朱麗媛,盧慶萍,夏冰,劉正群,孫永波,張宏福
?
體外法研究纖維日糧的發酵特性及對豬氮排放相關指標的影響
朱麗媛,盧慶萍,夏冰,劉正群,孫永波,張宏福
(中國農業科學院北京畜牧獸醫研究所/動物營養學國家重點實驗室,北京 100193)
【】利用體外法探討并比較不同纖維日糧的發酵特性及對豬氮排放相關指標的影響,為生豬生產中合理應用日糧纖維及減少氮排放的日糧配制提供試驗依據。【】選擇小麥、麥麩與燕麥麩3種原料,采用酶-重量法(AOAC Method 985.29)提取原料中的總日糧纖維組分,得到小麥纖維、麥麩纖維與燕麥麩纖維。以玉米-豆粕為基礎,分別添加5%的提取纖維,形成3種纖維日糧:小麥纖維日糧(WF)、麥麩纖維日糧(WBF)與燕麥麩纖維日糧(OBF)。利用單胃動物仿生消化系統(SDS-Ⅱ)模擬豬胃-小腸消化;采集6頭健康、體重接近的生長豬的新鮮糞便,混合均勻后與培養液按一定比例配制接種液,定量裝入發酵瓶中模擬大腸發酵。日糧經胃-小腸仿生消化后,稱取200 mg的消化產物于裝有30 mL接種液的發酵瓶中,轉入(39±0.25)℃培養箱中,分別在發酵4、12、24、36、48和72 h,取出對應發酵瓶,收集發酵殘渣與發酵液,進行相關指標的檢測。【】在體外大腸發酵階段,不同纖維日糧組的干物質降解率(IVDMD)及發酵液短鏈脂肪酸(SCFA)含量、pH、氨氮(NH3-N)濃度、微生物蛋白(MCP)產量有顯著差異(<0.05):(1)在發酵4與12 h,OBF組的IVDMD在3組中最高(0.01),其他時間點3組差異不顯著(0.05)。在4 h,OBF組的IVDMD比WF組與WBF組分別高18.32%、15.21%(<0.01);在12 h,比WF組與WBF組分別高14.87%、10.06%(<0.01)。(2)在發酵24與36 h,OBF組發酵液總SCFA含量顯著高于其他兩組(<0.05),在72 h,OBF組與WBF組極顯著高于WF組(<0.01),在4與12 h,OBF組有高于其他兩組的趨勢(=0.0599;=0.0504)。在24 h,OBF組發酵液總SCFA含量比WF組與WBF組分別高27.32%、17.11%(<0.05);在36 h,比WF組與WBF組分別高16.65%、25.96%(<0.05)。(3)在發酵4與12 h,OBF組發酵液pH在3組中最低(<0.01);在24、36與72 h,OBF組與WBF組顯著低于WF組(<0.05)。(4)在發酵24與48 h,OBF組發酵液NH3-N濃度顯著低于其他兩組(<0.05),并在12 h,有低于其他兩組的趨勢(=0.0559)。在24 h,OBF組發酵液NH3-N濃度比WF組與WBF組分別低6.86%、4.59%(<0.05);在48 h,比WF組與WBF組分別低8.44%、7.09%(<0.05)。(5)在發酵4 h,OBF組發酵液MCP產量顯著高于其他兩組(<0.05),并分別在12、24 h與36、48 h,顯著高于WF組與WBF組(<0.05)。在4 h,OBF組發酵液MCP產量比WF組與WBF組分別高69.85%、82.25%(<0.05)。【】體外條件下,燕麥麩纖維顯著提高了日糧在發酵階段的干物質降解率、發酵液總短鏈脂肪酸含量與微生物蛋白產量,并顯著降低了發酵液pH與氨氮濃度。因此,相比小麥纖維與麥麩纖維,燕麥麩纖維在促進微生物發酵及氮減排方面具有更高的潛力。
日糧纖維;生長豬;體外發酵;發酵特性;氮排放相關指標
【研究意義】養豬業帶來的氮污染對環境、人畜健康及生產的危害逐漸受到廣泛重視[1-2]。因尿氮比糞氮易分解釋放氨氣,所以研究氮減排的重心便集中在減少尿氮排放或者將尿氮轉至糞便中[3]。大量體內研究已證實[4-6],豬日糧中添加日糧纖維(dietary fiber, DF)可以促進尿氮向糞氮的轉移,DF在后腸內經微生物發酵產生短鏈脂肪酸(short-chain fatty acid, SCFA)為微生物供能,促進其生長,導致微生物對氨的需要量增多,尿素合成減少,而微生物蛋白(microbial protein, MCP)合成增加,并隨糞便排出。但不同來源的纖維因自身理化性質的迥異,對宿主腸道微生物的刺激具有選擇性,在微生物的作用下有不同的發酵模式,對氮排放的影響也必然存在差異[7]。隨著纖維型飼料原料越來越被重視,在養豬業生產實際中,如何選擇DF來源、充分利用其發酵性能成為一個關鍵問題,既在緩解飼料資源短缺、降低生產成本的同時還能有效實現氮減排。【前人研究進展】在豬營養相關研究中,體外法()因其快速、省力、易于標準化等特點受到關注。目前普遍使用的體外胃-小腸-大腸三步法因在大腸階段未引入微生物發酵、不能發揮DF的發酵性能,而具有一定的局限性[8-10]。近幾年國外學者將豬的新鮮糞便作為微生物來源,引入纖維日糧體外發酵研究中,實現對大腸微生物環境較大程度的模擬[11-12],但當前在國內研究中的應用仍然較少。纖維型飼料原料的化學組成復雜,DF在宿主腸道內的發酵情況受其他組分的綜合影響[13]。【本研究切入點】為了去除其他組分的干擾,客觀地反應DF組分的發酵特性,本研究選擇小麥、麥麩與燕麥麩3種生產中常用的飼料原料,提取原料的總日糧纖維(total dietary fiber,TDF),分別配制成生長豬日糧,并利用單胃動物仿生消化系統(SDS-Ⅱ)對日糧進行豬胃-小腸模擬消化,之后對消化產物進行體外微生物發酵。【擬解決的關鍵問題】以探討并比較不同纖維日糧的發酵特性及對氮排放相關指標的影響,為生豬生產中合理應用DF及減少氮排放的日糧配制提供試驗依據。
試驗于2016年1—6月在中國農業科學院北京畜牧獸醫研究所動物營養學國家重點實驗室進行。
選擇小麥、麥麩與燕麥麩3種飼料原料,參照Prosky(AOAC Method 985.29)[14]酶-重量法去除蛋白與淀粉,提取原料的TDF,并對提取纖維的纖維含量進行測定,見表1。

表1 3種原料提取纖維的纖維含量
以玉米和豆粕為基礎,分別添加5%的提取纖維(小麥纖維、麥麩纖維與燕麥麩纖維),形成3種日糧:小麥纖維日糧、麥麩纖維日糧與燕麥麩纖維日糧。日糧滿足NRC(2012)20—50 kg生長豬營養需要量,其組成及營養水平如表2所示。
體外條件下對各日糧進行豬的胃-小腸模擬消化。利用動物營養學國家重點實驗室研發的單胃動物仿生消化系統(SDS-Ⅱ)完成,具體操作規程參見《單胃動物仿生消化系統操作手冊(第二版)》[15],收集消化產物(即為發酵底物)備用。
1.4.1 發酵培養液 參照MENKE等方法配制[16],現用現配。培養液由蒸餾水、溶液A、溶液B、溶液C、刃天青溶液和還原劑溶液組成,具體組成見表3。在400 mL蒸餾水中加入0.1 mL溶液A、200 mL溶液B、200 mL溶液C和1 mL刃天青溶液(指示培養液厭氧狀況,有氧時呈紅色,厭氧時呈無色),通無氧CO2飽和后置于(39±0.25)℃恒溫水浴鍋中,在與糞便混合前1 h加入40 mL還原劑溶液,混勻并持續通入CO2。
1.4.2 發酵菌源 選擇6頭健康、體重接近(BW,(37.2±4.6)kg)杜×長×大三元雜交閹公豬(動物營養學國家重點實驗室昌平試驗基地)作為糞便供體動物。收集每頭豬的新鮮糞便,直接保存于100 mL的塑料注射器中,推動活塞驅趕空氣,放置于水浴(39±0.25)℃的保溫瓶中,立即帶回實驗室。
1.4.3 接種液 將收集的糞便混勻,取28.5 g與預熱至(39±0.25)℃的培養液210 mL充分混合(機械攪拌60 s)后,經4層紗布過濾,取濾液密封于適宜體積的玻璃瓶中,持續攪拌,并通入CO2使其保持在厭氧環境中。所有操作均于(39±0.25)℃恒溫水浴鍋中進行,盡量在最短時間內完成。
1.4.4 體外發酵設計 稱取經胃和小腸消化后的殘渣200 mg,分裝于100 mL的玻璃發酵瓶中,加入30 mL接種液,持續沖入CO25 s后,立即蓋上瓶塞,轉入已預熱至(39±0.25)℃的恒溫培養箱中(SPX-250 B-2,上海福瑪實驗設備有限公司)培養,在發酵4、12、24、36、48和72 h后(各時間點設6個重復,另設3個空白用于校正數據),取出對應發酵瓶,收集發酵殘渣和發酵液,進行相關指標的檢測。
1.5.1 常規成分 日糧的干物質、能量、粗蛋白質、粗脂肪、中性洗滌纖維及粗灰分含量按照《常規飼料分析與檢測技術》[17]方法測定。
1.5.2 纖維含量 采用PROSKY(AOAC Method 985.29)[14]酶-重量法測定日糧及提取纖維的可溶性日糧纖維(soluble dietary fiber,SDF)、不溶性日糧纖維(insoluble dietary fiber,IDF)及總日糧纖維(total dietary fiber,TDF)含量。

表2 試驗日糧組成及營養水平(風干基礎,%)
1)預混料為每千克日糧提供:維生素A,8 250 IU;維生素B1,1 mg;維生素B2,5 mg;維生素B5,40 mg;維生素B6,2 mg;維生素B12,0.025 mg;維生素D3,825 IU;維生素E,40 IU;維生素K3,4 mg,;生物素,0.20 mg;葉酸,2.0 mg;D-泛酸,15 mg;煙酸,35 mg;銅,50 mg;鐵,80 mg;錳,25 mg;鋅,100 mg;碘,0.50 mg;硒,0.15 mg。2)營養水平中除消化能為計算值外,其他均為實測值。
1)The premix provided the following per kg of diets:vitamin A, 8 250 IU; vitamin B1, 1 mg; vitamin B2,5 mg; vitamin B5, 40 mg; vitamin B6, 2 mg; vitamin B12, 0.025 mg; vitamin D3, 825 IU; vitamin E, 40 IU; vitamin K3,4 mg; biotin, 0.20 mg; folic acid, 2.0 mg; D-pantothenic acid, 15 mg; nicotinic acid, 35 mg; copper, 50 mg; iron, 80 mg; manganese, 25 mg; zinc, 100 mg; iodine, 0.50 mg; selenium, 0.15 mg.2)Nutrient levels are measured values, but the digestibility energy is calculated value
1.5.3 體外發酵階段干物質降解率 (dry matter degradability during thefermentation,IVDMD)
IVDMD(%)=(日糧干物質重-發酵后殘渣干物質重)/日糧干物質重×100。
1.5.4 發酵液短鏈脂肪酸含量、pH及氨氮濃度 發酵液短鏈脂肪酸含量采用氣相色譜法[18](Agilent 7890B氣相色譜儀,安捷倫科技有限公司)測定。
發酵結束后,立即使用pH酸度計(Sartorius PB-10)測定發酵液pH。
使用納氏比色法(CM-02N臺式氨氮水質測定儀,北京雙暉京承電子產品有限公司)測定發酵液氨氮(NH3-N)濃度。
1.5.5 發酵液微生物蛋白濃度及產量 采用嘌呤法[19]測定發酵液微生物蛋白濃度。

表3 培養液組成
微生物蛋白產量(mg)=微生物蛋白濃度(mg·mL-1)×發酵液體積(mL)
1.6 數據處理
根據單因子完全隨機設計,以SAS 9.2 MEANS模塊對基本統計量進行分析,GLM模塊對數據進行方差分析,均值通過Tukey法進行多重比較,<0.05為差異顯著。
不同底物在體外發酵階段的干物質降解率如表4所示。在發酵4與12 h,OBF組的IVDMD極顯著高于其他兩組(<0.01),其他時間點3組差異不顯著。在4 h,OBF組的IVDMD比WF組與WBF組分別高18.32%、15.21%(<0.01);在12 h,比WF組與WBF組分別高14.87%、10.06%(<0.01)。

表4 日糧纖維對體外發酵階段干物質降解率的影響
同行數據標不同小寫字母表示差異顯著(<0.05),相同字母或無字母表示差異不顯著(>0.05)。下表同
In the same row, values with different small letter superscripts mean significant difference (<0.05) , and values with the same or no letter superscripts mean no significant difference (>0.05). The same as below
不同底物的IVDMD隨發酵時間的變化情況如圖1所示。各組底物的IVDMD在發酵4—24 h隨發酵時間增加而極顯著增加(<0.01),之后便緩慢增加,但差異不顯著(>0.05)。
不同纖維日糧體外發酵總短鏈脂肪酸含量有顯著差異(<0.05,表5)。在發酵24 h與36 h,OBF組發酵液總SCFA含量顯著高于其他兩組(<0.05),在72 h,OBF組與WBF組極顯著高于WF組(<0.01),在4與12 h,OBF組有高于其他兩組的趨勢(=0.0599;=0.0504)。在24 h,OBF組發酵液總SCFA含量比WF組與WBF組分別高27.32%、17.11%(<0.05);在36 h,比WF組與WBF組分別高16.65%、25.96%(<0.05)。
不同纖維日糧體外發酵總SCFA含量隨發酵時間的變化情況如圖2所示。隨著發酵時間的延長,各組發酵液總SCFA含量表現為先升高后降低(<0.01),并在發酵48 h達到最大。

圖1 體外發酵階段干物質降解率隨發酵時間的變化情況

圖2 發酵液總短鏈脂肪酸含量隨發酵時間的變化情況

表5 日糧纖維對發酵液總短鏈脂肪酸含量的影響
不同纖維日糧體外發酵pH有顯著差異(<0.05,表6)。在發酵4 h與12 h,OBF組發酵液pH極顯著低于其他兩組(<0.01);在24、36與72 h,OBF組與WBF組顯著低于WF組(<0.05)。
不同纖維日糧體外發酵pH隨發酵時間的變化情況如圖3所示。在發酵4—36 h,隨發酵時間的增加各組發酵液pH極顯著降低(<0.01),之后便維持平穩(>0.05)。不同時間點各組發酵液pH介于6.79—6.96之間。

表6 日糧纖維對發酵液pH的影響

圖3 發酵液pH隨發酵時間的變化情況
不同纖維日糧體外發酵氨氮濃度有極顯著差異(<0.01表7)。在發酵24與48 h,OBF組發酵液NH3-N濃度顯著低于其他兩組(<0.05),并在12 h,有低于其他兩組的趨勢(=0.0559)。在24 h,OBF組發酵液NH3-N濃度比WF組與WBF組分別低6.86%、4.59%(<0.05);在48 h,比WF組與WBF組分別低8.44%、7.09%(<0.05)。
不同纖維日糧體外發酵NH3-N濃度隨時間的變化情況如圖4所示。隨著發酵時間的增加,各組發酵液NH3-N濃度基本呈現出相同的變化,即先上升后降低再升高(<0.01),并在發酵72 h達到最高。

圖4 發酵液氨氮濃度隨發酵時間的變化情況

表7 日糧纖維對發酵液氨氮濃度的影響
不同纖維日糧體外發酵微生物蛋白產量有顯著差異(<0.05,表8)。在發酵4 h,OBF組發酵液MCP產量顯著高于其他兩組(<0.05),在12與24 h,OBF顯著高于WF組(<0.05),在36與48 h,OBF組顯著高于WBF組(<0.05)。在4 h,OBF組發酵液MCP產量比WF組與WBF組分別高69.85%、82.25%(<0.05)。
不同纖維日糧體外發酵MCP產量隨發酵時間的變化情況如圖5所示。在發酵4—48 h,各組發酵液MCP產量隨發酵時間的增加而極顯著增加(<0.01),之后基本不變(>0.05)。
日糧纖維在促進豬尿氮向糞氮轉移上的效果越來越受到重視。筆者前期也做過研究,發現日糧中添加20%麥麩或燕麥麩后,生長豬尿液總氮與氨氮含量顯著降低[20-21]。在此基礎上,本試驗采用體外研究手段,選擇麥麩、燕麥麩及生產中常用的原料小麥,提取原料中的總日糧纖維,配制3種纖維日糧,體外條件下模擬其在豬消化道內的消化與發酵,以研究并比較纖維日糧的發酵特性及發酵過程中氮排放相關指標的變化情況。但目前相關體外研究中,評價纖維的發酵特性多集中為纖維原料,鮮少涉及以上3種纖維日糧,且結合研究氮排放相關指標的報道比較少[4,12,22-23]。因此,本研究對體外法、纖維日糧的發酵特性及氮排放相關指標的有機結合,為深入了解DF、DF在豬日糧中的合理應用及減少氮排放的日糧配制提供了新的思路。

表8 日糧纖維對發酵液微生物蛋白產量的影響

圖5 發酵液微生物蛋白產量隨發酵時間的變化情況
DF是不能被胃與小腸內源消化酶分解,只能部分或全部由微生物發酵利用的碳水化合物的總稱[24]。不同來源DF的可發酵性各異[11],對其他養分被微生物利用程度的影響也不盡相同。前人研究表明[20,25-26],SDF型纖維比IDF型纖維的可發酵性高,更易降解,并通過發酵供能及促進微生物生長等,進一步促進其他養分的酵解利用。IVDMD是反應底物DM在體外發酵階段的降解率及被微生物利用的程度的直觀指標,本試驗中,在發酵起始階段,DF對IVDMD有顯著影響,且燕麥麩纖維組的IVDMD最高,這符合筆者的認識,燕麥麩纖維屬SDF型纖維(SDF/ TDF=33.19%),而其他兩種纖維為IDF型纖維,也與孟麗輝[20]的體內試驗結果一致,即SDF含量最高日糧的后腸發酵率顯著高于其他日糧。
此外,3種底物的IVDMD均隨發酵時間的增加而增加,但從24 h開始增加緩慢,這可能是隨著發酵進行,底物被大量消耗,發酵速率有所下降的緣故[27]。目前相關研究也以發酵期間產氣量的多少來反映底物被微生物利用的程度[22-23],產氣量隨時間的變化趨勢與本試驗中IVDMD變化趨勢基本一致,且AWATI指出[28]在發酵一定時間后產氣量增加緩慢的原因:在發酵一定時間后,接種液中微生物區系已適應發酵底物,作為產氣來源的物質已被大量消耗,產氣量基本達到最大。
SCFA是豬后腸微生物發酵DF的主要終產物,是估測后腸發酵的一個重要指標。在體內,后腸發酵產生的SCFA迅速被腸上皮細胞吸收,而體外發酵過程中不存在吸收過程,因此提供了一種值得信賴的測定SCFA含量的方法[29]。有研究證實,SCFA含量受DF來源及發酵率的影響,即當底物中可發酵DF含量越高,被微生物利用程度越高,SCFA含量也相繼提高[30-31]。本研究中,在發酵前4個時間點,燕麥麩纖維組的總SCFA含量均高于其他兩組,這與燕麥麩纖維組可發酵DF含量(SDF/TDF=18.19%)及IVDMD最高的試驗結果切合。
隨著發酵時間的延長,3組總SCFA含量在4—48 h不斷增加,這是微生物不斷發酵產酸而SCFA無法外流、吸收的結果,在48—72 h又降低,可能是由代謝產物積累使微生物增長變緩以及可發酵碳水化合物大量消耗引起。動物后腸內pH主要受SCFA含量、腸上皮對SCFA的吸收及食糜外流等的共同影響[27],顯然,在體外發酵過程中,動物體內生理代謝過程并不存在,發酵液pH則主要被SCFA含量影響。本試驗中,隨著發酵時間的延長,發酵液pH變化與SCFA變化基本相對應,在發酵4—48 h,SCFA的大量積累導致pH不斷下降,且在48—72 h,從數值上看,發酵液pH呈增加趨勢,與前文所述SCFA含量下降吻合。
NH3-N是底物中蛋白質發酵的產物,同時也是微生物維持生長及合成自身MCP的主要氮源,其濃度反映了蛋白質降解與合成間的平衡狀況,可作為體外條件下預示氮排放潛力的重要指標[32]。同樣地,BINDELLE等研究發現,體外發酵產生的MCP可被用來預測豬尿氮與糞氮的排放比例[11],之后JHA等[12]也在其研究中進行應用。
當底物的可發酵碳水化合物利用率低,微生物即開始利用蛋白質,發酵產NH3[33]。而許多體內試驗顯示,日糧中添加DF后,纖維發酵增加,蛋白質發酵減少,NH3產生減少[12,34]。NH3產生后,微生物利用其合成MCP,在氮源充足的情況下,MCP的合成效率又反過來由可發酵碳水化合物的發酵率及提供的可利用能量決定[19]。本研究中,在發酵多個時間點,燕麥麩纖維組發酵液NH3-N濃度均低于其他兩組,對應地,MCP產量最高。綜合前面分析,相比其他兩組,燕麥麩纖維組無論是在SDF(SDF/TDF=18.19%)含量上,還是底物DM發酵率、SCFA(提供能量)產量上均顯示出其突出的優勢,進一步驗證了前述觀點。本試驗同時發現,隨著發酵進行,蛋白質發酵逐漸開始,不斷產NH3,發酵液NH3-N濃度持續上升,之后微生物利用NH3合成MCP,導致NH3-N濃度在36 h或48 h下降,因體外發酵消除了腸壁對NH3-N的吸收及參與尿素循環的影響,且發酵液無法外流,因此,在發酵末NH3-N濃度又出現回升。相應地,隨著發酵時間的增加,發酵液MCP產量顯著增加,而72 h的MCP產量與48 h基本持平,這可能暗示著在48 h該體外發酵系統中微生物區系達到動態平衡[28]。
值得注意的是,本研究中,小麥纖維組與麥麩纖維組的部分指標(SCFA及pH)在發酵某時間點出現顯著差異。麥麩是小麥籽實加工面粉后的副產品,也即麥麩纖維與小麥纖維在某種程度上具有一定的同源性。然而,二者的DF組成、各組分結構不同,由此對腸道菌群等的影響也不盡相同[35],因此,二者產生的差異可能與此有關,尚需進一步研究。
此外,在進行纖維日糧的體外消化時,研究者們越來越意識到,需在大腸階段引入微生物發酵,只有這樣才能對纖維日糧進行更理性客觀的評價[20,31]。因受實際條件所限,相關研究通常使用新鮮糞便作為微生物來源。而具有不確定性的一點是,以糞便為微生物來源得出的結果,是否能夠代表后腸微生物利用底物的能力[36]。同時,引入微生物后,如何使體外大腸環境與豬實際生理環境更加類似,仍是相關研究的重點。因此,使用體外法來模擬豬纖維日糧的后腸發酵,還需在選擇微生物來源、更加貼近動物生理條件等方面做出改進,有待深入探究。
體外條件下,燕麥麩纖維顯著提高了日糧在發酵階段的干物質降解率、發酵液總短鏈脂肪酸含量與微生物蛋白產量,并顯著降低了發酵液pH與氨氮濃度。因此,相比小麥纖維與麥麩纖維,燕麥麩纖維在促進微生物發酵及氮減排方面具有更高的潛力。
[1] HE S, LI A, WANG L. Effect of sewage sludge and its biomass composting product on the soil characteristics and N2O emission from the tomato planting soil., 2016, 18(3): 501-508.
[2] PHILIPPE F X, CABARAUX J F, NICKS B. Ammonia emissions from pig houses: Influencing factors and mitigation techniques., 2011, 141(3): 245-260.
[3] HERNáNDEZ F, MARTíNEZ S, LóPEZ C, MEGíAS M D, LóPEZ M, MADRID J. Effect of dietary crude protein levels in a commercial range, on the nitrogen balance, ammonia emission and pollutant characteristics of slurry in fattening pigs., 2011, 5(8): 1290-1298.
[4] JHA R, LETERME P. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs., 2012, 6(4): 603-611.
[5] LYNCH M B, SWEENEY T, CALLAN J J, O’DOHERTY J V. Effects of increasing the intake of dietary β-glucans by exchanging wheat for barley on nutrient digestibility, nitrogen excretion, intestinal microflora, volatile fatty acid concentration and manure ammonia emissions in finishing pigs., 2007, 1(6): 812-819.
[6] AWATI A, WILLIAMS B A, BOSCH M W, GERRITS W J J, VERSTEGEN M W A. Effect of inclusion of fermentable carbohydrates in the diet on fermentation end-product profile in feces of weaning piglets., 2006, 84(8): 2133-2140.
[7] WILLIAMS B A, VERSTEGEN M W A, TAMMINGA S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health., 2001, 14(2): 207-228.
[8] REGMI P R, SAUER W C, ZIJLSTRA R T. Prediction ofapparent total tract energy digestibility of barley in grower pigs using andigestibility technique., 2008, 86(10): 2619-2626.
[9] NOBLET J, PEYRAUD Y J. Prediction of digestibility of organic matter and energy in the growing pig from anmethod., 2007, 134(3): 211-222.
[10] 陳亮, 張宏福, 高理想, 趙峰. 仿生法評定飼料干物質消化率的影響因素. 中國農業科學, 2013, 46(15): 3199-3205.
CHEN L, ZHANG H F, GAO L X, ZHAO F. Factors affecting the measure of thedry matter digestibility of feeds using simulative digestion system., 2013, 46(15): 3199-3205. (in Chinese)
[11] BINDELLE J, BULDGEN A, DELACOLLETTE M, WAVREILLE J, AGNEESSENS R, DESTAIN J P, LETERME P. Influence of source and concentrations of dietary fiber ono nitrogen excretion pathways in pigs as reflected byfermentation and nitrogen incorporation by fecal bacteria., 2009, 87(2): 583-593.
[12] JHA R. Fiber fermentation in the pig intestine: Effect on metabolite production and nitrogen excretion[D]. Saskatoon, Canada: University of Saskatchewan, 2010.
[13] HOODA S, METZLER-ZEBELI B U, VASANTHAN T, ZIJLSTRA R T. Effects of viscosity and fermentability of dietary fibre on nutrient digestibility and digesta characteristics in ileal-cannulated grower pigs., 2011, 106(5): 664-674.
[14] PROSKY L, ASP N G, SCHWEIZER T F, DEVRIES J W, FURDA L. Determination of insoluble, soluble, and total dietary fiber in foods and food products: inter laboratory study., 1987, 71(5): 1017-1023.
[15] 趙峰, 張宏福, 張子儀. 單胃動物仿生消化系統操作手冊. 2版. 北京: 中國農業科學院北京畜牧獸醫研究所動物營養學國家重點實驗室, 2011.
ZHAO F, ZHANG H F, ZHANG Z Y... Beijing: Institute of Animal Sciences, Chinese Academy of Agricultural Sciences/State Key Laboratory of Animal Nutrition, 2011. (in Chinese)
[16] MENKE K H, STEINGASS H. Estimation of the energetic feed value obtained from chemical analysis and gas production using rumen fluid., 1988, 28: 7-55.
[17] 張麗英. 飼料分析及飼料質量檢測技術. 2版. 北京: 中國農業大學出版社, 2003: 48-83.
ZHANG L Y... Beijing: China Agricultural University Press, 2003: 48-83. (in Chinese)
[18] 王加啟. 反芻動物營養學研究方法. 北京: 現代教育出版社, 2011: 139-141.
WANG J Q.Beijing: Modern Education Press, 2011: 139-141. (in Chinese)
[19] 劉晶. 飼料果膠對瘤胃微生物菌群結構和微生物蛋白合成的影響的研究[D]. 杭州: 浙江大學, 2014: 81-82.
LIU J. Effects of dietary pectin on microbial structure and microbial protein synthesis in the rumen[D]. Hangzhou: Zhejiang University, 2014: 81-82. (in Chinese)
[20] 孟麗輝. 生長豬纖維性飼料體內外消化率的評定及纖維來源對腸道消化功能的影響[D]. 北京: 中國農業科學院, 2015.
MENG L H. Evaluation of fibrous feeds’ digestibility in vivo/in vitro and the effect of fiber sources on intestinal digestive function for growing pigs[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015. (in Chinese)
[21] 朱麗媛, 盧慶萍, 龐敏, 孟麗輝, 張宏福, 馬金霞. 麥麩、燕麥麩對生長豬氮排放的影響. 家畜生態學報, 2016, 37(9): 23-28.
ZHU L Y, LU Q P, PANG M, MENG L H, ZHANG H F, MA J X. Effect of wheat bran and oat bran on nitrogen excretion in growing pigs., 2016, 37(9): 23-28. (in Chinese)
[22] BINDELLE J, BULDGEN A, LAMBOTTE D, WAVREILLE J, LETERME P. Effect of pig faecal donor and of pig diet composition onfermentation of sugar beet pulp., 2007a, 132(3): 212-226.
[23] WILLIAMS B A, BOSCH M W, BOER H, VERSTEGEN M W, TAMMINGA S. Anbatch culture method to assess potential fermentability of feed ingredients for monogastric diets., 2005, 123: 445-462.
[24] WENK C. The role of dietary fibre in the digestive physiology of the pig., 2001, 90(1): 21-33.
[25] GOODLAD J S, MATHERS J C. Digestion by pigs of non-starch polysaccharides in wheat and raw peas () fed in mixed diets., 1991, 65(2): 259-270.
[26] URRIOL P E, SHURSON G C, STEIN H H. Digestibility of dietary fiber in distillers co-products fed to growing pigs., 2010, 88(7): 2373-2381.
[27] 娜仁花. 不同日糧對奶牛瘤胃甲烷及氮排放的影響研究. 北京: 中國農業科學院, 2010.
NA R H. Effects of diet composition on methane and nitrogen emissions from lactating cattle[D]. Beijing: Chinese Academy of Agricultural Sciences, 2010.(in Chinese)
[28] AWATI A, KONSTANTINOV S R, WILLIAMS B A, AKKERMANS A D, BOSCH M W, SMIDT H, VERSTEGEN M W. Effect of substrate adaptation on the microbial fermentation and microbial composition of faecal microbiota of weaning piglets studied.e, 2005, 85(10): 1765-1772.
[29] ANGUITA M, CANIBE N, PéREZ J F, JENSEN B B. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: Use of cannulated pigs andfermentation., 2006, 84(10): 2766-2778.
[30] 程鵬輝, 廖新俤, 吳銀寶. 利用豬糞液為菌源體外發酵產氣法評價牧草纖維品質. 草業學報, 2007, 16(5): 61-69.
CHENG P H, LIAO X D, WU Y B. Studies on evaluation of fiber quality of fodder grass., 2007, 16(5): 61-69. (in Chinese)
[31] BINDELLE J, BULDGEN A, WAVREILLE J, AGNESSENS R, DESTAIN J P, WATHELET B, LETERME P. The source of fermentable carbohydrates influences theprotein synthesis by colonic bacteria isolated from pigs., 2007b, 1(8): 1126-1133.
[32] 龐德公, 楊紅建, 曹斌斌, 武甜甜. 高精料全混合日糧中產朊假絲酵母添加水平對體外瘤胃發酵特性和纖維降解的影響. 動物營養學報, 2014, 26(4): 918-924.
PANG D G, YANG H J, CAO B B,WU T T. Effects of candida utilis supplemental level in high concentrate total mixed ration onruminal fermentation characteristics and fiber degradation., 2014, 26(4): 918-924. (in Chinese)
[33] WILLIAMS B A, MIKKELSEN D, LE PAIH L, GIDLEY M J.fermentation kinetics and end-products of cereal arabinoxylans and (1, 3; 1, 4)-β-glucans by porcine faeces., 2011, 53(1): 53-58.
[34] BIKKER P, DIRKZWAGER A, FLEDDERUS J, TREVISI P, IE HUEROU-LURON I, LALLES J P, AWATI A. The effect of dietary protein and fermentable carbohydrates levels on growth performance and intestinal characteristics in newly weaned piglets., 2006, 84(12): 3337-3345.
[35] 陳洪. 纖維源與其多聚糖組分對豬腸道粘膜生理和屏障功能的影響及調控機制[D]. 雅安: 四川農業大學, 2014.
CHEN H. Effect and the regulatory mechanism of dietary fiber and its polysaccharide composition on intestinal mucosal physiology and barrier function in pigs[D]. Ya’an: Sichuan Agricultural University, 2014. (in Chinese)
[36] 楊玉芬. 日糧纖維對于豬不同生長階段消化生理和生產性能影響的研究[D]. 呼和浩特: 內蒙古農業大學, 2001.
YANG Y F. Study on effect of dietary fiber on digestive physiology and performance of pigs in different growth period[D]. Hohhot: Inner Mongolia Agricultural University, 2001. (in Chinese)
(責任編輯 林鑒非)
the Fermentation Characteristics and Effects on Nitrogen Excretion Related Indicators of Different Fiber Diets using anMethod in Pigs
ZHU Liyuan, LU Qingping,XIA Bing, LIU Zhengqun, SUN Yongbo, ZHANG Hongfu
(Institute of Animal Science, Chinese Academy of Agricultural Sciences/State Key Laboratory of Animal Nutrition, Beijing 100193)
【】The present study was conducted to investigate and compare the fermentation characteristics and effects on nitrogen excretion related indicators of different fiber diets using anmethod in pigs. The study aimed to provide an experimental basis for the rational application of dietary fiber in pig production and for the preparation of diets to reduce nitrogen excretion. 【】Wheat fiber (WF), wheat bran fiber (WBF) and oat bran fiber (OBF) were purified from wheat, wheat bran and oat bran, respectively, using the enzyme-gravimetric method (AOAC Method 985.29). WF diet, WBF diet and OBF diet based on maize and soybean were formulated to contain 5% WF, WBF and OBF. The three fiber diets were undergone a stomach-small intestine digestion of pigs by simulative digestion system (SDS-II). A total of six growing pigs, which were in good health and had similar weight, were used to collect fresh feces. The mixed feces and culture solution were compounded in an appropriate proportion to prepare inocula which were quantitatively charged into fermentation flasks for simulating large intestine fermentation. After the stomach-small intestine digestion, the digestive products were pooled. 200 mg digestive products were added into a fermentation flask filled with 30 mL of inocula, placed in an incubator at (39±0.25)℃. The fermentation were stopped at 4, 12, 24, 36, 48 and 72 h of incubation. Then the fermentation residues and fermentation broth were collected, and the relevant indicators were determined.【】The results indicated that in the large intestine fermentation stage, there were significant differences in dry matter degradability during thefermentation (IVDMD) and total short-chain fatty acid (SCFA) concentration, pH, ammonia nitrogen (NH3-N) concentration and microbial protein (MCP) production in fermentation broth among the three fiber groups (<0.05): (1) At 4 h and 12 h, OBF group had the highest IVDMD among the three groups (<0.01), and no significant differences at other point in time(>0.05). At 4 h, the IVDMD of OBF group was 18.32% and 15.21% higher than WF group and WBF group, respectively (<0.01); at 12 h, OBF group was 14.87% and 10.06% higher than WF group and WBF group, respectively (<0.01). (2) As for total SCFA concentration in fermentation broth, at 24 h and 36 h, OBF group was significantly higher than other groups (<0.05); at 72 h, OBF group and WBF group were significantly higher than WF group (<0.01); at 4 h and 12 h, OBF group had a higher trend than other groups (=0.0599;=0.0504). At 24 h, the total SCFA concentration of OBF group was 27.32% and 17.11% higher than WF group and WBF group, respectively (<0.05); at 36 h, OBF group was 16.65% and 25.96% higher than WF group and WBF group, respectively (<0.05). (3) As for pH in fermentation broth, at 4 h and 12 h, OBF group had the lowest values among the three groups (<0.01); at 24 h, 36 h and 72 h, OBF group and WBF group were significantly lower than WF group (<0.05). (4) As for NH3-N concentration in fermentation broth, OBF group was significantly lower than other groups at 24 h and 48 h (<0.05) and had a lower trend at 12 h (=0.0559). At 24 h, the NH3-N concentration of OBF group was 6.86% and 4.59% lower than WF group and WBF group, respectively (<0.05); at 48 h, OBF group was 8.44% and 7.09% lower than WF group and WBF group, respectively (<0.05). (5) As for MCP production in fermentation broth, OBF group had the highest value among the three groups at 4 h (<0.05); at 12 h, 24 h and at 36 h, 48 h, respectively, OBF group was significantly higher than WF group and WBF group (<0.05). At 4 h, the MCP production of OBF group was 69.85% and 82.25% higher than WF group and WBF group, respectively (<0.05).【】In conclusion, oat bran fiber significantly increased IVDMD, total SCFA concentration and MCP production in fermentation broth, and significantly lowered pH and NH3-N concentration in fermentation broth. Thus, compared to wheat fiber and wheat bran fiber, oat bran fiber had a good potential in promoting microorganism fermentation and reducing nitrogen excretion.
dietary fiber; growing pig;fermentation; fermentation characteristics; nitrogen excretion related indicators
10.3864/j.issn.0578-1752.2017.19.018
2017-03-07;接受日期:2017-07-07
國家科技支撐計劃項目(2012BAD39B01)、中國農業科學院創新團隊(ASTIP-IAS07)
朱麗媛,E-mail:zhuliyuan23@163.com。通信作者盧慶萍,E-mail:luqingping@iascaas.net.cn