)碳源、氮源及培養(yǎng)狀態(tài)(振搖培養(yǎng)和靜止培養(yǎng))對交鏈孢毒素產(chǎn)生的影響,結(jié)果表明:碳源方面,在互隔交鏈孢中,相比于葡萄糖、果糖、蔗糖、乙酸鹽和碳源的混合物,乙酸鈉更有利于AOH的產(chǎn)生,但卻抑制AME的產(chǎn)生;互隔交鏈孢的產(chǎn)毒性能也受氮源的調(diào)控,總體來看,有機氮源比無機氮源更有利于AOH和AME的產(chǎn)生,如苯丙氨酸的存在能極大地促進AOH、AME的產(chǎn)生,還有一些氮源如硝酸鉀或硝酸鈉則抑制上述2 種毒素的產(chǎn)生,僅當硝酸鹽被消耗完后,才產(chǎn)生AOH,因此,氮源對于通過聚酮合酶途徑產(chǎn)生毒素的生物合成途徑的影響要比碳源的影響更大一些;另外,在振搖狀態(tài)下培養(yǎng),所有真菌毒素的產(chǎn)生量低于靜止狀態(tài)培養(yǎng),因此,靜置培養(yǎng)可能更有利于毒素的產(chǎn)生。總之,交鏈孢毒素的產(chǎn)生不僅受不同形態(tài)碳氮來源的影響,還受培養(yǎng)狀態(tài)的影響。
Brzonkalik等[30]還研究了不同pH值(3.5~8.0)和C/N比(24~96)對A. alternata DSM 12633菌株產(chǎn)AOH、AME毒素的影響,結(jié)果表明,pH值為4.0~4.5時,DSM 12633菌株的產(chǎn)毒量最高,pH值高于5.5時產(chǎn)毒量下降,甚至不產(chǎn)毒;隨著C/N比值增高,菌株產(chǎn)毒量不斷增加,當C/N比值為72時,菌株產(chǎn)毒量最高,C/N比值高于72時,菌株產(chǎn)毒量并不隨著C/N比值的增高而增加。
Vaquera等[31]在合成番茄培養(yǎng)基上研究了水分活度和溫度對A. arborescens產(chǎn)毒素情況的影響,結(jié)果表明,溫度為30 ℃,水分活度為0.975時,AOH和AME的含量達到最高;溫度為6 ℃,水分活度為0.95時,沒有檢測到明顯的AOH和AME,因此,較高的溫度和水分活度有利于A. arborescens產(chǎn)生毒素。
溫度是影響交鏈孢菌生長和產(chǎn)毒水平的重要因素,如A. alternata在番茄果實上的生長溫度范圍為4~25 ℃,雖然菌株生長量和產(chǎn)毒量在25 ℃時比較低溫度時高,但AOH和AME的產(chǎn)量在15 ℃貯存4 周時達到峰值;長期貯存時,AOH和AME的含量會有所下降[32]。A. alternata在蘋果中的產(chǎn)毒水平受溫度影響也較大,25 ℃貯存時,分別有47%和41%的交鏈孢菌在蘋果上產(chǎn)生AOH和AME毒素,同時產(chǎn)生以上3 種毒素的交鏈孢菌占38%;2 ℃貯存時,產(chǎn)生AOH和AME毒素的菌株比例有所減少:分別產(chǎn)生AOH和AME的菌株比例為17%和5.9%,同時產(chǎn)生2 種毒素的菌株比例為5.9%[33]。
綜上所述,交鏈孢菌的產(chǎn)毒素性能受產(chǎn)毒真菌的種類、溫度和培養(yǎng)條件等多種因素的影響,由于目前交鏈孢毒素的生物合成途徑尚不完全清楚,各影響因素的作用機制尚不明確,對產(chǎn)毒影響因素的進一步研究以及交鏈孢毒素生物合成途徑的進一步解析,將有助于揭示交鏈孢菌產(chǎn)毒影響因素的作用機制。
AOH和AME屬于聚酮化合物,其生物合成過程產(chǎn)生含有多個酮基的中間產(chǎn)物,聚酮合酶(polyketide synthase,PKS)是催化這種中間產(chǎn)物合成的關(guān)鍵酶[34]。Koch等[35]以苔黑素(1,3-二羥基-5-甲苯)為原料,通過甲基化等7 個步驟合成了AOH和AME。目前大家所接受的AOH形成途徑是1 個乙酰輔酶A和6 個丙二酰輔酶A在酮基合成酶及酰基轉(zhuǎn)移酶的作用下通過頭尾醛醇縮合反應(yīng)(這個縮合過程沒有氧原子及其他原子的丟失),使聚酮得以延長,最終在硫酯酶作用下,碳鏈釋放,通過醇醛縮合芳構(gòu)化和內(nèi)酯化形成AOH。AOH是大多數(shù)二苯并吡喃酮衍生物的形成前體,AOH與S-腺苷甲氨硫酸反應(yīng)生成AME,AME在一定條件下發(fā)生蒽醌重排,降解產(chǎn)物就是其他二苯并吡喃酮衍生物[36]。
AOH和AME合成相關(guān)聚酮合酶的作用機理尚不明確,但目前已克隆獲得多個與AOH及AME合成相關(guān)的A. alternata聚酮合酶編碼基因,其功能尚未完全清楚,其中pksJ是合成交鏈孢酚的關(guān)鍵基因,而PksH下調(diào)會影響pksJ表達;另外AME為AOH甲基化產(chǎn)物,可能受轉(zhuǎn)錄因子altR調(diào)控;隨后的研究證明SnPKS19是Parastagonopora nodorum合成AOH的關(guān)鍵基因[36-37]。隨著科學(xué)技術(shù)的進步及研究的深入,越來越多的毒素合成基因及其作用機理將被揭示。
AOH和AME是污染水果、蔬菜和谷物等農(nóng)產(chǎn)品的主要交鏈孢毒素,由于AOH和AME在農(nóng)產(chǎn)品的加工過程中穩(wěn)定存在,因此,很多農(nóng)產(chǎn)品的加工制品中也存在AOH和AME[38]。近年來,隨著檢測技術(shù)的進步,色譜質(zhì)譜聯(lián)用等快速、準確、靈敏的檢測方法相繼應(yīng)用于包括交鏈孢毒素在內(nèi)的真菌毒素的檢測[39],農(nóng)產(chǎn)品及其制品中AOH和AME的檢測準確度和精度越來越高。2000年以來,德國、瑞士、荷蘭等歐洲國家、美國、加拿大、阿根廷以及中國已經(jīng)報道的AOH和AME污染的農(nóng)產(chǎn)品及其制品包括番茄、蘋果、藍莓、葡萄、柑橘等果蔬(表1),也包括小麥、大麥、燕麥、玉米等谷物及部分油料作物(表2)。如Scott等[40-41]利用高效液相色譜串聯(lián)質(zhì)譜(high-performance liquid chromatography-tandem mass spectrometry,HPLC-MS/MS)技術(shù)對來自加拿大的17 份當?shù)丶t葡萄酒和7 份進口紅葡萄酒中的AME和AOH進行了測定,結(jié)果顯示,13 份當?shù)丶t葡萄酒及7 份進口紅葡萄酒中均檢出AOH,且樣品中常伴有痕量的AME;白葡萄酒中AOH和AME含量較少(≤1.5 ng/mL),而且這兩種毒素在酒中比較穩(wěn)定。Lau等[42]利用電噴霧液相色譜-串聯(lián)質(zhì)譜(liquid chromatography-tandem mass spectrometry,LC-MS/MS)技術(shù)測定加拿大市售蘋果汁和其他水果飲料中的交鏈孢毒素,結(jié)果表明,AOH存在于蘋果汁、葡萄汁、覆盆子果汁、蔓越莓花蜜、西梅汁、紅葡萄酒等水果制品中,質(zhì)量濃度最高達6 ng/mL;且除覆盆子果汁之外的其他樣品中還檢測到了AME,質(zhì)量濃度為0.2~1.4 ng/mL。Azcarate等[43]對阿根廷2004年和2005年收獲的64 個小麥樣本進行檢測,結(jié)果發(fā)現(xiàn):23%的樣本中含有AME,其是小麥樣品中的主要交鏈孢毒素,6%的小麥中含有AOH;Wagacha等[44]用HPLC-MS/MS方法對從肯尼亞采集的26 份小麥樣品中的AOH和AME進行了測定,結(jié)果發(fā)現(xiàn)27%的樣品污染了AOH和AME。Noser等[45]利用超高效液相色譜-串聯(lián)質(zhì)譜(ultra performance liquid chromatography-tandem mass spectrometry,UPLC-MS/MS)快速檢測方法,對85 份瑞士市售番茄制品進行了檢測,結(jié)果發(fā)現(xiàn),新鮮番茄中未檢測到交鏈孢毒素,但瑞士市售26 份番茄制品中含有AOH,26份番茄制品中含有AME,含量分別為4~33 μg/kg和1~9 μg/kg。López等[46]利用UPLC-MS和LC-MS/MS技術(shù)對荷蘭地區(qū)包括番茄醬、谷物制品等在內(nèi)的95 份樣品進行了檢測,結(jié)果發(fā)現(xiàn),14 份谷物樣品中,1 份樣品呈AOH和AME陽性,含量分別為3.0 μg/kg和5.2 μg/kg;8 份番茄醬中有4 份檢出AOH和AME,檢出率均為50%,含量分別為小于1.0~7.8 μg/kg和小于2.0~25 μg/kg;11 份新鮮蘋果樣品中有1 份檢測出AOH,含量為29 μg/kg;5 份紅酒樣品中1 份呈AOH陽性,含量為11 μg/kg;Hickert等[47]利用HPLC-MS/MS技術(shù)對德國市售番茄制品、果汁及烘焙制品等96 個樣品進行了檢測,發(fā)現(xiàn)番茄制品、果汁等食品中AOH和AME的檢出率較高:34 份番茄制品中,AOH和AME的檢出率分別為70.59%和79.41%,含量分別為6.1~25 μg/kg和1.2~7.4 μg/kg;23 份果汁中AOH和AME的檢出率分別為56.52%和43.48%,含量分別為0.65~16 μg/kg和0.14~4.9 μg/kg;9 個烘焙制品中8 個呈AME陽性,毒素平均含量為3.2 μg/kg;19 份蔬菜油中AOH和AME的檢出率分別為47.37%和84.21%,含量分別為6.0 μg/kg和2.8~14 μg/kg;11 份葵花籽油中AOH和AME的檢出率分別為54.55%和63.64%,含量分別為16~39 μg/kg和0.64~21 μg/kg。何強等[48]利用UPLC-MS/MS檢測濃縮蘋果汁中AOH、AME等在內(nèi)的交鏈孢毒素,結(jié)果表明,15 份我國市售濃縮蘋果汁樣品中,1 份檢出AOH和AME,含量分別為1.9 μg/kg和0.8 μg/kg。近年來,我國的小麥及其制品中也不斷檢測出AOH和AME[49-50]。

表1 2000年以來果蔬及其制品中交鏈孢毒素污染情況Table 1 Contamination of AOH and AME in fruits, vegetables and their products since 2000
交鏈孢毒素的污染水平和穩(wěn)定性受貯存方式、溫度、壓力和不同食品基質(zhì)的影響。Combina等[61]將含有AOH和AME的葵花籽粉在不同溫度、壓力條件下經(jīng)一定時間處理后,測定其處理前后毒素含量的變化,結(jié)果發(fā)現(xiàn)AOH、AME經(jīng)100 ℃處理90 min含量無明顯變化,121 ℃條件下處理60 min可有效降低AOH、AME含量;Scott等[40]對不同條件下果汁和果酒中的AOH和AME含量進行研究,將果汁在室溫條件下存放20 d,其中的AOH、AME含量基本不變,2 種毒素在果酒中也具有相似的穩(wěn)定性,因此,AOH和AME可能在室溫條件下能長期保持穩(wěn)定,但高溫條件下易降解。另外,交鏈孢毒素在果實不同部位的含量也不相同,對柑橘全果、果皮、果肉等不同部位取樣后的檢測結(jié)果表明:交鏈孢毒素主要產(chǎn)生在果皮上,而后通過果皮殘留于果實[60,62-63]。

表2 2000年以來其他農(nóng)產(chǎn)品及制品中交鏈孢毒素污染情況Table 2 Contamination of AOH and AME in other agro-products since 2000
交鏈孢毒素在全球范圍內(nèi)廣泛分布,對人類和動物健康存在一定的風(fēng)險。歐洲食品安全局提出了一種可采用毒理學(xué)關(guān)注閾值(threshold of toxicological concern,TTC)方法來評估食品中交鏈孢毒素對人類健康的潛在風(fēng)險[2],由于AOH和AME具有誘變性,估算的慢性膳食暴露上限與第95個百分位膳食暴露均值超過了TTC值(2.5 ng/(kg·d)mb),說明隨膳食攝入的AOH和AME對公眾健康可能存在潛在風(fēng)險。長期以來,由于鮮食的果蔬在食用過程中會去除腐爛部位,果蔬中的真菌毒素污染未引起足夠的重視,而且到目前為止,國內(nèi)外現(xiàn)行有效的農(nóng)產(chǎn)品及其制品相關(guān)的真菌毒素限量標準中尚不包括交鏈孢毒素,因此制定各種標準和法規(guī)來控制交鏈孢毒素在谷物、水果及其制品中的污染乃是當務(wù)之急,目前歐盟已開始著手制定交鏈孢毒素的最大殘留限量標準[71],我國也應(yīng)盡快從安全角度考慮,建立既符合國際通行規(guī)則又符合本國國情的風(fēng)險評估技術(shù)和限量標準。
隨著國家對農(nóng)產(chǎn)品質(zhì)量安全的日益重視,精準快速檢測技術(shù)已成為檢測方法中的熱點問題,HPLC-MS等常規(guī)檢測方法是交鏈孢毒素傳統(tǒng)的檢測方法,但是這些大型的檢測設(shè)備只能滿足實驗室中檢測的需求,不能滿足實時、快速、便攜式檢測的需求,而免疫檢測技術(shù)具有反應(yīng)快速、靈敏度高、特異性強、成本較低且可開發(fā)成便攜式快速檢測試劑盒等優(yōu)點,但需要針對不同的毒素篩選到專一、親和性高的抗體,因此還沒有在交鏈孢毒素檢測中得到廣泛應(yīng)用。目前用于交鏈孢毒素的免疫學(xué)檢測方法只有酶聯(lián)免疫吸附測定技術(shù),且僅應(yīng)用于細交鏈格孢酮酸[72-73]和AOH[54]。交鏈孢毒素快速檢測試劑盒的開發(fā)和快速檢測方法的建立不僅可以省時省力,同時還能減少樣品的消耗量,對農(nóng)產(chǎn)品中交鏈孢毒素的檢測具有重大意義。
[1] RAISTRICK H, STICKINGS C E, THOMAS R. Studies in the biochemistry of micro-organisms. alternariol and alternariol monomethyl ether, metabolic products of Alternaria tenuis[J].Biochemical Journal, 1953, 55(3): 421-433. DOI:10.1042/bj0550421.
[2] EFSA (European Food Safety Authority) Panel on Contaminants in the Food Chain. Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food[J].EFSA Journal, 2011, 9(10): 2407. DOI:10.2903/j.efsa.2011.2407.
[3] SIEGEL D, FEIST M, PROSKE M, et al. Degradation of the Alternaria mycotoxins alternariol, alternariol monomethyl ether, and altenuene upon bread baking[J]. Journal of Agricultural and Food Chemistry, 2010, 58(17): 9622-9630. DOI:10.1021/jf102156w.
[4] POLLOCK G A, DISABATINO C E, HEIMSCH R C, et al. The subchronic toxicity and teratogenicity of alternariol monomethyl ether produced by Alternaria solani[J]. Food and Chemical Toxicology,1982, 20(6): 899-902. DOI:10.1016/S0015-6264(82)80225-3.
[5] GRIFFIN G F, CHU F S. Toxicity of the Alternaria metabolites alternariol, alternariol methyl ether, altenuene, and tenuazonic acid in the chicken embryo assay[J]. Applied and Environmental Microbiology, 1983, 46(6): 1420-1422.
[6] DAVIS V M, STACK M E. Evaluation of alternariol and alternariol methyl ether for mutagenic activity in salmonella typhimurium[J].Applied and Environmental Microbiology, 1994, 60(10): 3901-3902.
[7] AN Yuhui, ZHAO Tianzheng, MIAO Jian, et al. Isolation,identification, and mutagenicity of alternariol monomethyl ether[J].Journal of Agricultural and Food Chemistry, 1989, 37(5): 1341-1343.DOI:10.1021/jf00089a029.
[8] 石智勇, 劉桂亭, 錢玉珍, 等. 交鏈孢酚單甲醚在大鼠小鼠體內(nèi)的分布[J]. 河南醫(yī)科大學(xué)學(xué)報, 1990, 25(2): 136-140. DOI:10.13705/j.issn.1671-6825.1990.02.006.
[9] PERO R W, POSNER H, BLOIS M, et al. Toxicity of metabolites produced by the “Alternaria”[J]. Environmental Health Perspectives,1973, 4: 87-94. DOI:10.1289/ehp.730487.
[10] 安玉會, 盧榮華, 馮文舟, 等. 林縣交鏈孢霉毒素: 交鏈孢醇單甲醚和交鏈孢烯的協(xié)同毒性和致畸作用研究[J]. 癌癥, 1988, 7(1): 54-55.
[11] FEHR M, PAHLKE G, FRITZ J, et al. Alternariol acts as 42a topoisomerase poison, preferentially affecting the IIα isoform[J].Molecular Nutrition & Food Research, 2009, 53(4): 441-451.DOI:10.1002/mnfr.200700379.
[12] LIU Guiting, QIAN Yuzhen, ZHANG Peng, et al. Etiological role of Alternaria alternata in human esophageal cancer[J]. Chinese Medical Journal, 1992, 105(5): 394-400.
[13] LIU Guiting, QIAN Yuzhen, ZHANG Peng, et al. Relationships between Alternaria alternate and oesophageal cancer[J]. Iarc Scientific Publications, 1991(105): 258-262.
[14] DONG Zigang, LIU Guiting, DONG Ziming, et al. Induction of mutagenesis and transformation by the extract of Alternaria alternata isolated from grains in Linxian, China[J]. Carcinogenesis, 1987, 8(7):989-991. DOI:10.1093/carcin/8.7.989.
[15] BRUGGER E M, WAGNER J, SCHUMACHER D M, et al.Mutagenicity of the mycotoxin alternariol in cultured mammalian cells[J]. Toxicology Letters, 2006, 164(3): 221-230. DOI:10.1016/j.toxlet.2006.01.001.
[16] LEHMANN L, WAGNER J, METZLER M. Estrogenic and clastogenic potential of the mycotoxin alternariol in cultured mammalian cells[J]. Food and Chemical Toxicology, 2006, 44(3):398-408. DOI:10.1016/j.fct.2005.08.013.
[17] SCHRADER T J, CHERRY W, SOPER K, et al. Examination of Alternaria alternate mutagenicity and effects of nitrosylation using the Ames Salmonella test[J]. Teratogen Carcinogen Mutagen, 2001, 21(4):261-274. DOI:10.1002/tcm.1014.
[18] PFEIFFER E, ESCHBACH S, METZLER M. Alternaria toxins: DNA strand-breaking activity in mammalian cells in vitro[J]. Mycotoxin Research, 2007, 23(3): 152-157. DOI:10.1007/BF02951512.
[19] 朱涵, 樊紅琨, 章茜. 互隔交鏈孢酚對NIH/3T3細胞中DNA聚合酶β的致突變作用[J]. 中國組織工程研究, 2012, 16(15): 2831-2834.DOI:10.3969/j.issn.1673-8225.2012.15.038.
[20] 朱涵, 楊春, 趙偉達, 等. 交鏈孢酚對成纖維細胞中DNA聚合酶β的影響[J]. 現(xiàn)代預(yù)防醫(yī)學(xué), 2012, 39(19): 5071-5073.
[21] 楊勝利, 董子明, 裴留成, 等. 河南林縣居民糧食中互隔交鏈孢霉及其毒素污染和人群暴露狀況研究[J]. 癌變·畸變·突變, 2007, 19(1):44-46. DOI:10.3969/j.issn.1004-616X.2007.01.013.
[22] PASTER N, BARKAI-GOLAN R. Mouldy fruits and vegetables as a source of mycotoxins: part 1[J]. World Mycotoxin Journal, 2008, 1(2): 147-159.
[23] BOTTALICO A, LOGRIECO A. Toxigenic Alternaria species of economic importance[M]// DOWD P F. Mycotoxins in agriculture and food safety. New York: Marcel Dekker, 1998: 65-108.
[24] ANDERSEN B, FRISVAD J C. Natural occurrence of fungi and fungal metabolites in moldy tomatoes[J]. Journal of Agricultural and Food Chemistry, 2004, 52(25): 7507-7513. DOI:10.1021/jf048727k.
[25] POSE G, LUDEMANN V, SEGURA J, et al. Mycotoxin production by Alternaria strains isolated from tomatoes affected by Blackmold in Argentina[J]. Mycotoxin Research, 2004, 20(2): 80-85. DOI:10.1007/BF02946738.
[26] NTASIOU P, MYRESIOTIS C, KONSTANTINOU S, et al.Identification, characterization and mycotoxigenic ability of Alternaria spp. causing core rot of apple fruit in Greece[J]. International Journal of Food Microbiology, 2015, 197: 22-29. DOI:10.1016/j.ijfoodmicro.2014.12.008.
[27] MAAS M R, WOODY M A, CHU F S. Production of alternariol and alternariol methyl ether by Alternaria spp.[J]. Journal of Food Safety,1980, 3(1): 39-47. DOI:10.1111/j.1745-4565.1980.tb00407.x.
[28] WEI C I, SWARTZ D D. Growth and production of mycotoxins by Alternaria alternata in synthetic, semi-synthetic and rice media[J].Journal of Food Protection, 1985, 48(4): 306-311. DOI:10.4315/0362-028X-48.4.306.
[29] BRZONKALIK K, HERRLING T, SYLDATK C, et al. The influence of different nitrogen and carbon sources on mycotoxin production in Alternaria alternata[J]. International Journal of Food Microbiology,2011, 147(2): 120-126. DOI:10.1016/j.ijfoodmicro.2011.03.016.
[30] BRZONKALIK K, HüMMER D, SYLDATK C, et al. Influence of pH and carbon to nitrogen ratio onmycotoxin production by Alternaria alternata insubmerged cultivation[J]. AMB Express, 2012, 2(1): 1-8.DOI:10.1186/2191-0855-2-28.
[31] VAQUERA S, PATRIARCA A, FERNáNDEZ P V. Water activity and temperature effects on growth of Alternaria arborescens on tomato medium[J]. International Journal of Food Microbiology, 2014,185(1): 136-139. DOI:10.1016/j.ijfoodmicro.2014.06.007.
[32] OZCELIK S, OZCELIK N, BEUCHAT L R. Toxin production by Alternaria alternata in tomatoes and apples stored under various conditions and quantitation of the toxins by high-performance liquid chromatography[J]. International Journal of Food Microbiology, 1990,11(3/4): 187-194. DOI:10.1016/0168-1605(90)90011-S.
[33] VI?AS I, BONET J, SANCHIS V. Incidence and mycotoxin production by Alternaria tenuis in decayed apples[J]. Letters in Applied Microbiology, 1992, 14(6): 284-287. DOI:10.1111/j.1472-765X.1992.tb00706.x.
[34] COX R J. Polyketides, proteins and genes in fungi: programmed nanomachines begin to reveal their secrets[J]. Organic & Biomolecular Chemistry, 2007, 5(13): 2010-2026. DOI:10.1002/chin.200740268.
[35] KOCH K, PODLECH J, PFEIFFER E, et al. Total synthesis of alternariol[J]. Journal of Organic Chemistry, 2005, 70(8): 3275-3276.DOI:10.1021/jo050075r.
[36] SAHA D, FETZNER R, BURKHARDT B, et al. Identification of a polyketide synthase required for alternariol (AOH) and alternariol-9-methyl ether (AME) formation in Alternaria alternata[J]. PLoS ONE,2012, 7(7): 1-14. DOI:10.1371/journal.pone.0040564.
[37] CHOOI Y H, MURIA-GONZALEZ M J, MEAD O L, et al. SnpkS19 encodes the polyketide synthase for alternariol mycotoxin biosynthesis in the wheat pathogen Parastagonospora nodorum[J]. Applied and Environmental Microbiology, 2015, 81(16): 5309-5317. DOI:10.1128/AEM.00278-15.
[38] SCOTT P M. Analysis of agricultural commodities and foods for Alternaria mycotoxins[J]. Journal of AOAC International, 2001, 84(6): 1809-1817.
[39] 滿燕, 梁剛, 李安, 等. 鏈格孢霉毒素檢測方法研究進展[J]. 食品安全質(zhì)量檢測學(xué)報, 2016, 7(2): 453-458.
[40] SCOTT P M, KANHERE S R. Stability of Alternaria toxins in fruit juices and wine[J]. Mycotoxin Research, 2001, 17(1): 9-14.DOI:10.1007/BF02946112.
[41] SCOTT P M, LAWRENCE G A, LAU B P Y. Analysis of wines,grape juices and cranberry juices for Alternaria toxins[J]. Mycotoxin Research, 2006, 22(2): 142-147. DOI:10.1007/BF02956778.
[42] LAU B P-Y, SCOTT P M, LEWIS D A, et al. Liquid chromatographymass spectrometry and liquid chromatography-tandem mass spectrometry of the Alternaria mycotoxins alternariol and alternariol monomethyl ether in fruit juices and beverages[J]. Journal of Chromatography A, 2003, 998(1/2): 119-131. DOI:10.1016/S0021-9673(03)00606-X.
[43] AZCARATE P M, PATRIARCA A, TERMINIELLO L, et al.Alternaria toxins in wheat during the 2004 to 2005 argentinean harvest[J]. Journal of Food Protection, 2008, 71(6): 1262-1265.
[44] WAGACHA J M, STEINER U, DEHNE H W, et al. Diversity in mycotoxins and fungal species infecting wheat in Nakuru District,Kenya[J]. Journal of Phytopathology, 2010, 158(7/8): 527-535.DOI:10.1111/j.1439-0434.2009.01653.x.
[45] NOSER J, SCHNEIDER P, ROTHER M, et al. Determination of six Alternaria, toxins with UPLC-MS/MS and their occurrence in tomatoes and tomato products from the Swiss market[J]. Mycotoxin Research, 2011, 27(4): 265-271. DOI:10.1007/s12550-011-0103-x.
[46] LóPEZ P, VENEMA D, DE RIJK T, et al. Occurrence of Alternaria toxins in food products in the Netherlands[J]. Food Control, 2016, 60:196-204. DOI:10.1016/j.foodcont.2015.07.032.
[47] HICKERT S, BERGMANN M, ERSEN S, et al. Survey of Alternaria,toxin contamination in food from the German market, using a rapid HPLC-MS/MS approach[J]. Mycotoxin Research, 2016, 32(1): 7-18.DOI:10.1007/s12550-015-0233-7.
[48] 何強, 李建華, 孔祥虹, 等. 超高效液相色譜-串聯(lián)質(zhì)譜法同時測定濃縮蘋果汁中的4 種鏈格孢霉毒素[J]. 色譜, 2010, 28(12): 1128-1131.DOI:10.3724/SP.J.1123.2010.01128.
[49] ZHAO K, SHAO B, YANG D J, et al. Natural occurrence of Alternaria toxins in wheat-based products and their dietary exposure in China[J]. PLoS ONE, 2015, 10(6): 1-11. DOI:10.1371/journal.pone.0132019.
[50] XU W J, HAN X M, LI F Q, et al. Natural occurrence of Alternaria toxins in the 2015 wheat from Anhui province, China[J]. Toxins, 2016,8(11): 1-11. DOI:10.3390/toxins8110308.
[51] TERMINIELLO L, PATRIARCA A, POSE G, et al. Occurrence of alternariol, alternariol monomethyl ether and tenuazonic acid in Argentinean tomato puree[J]. Mycotoxin Research, 2006, 22(4): 236-240. DOI:10.1007/BF02946748.
[52] ASAM S, KONITZER K, SCHIEBERLE P, et al. Stable isotope dilution assays of alternariol and alternariol monomethyl ether in beverages[J]. Journal of Agricultural and Food Chemistry, 2009,57(12): 5152-5160. DOI:10.1021/jf900450w.
[53] ASAM S, KONITZER K, RYCHLIK M. Precise determination of the Alternaria mycotoxins alternariol and alternariol monomethyl ether in cereal, fruit and vegetable products using stable isotope dilution assays[J]. Mycotoxin Research, 2011, 27(1): 23-28. DOI:10.1007/s12550-010-0071-6.
[54] ACKERMANN Y, CURTUI V, DIETRICH R, et al. Widespread occurrence of low levels of alternariol in apple and tomato products,as determined by comparative immunochemical assessment using monoclonal and polyclonal antibodies[J]. Journal of Agricultural and Food Chemistry, 2011, 59(12): 6360-6368. DOI:10.1021/jf201516f.
[55] OSTRY V. Alternaria mycotoxins: an overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs[J/OL]. World Mycotoxin Journal, 2008, 1(2): 175-188.DOI:10.3920/WMJ2008.x013.
[56] ZHAO K, SHAO B, YANG D J, et al. Natural occurrence of four Alternaria mycotoxins in tomato- and citrus-based foods in China[J].Journal of Agricultural and Food Chemistry, 2015, 63(1): 343-348.DOI:10.1021/jf5052738.
[57] DA CRUZ CABRAL L, TERMINIELLO L, PINTO F V, et al. Natural occurrence of mycotoxins and toxigenic capacity of Alternaria strains from mouldy peppers[J]. International Journal of Food Microbiology,2016, 236: 155-160. DOI:10.1016/j.ijfoodmicro.2016.08.005.
[58] OSTRY V, SKARKOVA J, RUPRICH J. Occurrence of Alternaria mycotoxins and Alternaria spp. in lentils and human health[C]// 26thHerrsching: MycotoxinWorkshop, 2004.
[59] 李建華, 何強, 孔祥虹, 等. 凝膠滲透凈化-超高效液相色譜-串聯(lián)質(zhì)譜法測定橙汁中鏈格孢霉毒素[J]. 化學(xué)分析計量, 2012, 21(3): 20-23. DOI:10.3969/j.issn.1008-6145.2012.03.006.
[60] 史文景, 趙其陽, 焦必寧. UPLC-ESI-MS-MS結(jié)合QuEChERS同時測定柑橘中的4 種真菌毒素[J]. 食品科學(xué), 2014, 35(20): 170-174.DOI:10.7506/spkx1002-6630-201420034.
[61] COMBINA M, DALCERO A, VARSAVSKY E, et al. Effect of heat treatments on stability of altemariol, alternariol monomethyl ether and tenuazonic acid in sunflower flour[J]. Mycotoxin Research, 1999,15(1): 33-38. DOI:10.1007/BF02945212.
[62] MAGNANI R F, DE SOUZA G D, RODRIGUES-FILHO E. Analysis of alternariol and alternariol monomethyl ether on flavedo and albedo tissues of tangerines (Citrus reticulata) with symptoms of altenaria brown spot[J]. Journal of Agricultural and Food Chemistry, 2007,55(13): 4980-4986. DOI:10.1021/jf0704256.
[63] 蔣黎艷, 趙其陽, 龔蕾, 等. 超高效液相色譜串聯(lián)質(zhì)譜法快速檢測柑橘中的5 種鏈格孢霉毒素[J]. 分析化學(xué), 2015, 43(12): 1851-1858.DOI:10.11895/j.issn.0253-3820.150370.
[64] MONBALIU S, VAN POUCKE C, DETAVERNIER C, et al.Occurrence of mycotoxins in feed as analyzed by a multi-mycotoxin LC-MS/MS method[J]. Journal of Agricultural and Food Chemistry,2010, 58(1): 66-71. DOI:10.1021/jf903859z.
[65] KüTT M L, L?IVEKE H, TANNER R. Detection of alternariol in Estonian grain samples[J]. Agronomy Research, 2010, 8(Special Issue II): 317-322.
[66] H?GGBLOM P, STEPINSKA A, SOLYAKOV A. Alternaria mycotoxins in Swedish feed grain[C]// Proceedings of the 29th Stuttgart-Fellbach, Germany: Mycotoxin Workshop, 2007: 35.
[67] MüLLER M E H, KORN U. Alternaria mycotoxins in wheat: a 10 years survey in the northeast of Germany[J/OL]. Food Control, 2013,34(1): 191-197. DOI:10.1016/j.foodcont.2013.04.018.
[68] BURKIN A A, KONONENKO G P. Enzyme immunoassay of alternariol for the assessment of risk of agricultural products contamination[J]. Applied Biochemistry and Microbiology, 2011,47(1): 72-76. DOI:10.1134/S0003683811010030.
[69] LI F Q, YOSHIZAWA T. Alternaria mycotoxins in weathered wheat from China[J]. Journal of Agricultural and Food Chemistry, 2000,48(7): 2920-2924. DOI:10.1021/jf0000171.
[70] KRáLOVá J, HAJ?LOVá J, POUSTKA J, et al. Occurrence of Alternaria toxins in fibre flax, linseed, and peas grown in organic and conventional farms: monitoring pilot study[J]. Czech Journal of Food Sciences, 2006, 24(6): 288-296.
[71] PRELLE A, SPADARO D, GARIBALDI A, et al. A new method for detection of five Alternaria toxins in food matrices based on LCAPCI-MS[J]. Food Chemistry, 2013, 140(1/2): 161-167. DOI:10.1016/j.foodchem.2012.12.065.
[72] GROSS M, CURTUI V, ACKERMANN Y, et al. Enzyme immunoassay for tenuazonic acid in apple and tomato products[J].Journal of Agricultural and Food Chemistry, 2011, 59(23): 12317-12322. DOI:10.1021/jf203540y.
[73] 楊星星, 劉細霞, 王弘, 等. 細交鏈孢菌酮酸酶聯(lián)免疫吸附分析方法研究[J]. 分析化學(xué), 2012, 40(9): 1347-1352. DOI:10.3724/SP.J.1096.2012.11253.
Review on Alternariol and Alternariol Monomethyl Ether in Agro-Products
JIANG Dongmei, WANG Yao, JIANG Nan, WEI Dizhe, MA Shuai, WANG Meng*
(Risk Assessment Laboratory for Agro-Products (Beijing), Ministry of Agriculture, Beijing Research Center for Agricultural Standards and Testing, Beijing 100097, China)
Fungi of the genus Alternaria spp. are one of the important plant pathogens that can produce a variety of mycotoxins. Alternariol (AOH) and alternariol monomethyl ether (AME) are two important Alternaria spp. toxins that can contaminate various agro-products including vegetables, fruits, grains and their processed products. In this paper, the structure, physicochemical characteristics and toxicity of AOH and AME, the factors affecting their formation, their chemical and biological synthesis pathways, and the current status of their contamination levels are reviewed. Future prospects for the formulation of maximum residue limit standards and for the rapid detection of AOH and AME are discussed.
Alternaria spp.; mycotoxin; alternariol; alternariol monomethyl ether
10.7506/spkx1002-6630-201721045
TS201.3
A
1002-6630(2017)21-0287-07
姜冬梅, 王瑤, 姜楠, 等. 農(nóng)產(chǎn)品及其制品中交鏈孢酚和交鏈孢酚單甲醚研究進展[J]. 食品科學(xué), 2017, 38(21): 287-293.
10.7506/spkx1002-6630-201721045. http://www.spkx.net.cn
JIANG Dongmei, WANG Yao, JIANG Nan, et al. Review on alternariol and alternariol monomethyl ether in agroproducts[J]. Food Science, 2017, 38(21): 287-293. (in Chinese with English abstract) DOI:10.7506/spkx1002-6630-201721045. http://www.spkx.net.cn
2017-02-21
“十三五”國家重點研發(fā)計劃重點專項(2016YFD0400902);國家農(nóng)產(chǎn)品質(zhì)量安全風(fēng)險評估重大專項(GJFP2017013);北京市農(nóng)林科學(xué)院青年基金項目(QNJJ2015018)
姜冬梅(1984—),女,助理研究員,博士,研究方向為農(nóng)產(chǎn)品質(zhì)量安全與標準。E-mail:mei.315@163.com
*通信作者:王蒙(1980—),女,副研究員,博士,研究方向為農(nóng)產(chǎn)品質(zhì)量安全與標準。E-mail:ameng-001@163.com