陳 靜,吳永常※,陳立平,趙春江,王永生
?
基于部分預(yù)算法的玉米大田變量施肥經(jīng)濟效益分析
陳 靜1,吳永常1※,陳立平2,趙春江2,王永生2
(1. 中國農(nóng)業(yè)科學院農(nóng)業(yè)經(jīng)濟與發(fā)展研究所,北京 100081;2. 北京農(nóng)業(yè)信息技術(shù)研究中心,北京 100096)
為明確精準農(nóng)業(yè)技術(shù)的應(yīng)用效果和經(jīng)濟效益,促進精準農(nóng)業(yè)技術(shù)在中國的推廣應(yīng)用。該研究基于田間50 m×50 m土壤堿解氮測定數(shù)據(jù),采用目標產(chǎn)量模型,設(shè)計了變量施氮處方進行變量施氮試驗,以相鄰地塊常規(guī)均一施肥區(qū)為對照。采用部分預(yù)算法評價從均一施肥措施改變?yōu)樽兞渴┓蚀胧┖蟮慕?jīng)濟效益。結(jié)果表明:變量施肥比常規(guī)統(tǒng)一施肥顯著減少了19.4%的氮肥用量,產(chǎn)量增加了1.8%;從常規(guī)統(tǒng)一施肥改變?yōu)樽兞渴┓屎髢羰找嬖黾恿?83.23元/hm2,增加投資部分的投資收益率為753%,遠大于可接受的最低年收益率105%。綜上,在規(guī)模農(nóng)場采用變量施肥相關(guān)變量施肥裝備和軟件進行變量施肥管理可以減少氮肥施用量,增加作物產(chǎn)量,從而提高農(nóng)場種植的經(jīng)濟效益,具有良好的推廣價值,制定變量施肥機的購置補貼政策有利于進一步促進變量施肥技術(shù)在大規(guī)模農(nóng)場的推廣應(yīng)用。
作物;模型;設(shè)計;變量施肥;規(guī)模農(nóng)場;部分預(yù)算法;經(jīng)濟效益
農(nóng)業(yè)經(jīng)營主體一般會為了更方便操作或者更高的經(jīng)濟效益才會選擇調(diào)整農(nóng)業(yè)管理措施。當農(nóng)業(yè)經(jīng)營主體選擇不同的農(nóng)業(yè)管理措施時,會對農(nóng)業(yè)經(jīng)濟效益產(chǎn)生影響。部分預(yù)算法(partial budget analysis,PBA)非常適用于決策是否要進行管理措施的改變[1],是國際上比較通用的評價精準農(nóng)業(yè)經(jīng)濟效益的方法[2]。通過部分預(yù)算法可以評價某一農(nóng)田管理環(huán)節(jié)的變化所帶來的投入和產(chǎn)出的變化,并且只關(guān)注改變了或者有變化的部分[3]。PBA是一種通過對比技術(shù)變化所帶來的投入和產(chǎn)出情況,輔助農(nóng)業(yè)經(jīng)營主體進行是否采用一項新的技術(shù)的規(guī)劃或決策方法[3-4],它雖然不是一個新方法,但是卻是一個非常有效的方法,可應(yīng)用于只知道變化部分的投入和產(chǎn)出而不了解全部投入的情況[5]。但是部分預(yù)算法的有效性取決于計算過程中所采用的數(shù)據(jù)信息[4,6]。很多學者將該方法應(yīng)用于農(nóng)場管理決策,Hady等[7]利用部分預(yù)算法研究了農(nóng)場日常管理措施不同所帶來的經(jīng)濟影響,并開發(fā)了相應(yīng)軟件輔助農(nóng)場的日常管理決策。其中農(nóng)場生產(chǎn)產(chǎn)品的價格對部分預(yù)算模型的結(jié)果影響最大[7]。
變量施肥的技術(shù)路線和原則是在充分了解土地資源和作物群體變異情況的條件下,因地制宜地根據(jù)田間每一操作單元的具體情況,精細準確地調(diào)整肥料的投入量,獲取最大的經(jīng)濟效益和環(huán)境效益[8]。對于變量施肥應(yīng)用效果的研究有很多,主要應(yīng)用效果包括增加作物產(chǎn)量[9-10],減少作物收獲后的土壤氮殘留,減少氮淋失[8,11-13],提高環(huán)境效率[14],同時可以減少土壤養(yǎng)分的空間差異性[15]。變量施肥技術(shù)對作物產(chǎn)量的影響也有部分研究者得出不同的結(jié)論,如Varsa等[16],陳立平[8],薛緒掌等[13]的研究結(jié)果顯示變量施肥技術(shù)對作物產(chǎn)量沒有影響甚至使產(chǎn)量略降。也有很多學者對大田變量施肥技術(shù)應(yīng)用的經(jīng)濟效益進行評價,Godwin 等[17]的試驗研究結(jié)果表明,在英國南部谷物種植中實施變量施肥比統(tǒng)一施肥每公頃收益可以增加185元(22英鎊)。變量施肥技術(shù)應(yīng)用的經(jīng)濟效益還與農(nóng)場規(guī)模、作物的經(jīng)濟價值有很大關(guān)系,Lowenberg- DeBoer[18]對利用GPS導航噴藥以避免遺漏和重疊的經(jīng)濟效益進行了估算,新購買GPS設(shè)備實施精準農(nóng)業(yè)管理的農(nóng)場只有當農(nóng)場大小達到800 hm2時方可以實現(xiàn)盈虧平衡。Swinton和Lowenberg-DeBoer[19]的研究結(jié)果顯示變量施肥技術(shù)的經(jīng)濟效益與作物的經(jīng)濟價值直接相關(guān),在小麥和大麥上應(yīng)用幾乎沒有經(jīng)濟收益,在玉米上應(yīng)用效益不穩(wěn)定,在甜菜上應(yīng)用經(jīng)濟效益最高。部分預(yù)算法在從統(tǒng)一施肥變化為變量施肥的經(jīng)濟效益評價中被較廣泛應(yīng)用,Link等[20]利用部分預(yù)算法結(jié)合模型模擬研究了在德國弗萊堡玉米大田應(yīng)用變量施肥技術(shù)的經(jīng)濟效益,結(jié)果表明長期應(yīng)用變量施肥技術(shù)可以通過減少氮肥投入而獲得更高的凈效益,政府對減少氮肥使用而提供的環(huán)保補貼有利于提升變量施肥技術(shù)應(yīng)用的經(jīng)濟效益。也有學者的研究結(jié)果顯示利用變量施肥技術(shù)經(jīng)濟效益沒有顯著差異[16],但是從文獻中可以看出,對變量施肥技術(shù)應(yīng)用經(jīng)濟效益評價的成本計算時,有些學者未考慮精準農(nóng)業(yè)管理的裝備投入,僅考慮肥料等可變物的投入[21],有的學者則綜合機械、測樣和可變物投入[22-23],因此不同區(qū)域不同學者的研究結(jié)果也不具有直接可比性。目前國內(nèi)對變量施肥技術(shù)經(jīng)濟效益的評價大多沒有考慮實施變量施肥管理的裝備投入、土壤肥力測樣投入和人工投入,主要考慮肥料投入[24-25],或者變量施肥管理采用的是人工施肥,而非機械施肥[2],而基于不同農(nóng)場規(guī)模、農(nóng)場實際管理措施,綜合考慮變量施肥各類成本投入的經(jīng)濟效益評價研究尚少。本研究基于在黑龍江趙光農(nóng)場的變量施肥和統(tǒng)一施肥對比試驗和調(diào)查獲取的經(jīng)濟評價基礎(chǔ)數(shù)據(jù),采用部分預(yù)算法評價在黑龍江趙光農(nóng)場從統(tǒng)一施肥措施改變?yōu)樽兞渴┓蚀胧┖蟮慕?jīng)濟效益,為該區(qū)域選擇是否采用變量施肥技術(shù)提供依據(jù)。
試驗區(qū)位于黑龍江省趙光農(nóng)場(126°26¢E,47°54¢N),趙光農(nóng)場的總耕地面積為28 400 hm2,試驗區(qū)屬寒溫季風氣候,年平均氣溫0.5℃,無霜期120 d左右,年降雨量570 mm,年平均日照2 700 h以上。試驗區(qū)每年種植一季玉米,前茬作物為玉米,管理采用常規(guī)均一管理方式。土壤類型為黑土,0~20 cm土壤有機質(zhì)質(zhì)量分數(shù)66.61 g/kg,銨態(tài)氮1.50 mg/kg,硝態(tài)氮4.22 mg/kg,有效磷40.75 mg/kg,速效鉀138.56 mg/kg。
試驗設(shè)置變量施氮(VF)和當?shù)爻R?guī)施氮(CK)2個處理(具體布局及尺寸見圖1)。變量施肥區(qū)面積為6.67 hm2,常規(guī)施肥區(qū)面積為12 hm2。供試玉米品種為德美亞1號,播種時間為2015年5月11日,播種密度約為55 000株/hm2。變量區(qū)與常規(guī)區(qū)其他措施都相同,僅施肥措施不同,常規(guī)區(qū)采用均一施肥方式,施肥量采用當?shù)爻R?guī)施肥量,施純氮量為底肥101.42 kg/hm2,追肥70 kg/hm2,共施純氮171.42 kg/hm2,變量區(qū)以固定間距網(wǎng)格進行土壤采樣,根據(jù)各網(wǎng)格單元土壤養(yǎng)分測試值,采用目標產(chǎn)量法計算各單元的追肥量,利用ArcGIS軟件生成施肥處方圖(圖2),最后通過變量施肥機讀取施肥處方圖進行變量施肥。
在玉米施基肥前取樣測定土壤養(yǎng)分,按照50 m×50 m網(wǎng)格取0~20 cm土層5點混合土樣,測定土壤堿解氮,根據(jù)測試值利用目標產(chǎn)量法[13]計算施氮量。
施肥量=(玉米吸氮量–土供氮量)/0.4 (1)
式中0.4為氮肥當季利用率。
玉米吸氮量=目標籽粒產(chǎn)量×0.03 (2)
其中目標籽粒產(chǎn)量為試驗區(qū)2014年玉米產(chǎn)量,0.03為每生產(chǎn)1 kg籽粒吸收的純氮量。
土壤供氮量=(播前堿解含量–50)×耕層土質(zhì)量 (3)
式中50 mg/kg是土壤堿解氮含量的下限,低于此值則玉米遭受氮素脅迫。耕層厚度按20 cm計算。根據(jù)上述的土壤施肥計算模型進行疊加分析計算,得出變量施肥處方圖(如圖2),然后按照獲取的處方圖利用2f-vt1變量施肥機進行變量施肥,圖中各區(qū)域的施氮量為總施氮量,底肥和追肥期各施50%。

圖1 試驗小區(qū)布局

圖2 變量施氮處方圖
玉米成熟后,每處理采用五點采用法選擇5個點,每點取10 m2測產(chǎn),收獲玉米穗,稱量后折算成各處理玉米籽粒產(chǎn)量。
采用SPSS 22.0軟件進行產(chǎn)量的單因素方差分析。
采用部分預(yù)算法進行變量施肥技術(shù)應(yīng)用經(jīng)濟分析。為簡化分析,假設(shè)農(nóng)業(yè)生產(chǎn)的目標是使凈收益最大化,為了決定是否使用新技術(shù),農(nóng)民需要了解新技術(shù)是否能夠提高凈收益和收益率。
凈收益NI是總收益TR中減去總投入TC,即:

總收益TR是收獲的玉米的總價值,計算公式為:

式中表示玉米產(chǎn)量,玉米價格P采用中國政府玉米的最低收購價2元/kg。
總投入TC包括所有的投入花費,比如種子、肥料、農(nóng)藥、勞動力和資本。在部分預(yù)算法中將總投入分為固定投入FC和變量投入VC兩部分。一項新的農(nóng)業(yè)技術(shù)相對傳統(tǒng)技術(shù)來說,固定投入是指在2項技術(shù)中沒有區(qū)別的投入;變量投入則是指由于應(yīng)用新技術(shù)而導致的變化量。本文中從統(tǒng)一施肥轉(zhuǎn)變?yōu)樽兞渴┓实淖兞客度胫饕ǚ柿贤度搿⒆兞渴┓试黾尤斯ね度搿⑼寥鲤B(yǎng)分取樣和化驗、精準施肥決策軟件年折舊和施肥機/變量施肥機年折舊。

式中肥料投入等于肥料用量乘以肥料價格;變量施肥增加的人工投入主要包括進行變量施肥管理的人員工資;土壤養(yǎng)分化驗費用包括每公頃取4個土樣進行堿解氮含量測定的費用;根據(jù)應(yīng)用的面積計算每單位面積的年折舊,年折舊費用計算公式為:

式中DC表示年折舊費,OV表示固定資產(chǎn)原值,表示殘值率,表示折舊年限。
因此凈收益計算公式可表示為:

變化量是指采用新技術(shù)后與采用新技術(shù)前相應(yīng)值的變化量,本文指采用變量施肥技術(shù)的投入和產(chǎn)出與采用常規(guī)統(tǒng)一施肥技術(shù)的投入和產(chǎn)出的差值(Δ表示因子的變化量,結(jié)果為正值表示增加量,負值表示減少量)。凈收益的變化量根據(jù)總收益的變化量和固定投入的變化量、變量投入的變化量計算可得。

根據(jù)固定投入的定義,新技術(shù)和傳統(tǒng)技術(shù)的固定投入相同,即ΔFC=0,因此凈收益變化量公式可表示為:

除了凈收益外,收益率也是另外一個重要的投資考核指標,計算公式為:

根據(jù)變量施肥處方,變量施肥區(qū)一級梯度區(qū)總面積為0.32 hm2,二級梯度區(qū)總面積為5.34 hm2,三級梯度區(qū)總面積為1.01 hm2,整個區(qū)域平均施純氮量為138.12 kg/hm2,比常規(guī)施肥區(qū)的單位面積施氮量減少了19.4%。
表1表明,變量施肥處理的平均玉米產(chǎn)量為 122 00.25 kg/hm2,常規(guī)施肥區(qū)為119 83.20 kg/hm2,變量區(qū)比常規(guī)區(qū)增加了1.8%。
如表1所示,變量施肥處理和常規(guī)施肥處理每年的變量投入分別為729.72和679.09元/hm2,將常規(guī)統(tǒng)一施肥改變?yōu)樽兞渴┓士偼度朐黾恿?0.63元/hm2。而變量施肥處理和常規(guī)施肥處理的總收益分別是24 400.50和23 966.40元/hm2,變量施肥技術(shù)應(yīng)用的總收益比常規(guī)統(tǒng)一施肥增加了434.10 元/hm2。進而從凈收益上看,將常規(guī)統(tǒng)一施肥改變?yōu)樽兞渴┓屎髢羰找嬖黾恿?83.23元/hm2。從常規(guī)統(tǒng)一施肥改變?yōu)樽兞渴┓试黾拥哪遣糠滞顿Y的收益率達到了753%。

表1 不同施肥處理的部分預(yù)算分析
注:尿素價格1.8元·kg–1(參考電商平臺“京東”上的價格);常規(guī)施肥機每輛6萬元,變量施肥機每輛25萬元,精準施肥決策軟件每套15萬元(調(diào)研數(shù)據(jù));精準施肥決策軟件和施肥機的應(yīng)用面積分別為28 400(全農(nóng)場)和333 hm2(根據(jù)農(nóng)田管理時間限制),折舊年限均以10a計算。“變化量”表示從常規(guī)統(tǒng)一施肥改變?yōu)樽兞渴┓实耐度牒彤a(chǎn)出的變化量。
Note: The price of urea is 1.8 yuan·kg–1(according to e-commerce platform-“Jingdong”); the price of normal fertilizer applicator, variable-rate fertilizer applicator and variable rate fertilization software is 60 000, 250 000 and 150 000 yuan per unit (investigation data);variable rate fertilization software application area is 28 400 hm2(over the whole farm), fertilizer applicator application area is 333 hm2(according to the time of farm management), depreciation years=10a. “Change” means the change of costs and return from conventional fertilization to variable-rate fertilization.
部分預(yù)算法中新技術(shù)是否應(yīng)該被推薦使用有3個衡量標準:1)如果凈收益保持不變或降低,則不應(yīng)采用新技術(shù),因為新技術(shù)不能獲得更高的收益;2)如果凈收益有所增長,變量投入保持不變或降低,則可以采用新技術(shù),因為新技術(shù)可以帶來更高的收益;3)如果凈收益和變量投入都增加了,則要根據(jù)收益率來確定是否采用新技術(shù),收益率越高說明新技術(shù)經(jīng)濟效益越好,只有當收益率至少超過100%后,新技術(shù)才應(yīng)該被采用[3]。
從上述計算結(jié)果來看,試驗區(qū)應(yīng)用變量施肥技術(shù)符合凈收益和變量投入都增加了的情況,需要根據(jù)收益率來確定是否采用新技術(shù)。假設(shè)農(nóng)業(yè)投資資本的年利息為5%,東北地區(qū)一年種植一季,因此考慮資本成本后可接受的最低年收益率為105%(100%+5%)。將常規(guī)統(tǒng)一施肥改為變量施肥后,增加投資的收益率達到753%,遠大于可接受的最低年收益率105%。符合部分預(yù)算法中新技術(shù)是否應(yīng)該被推薦使用的第三個衡量標準,因此采用購買變量施肥相關(guān)變量施肥裝備和軟件的方式進行規(guī)模農(nóng)場變量施肥管理在東北大農(nóng)場是被推薦的。
目前來說由于變量施肥機非通用農(nóng)機,因此未進入中國農(nóng)機購置補貼名錄中。參考當前中國農(nóng)機購置補貼政策(農(nóng)業(yè)部辦公廳財政部辦公廳關(guān)于印發(fā)《2015—2017年農(nóng)業(yè)機械購置補貼實施指導意見》的通知),假設(shè)變量施肥機的購置補貼比例為30%,則變量施肥機年折舊從70.95元/a降低為49.66元/a,總成本增加值從50.87元/a降低為29.61元/a,增加投資的邊際收益率增長至1 366%,對于促進變量施肥技術(shù)在大規(guī)模農(nóng)場的推廣有非常重要的推動意義。
本研究主要利用田間試驗研究變量施肥技術(shù)對玉米大田施肥量和產(chǎn)量的影響,并在此基礎(chǔ)上利用部分預(yù)算法研究在規(guī)模農(nóng)場自購變量施肥相關(guān)裝備的經(jīng)濟效益變量情況。田間試驗結(jié)果顯示,在變量施肥條件下,氮肥投入比統(tǒng)一施肥條件下減少了19.4%,玉米產(chǎn)量比統(tǒng)一施肥條件下略有增長,提高了1.8%。這一研究結(jié)果與前人的研究結(jié)果相似,不同學者在不同區(qū)域多個大田應(yīng)用變量施肥技術(shù)都得出了與傳統(tǒng)施肥地塊相比,變量施肥管理在減少化肥投入的基礎(chǔ)上增加了玉米產(chǎn)量的結(jié)論,節(jié)肥7%~16%,增產(chǎn)率7%~13%[9,26-27]。王熙等[10]對大豆變量施肥播種作業(yè),也得出在同等成本條件下,比照增產(chǎn)7.5%的結(jié)論。對于變量施肥技術(shù)對作物產(chǎn)量的影響也有部分研究者得出變量施肥技術(shù)對作物產(chǎn)量沒有影響甚至使產(chǎn)量略降的結(jié)論[8,13,16]。產(chǎn)生這種現(xiàn)象的主要原因可能是目標產(chǎn)量的制定的原因[13],或者是地塊的基礎(chǔ)肥力空間變異性很小,少到不足以影響均一施肥下的作物產(chǎn)量[28]。
通過部分預(yù)算法計算得出在試驗區(qū)應(yīng)用變量施肥技術(shù)比常規(guī)施肥技術(shù)凈收益提高了383.23元/hm2,雖然增加了50.87元/hm2的成本投入,但是增加的這部分投資的收益率達到了753%,因此在試驗區(qū)變量施肥技術(shù)是可以推薦使用的。很多學者在研究中也獲得了相似的研究結(jié)果,Meyer-Aurich等[29]和Godwin等[17]的田間試驗研究結(jié)果顯示,在小麥等谷物大田中應(yīng)用變量施肥技術(shù)可以比統(tǒng)一施肥增加約20~200元/hm2的經(jīng)濟效益。Pasuquin等[26]在東南亞十三個地區(qū)基于田間試驗獲得變量施肥管理方案,結(jié)果顯示與常規(guī)施肥相比經(jīng)濟效益升至可以提高1137.27元/hm2(167美元/hm2)(相當于總凈收益的15%)。田耘等[27]的示范應(yīng)用結(jié)果也顯示應(yīng)用變量施肥技術(shù)可以提高經(jīng)濟效益15%以上。對于精準農(nóng)業(yè)技術(shù)應(yīng)用的經(jīng)濟效益也有一些研究的結(jié)果顯示經(jīng)濟效益不變甚至有所降低[8]。其原因與農(nóng)田管理技術(shù)應(yīng)用的經(jīng)濟效益的各影響因素有關(guān),產(chǎn)量是變量施肥技術(shù)經(jīng)濟效益的驅(qū)動因素[26],同時農(nóng)場規(guī)模越大、種植的農(nóng)作物的經(jīng)濟效益越高,其應(yīng)用的經(jīng)濟效益也越高[18-19,30],變量施肥技術(shù)的采樣、測試、管理等投入高于應(yīng)用技術(shù)所帶來的效果也會影響其經(jīng)濟效益[28],因此不同區(qū)域、不同農(nóng)田土壤基礎(chǔ)條件、不同農(nóng)場規(guī)模、不同農(nóng)作物或者農(nóng)產(chǎn)品價格都是導致變量施肥技術(shù)應(yīng)用的經(jīng)濟效益不同的原因。
1)在研究區(qū)進行變量施肥與常規(guī)統(tǒng)一施肥相比可以顯著減少肥料施用量,同時增加作物產(chǎn)量,但是增產(chǎn)效果不顯著。
2)從常規(guī)統(tǒng)一施肥改變?yōu)樽兞渴┓侍幚韮羰找嬖黾恿?83.23元/hm2,增加的那部分投資的收益率為753%。大于可接受的最低年收益率105%,因此采用購買變量施肥相關(guān)變量施肥裝備和軟件進行變量施肥管理在東北大農(nóng)場是被推薦的。
3)制定變量施肥機的購置補貼政策有利于提高農(nóng)場的投資收益率,對于促進變量施肥技術(shù)在大規(guī)模農(nóng)場的推廣有非常重要的作用。
[1] Alimi T, Alofe C O, Pro?tability response of improved open-pollinated maize varieties to Nitrogen fertilizer levels [J]. Agric. Rural Develop. 1992, 5: 42-47.
[2] 呂耀,丁賢忠,謝高地. 精準農(nóng)業(yè)經(jīng)濟效益分析方法探討[J]. 中國生態(tài)農(nóng)業(yè)學報,2003,11(1):70-73. Lu Yao, Ding Xianzhong, Xie Gaodi. Study on economic benefit analyzing methods for precision agriculture[J]. Chinese Journal of Eco-Agriculture, 2003, 11(1): 70-73. (in Chinese with English abstract)
[3] Soha M E D. The partial budget analysis for sorghum farm in Sinai Peninsula, Egypt [J]. Annals of Agricultural Sciences, 2014, 59(1): 77-81.
[4] Dhoubhadel S P, Stockton M. Stochastic partial budgeting: A new look at an old tool [J]. Cornhusker Economics, 2010: 424.
[5] Roth S, Hyde J. Partial budgeting for agricultural businesses [Z]. University Park, PA: Penn State University. CAT UA366, 2002, 7.
[6] Tigner R. Partial budgeting: A tool to analyze farm business changes[J]. Ag Decision Maker, 2006: 5-8.
[7] Hady P J, Lloyd J W, Kaneene J B, et al. Partial budget model for reproductive programs of dairy farm businesses[J]. Journal of Dairy Science, 1994, 77(2): 482-491.
[8] 陳立平. 精準農(nóng)業(yè)變量施肥理論與試驗研究[D]. 北京:中國農(nóng)業(yè)大學,2003. Chen Liping. Theoretical and Experimental Studies on Variable-rate Fertilization in Precision Farming[D]. Beijing: China Agricultural University, 2003. (in Chinese with English abstract)
[9] 張書慧,馬成林,李偉,等. 變量施肥對玉米產(chǎn)量及土壤養(yǎng)分影響的試驗[J]. 農(nóng)業(yè)工程學報,2006,22(8):64-67. Zhang Shuhui, Ma Chenglin, Li Wei, et al. Experimental study on the influence of variable rate fertilization on maize yield and soil nutrients[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(8): 64-67. (in Chinese with English abstract)
[10] 王熙,王新忠,王智敏,等. 基于DGPS定位的大豆變量施肥播種應(yīng)用試驗[J]. 黑龍江八一農(nóng)墾大學學報,2004 (4):32-35. Wang Xi, Wang Xinzhong, Wang Zhimin, et al. Experiment on the variable rate fertilization in soybean based on the DGPS[J]. J. of Heilongjiang August First Land Reclamation University, 2004(4): 32-35. (in Chinese with English abstract)
[11] Kitchen N R, Hughes D F, Sudduth K A, et al. Comparison of variable rate to single rate nitrogen fertilizer application: corn production and residual soil NO3--N[C]//Proceedings of the Second International Conference on Site-Specific Management for Agricultural Systems. Minneapolis, MN, 1995: 27-30.
[12] Dampney P M R, Goodlass G, Froment M A, et al. Environmental and production effects from variable rate nitrogen fertilizer to winter wheat in England[C]//Proc 4th Intl Conf Precision Agr. Madison, WI: ASA-CSSA-SSSA. 1999: 697-708.
[13] 薛緒掌,陳立平,孫治貴,等. 基于土壤肥力與目標產(chǎn)量的冬小麥變量施氮及其效果[J]. 農(nóng)業(yè)工程學報,2004, 20(3):59-62. Xue Xuzhang, Chen Liping, Sun Zhigui, et al. Results of variable-rate nitrogen fertilization of winter wheat based on soil fertility and yield map[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2004, 20(3): 59-62. (in Chinese with English abstract)
[14] 陳相芬. 變量施肥的環(huán)境效率測算技術(shù)研究[D]. 長春:吉林大學,2007. Chen Xiangfen. Study on the Measuring Technology of Environmental Efficiency of Variable-rate Fertilization [D]. Changchun: Jilin University, 2007. (in Chinese with English abstract)
[15] 王國偉,閆麗,陳桂芬. 變量施肥對改善土壤養(yǎng)分空間差異性的綜合評價[J]. 農(nóng)業(yè)工程學報,2009,25(10):82-85. Wang Guowei, Yan Li, Chen Guifen. Comprehensive evaluation of effect of variable rate fertilization on spatial variability of soil nutrients[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(10): 82-85. (in Chinese with English abstract)
[16] Varsa E C, Ebelhar S A, Wyciskalla T D, et al. Using historically established yield variability for the improved prediction of nitrogen fertilizer needs in corn[C]//RG Hoeft Edited, Illinois Fertilizer Conference. 2003: 37-44.
[17] Godwin R J, Richards T E, Wood G A, et al. An economic analysis of the potential for precision farming in UK cereal production[J]. Biosystems Engineering, 2003, 84(4): 533-545.
[18] Lowenberg-DeBoer J. GPS based guidance systems for farmers, Purdue Agricultural Economics Report[Z], 1999(11): 8-9. (www.agecon.purdue.edu/extension/paer/htm)
[19] Swinton S M, Lowenberg-DeBoer J. Evaluating the profitability of site-specific farming [J]. Journal of Production agriculture, 1998, 11(4): 439-446.
[20] Link J, Graeff S, Batchelor W D, et al. Evaluating the economic and environmental impact of environmental compensation payment policy under uniform and variable- rate nitrogen management [J]. Agricultural Systems, 2006, 91(1): 135-153.
[21] Babcock B A, Pautsch G R. Moving from uniform to variable fertilizer rates on Iowa corn: effects on rates and returns[J]. Journal of Agricultural and Resource Economics, 1998(23): 385-400.
[22] Batte M T, Ehsani M R. The economics of precision guidance with auto-boom control for farmer-owned agricultural sprayers[J]. Computers and Electronics in Agriculture, 2006, 53(1): 28-44.
[23] Watson M, Lowenberg-DeBoer J. Who will benefit from GPS auto guidance in the Corn Belt[J]. Site Specific Management Center Newsletter, 2003.
[24] 蔣阿寧,黃文江,趙春江,等. 基于光譜指數(shù)的變量施肥對冬小麥產(chǎn)量構(gòu)成的影響及其效益分析[J]. 麥類作物學報,2007,27(1):122-126. Jiang Aning, Huang Wenjiang, Zhao Chunjiang, et al. Effect of variable nitrogen application based on spectral index on winter wheat grain yield and economic benefits[J]. Journal of Triticeae Crops, 2007, 27(1): 122-126. (in Chinese with English abstract)
[25] 蔣阿寧,管建慧,高聚林. 四種不同變量施肥算法的效益分析[J]. 綠色科技,2014(2):82-84.
[26] Pasuquin J M, Pampolino M F, Witt C, et al. Closing yield gaps in maize production in Southeast Asia through site-specific nutrient management[J]. Field Crops Research, 2014, 156: 219-230.
[27] 田耘,趙亞祥,潘世強,等. 2BFJ-6型變量施肥機田間作業(yè)效益分析[J]. 農(nóng)機化研究,2015(3):34-53. Tian Yun, Zhao Yaxiang, Pan Shiqiang, et al. Economic analysis of field operation of 2BFJ-6 variable rate fertilization machine[J]. Journal of Agricultural Mechanization Research, 2015(3): 34-53. (in Chinese with English abstract)
[28] Sawyer J E. Concepts of variable rate technology with considerations for fertilizer application[J]. Journal of Production Agriculture, 1994, 7(2): 195-201.
[29] Meyer-Aurich A, Griffin T W, Herbst R, et al. Spatial econometric analysis of a field-scale site-specific nitrogen fertilizer experiment on wheat (L.) yield and quality [J]. Computers and Electronics in Agriculture, 2010, 74(1): 73-79.
[30] Lowenberg-De-Boer J. Economic analysis of precision farming[Z]. Federal University of Vicosa, Vicosa, Brazil, 2000.
陳 靜,吳永常,陳立平,趙春江,王永生. 基于部分預(yù)算法的玉米大田變量施肥經(jīng)濟效益分析[J]. 農(nóng)業(yè)工程學報,2017,33(19):141-146. doi:10.11975/j.issn.1002-6819.2017.19.018 http://www.tcsae.org
Chen Jing, Wu Yongchang, Chen Liping, Zhao Chunjiang, Wang Yongsheng. Economic benefit analysis of variable-rate fertilization technology in maize () field based on partial budget analysis method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(19): 141-146. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.19.018 http://www.tcsae.org
Economic benefit analysis of variable-rate fertilization technology in maize () field based on partial budget analysis method
Chen Jing1, Wu Yongchang1※, Chen Liping2, Zhao Chunjiang2, Wang Yongsheng2
(1.100081,2.100096,)
Precision agriculture is a modern agricultural technique which helps improve the yield and quality of crops, increase economic returns and reduce the pollution in agricultural ecological environment. In China, the effectiveness and economic benefits of applying precision agriculture technologies are not yet clear, which is an important factor that may hinder the popularization and application of precision agriculture technologies, such as variable-rate fertilizer application.Before changing from one production method to another, the farmer considers manyfactors, such as additional costs, and additional incomeresulting from the change. In this research, we aimed to estimate the effect on net benefit of changingfrom unified fertilizer application to variable rate fertilizer application.Partial budget was used toassess the costs and benefits associated with this specific change in a maize farm, which was based on a unit so data were collected from one large maize farm in the northeast of China.Field experiments were carried out in 2015 at Zhaoguang farm in Heilongjiang province, a typical large farm of northeast China. In this study, two fertilization treatments were included: 1) uniform nitrogen fertilization (CK), 12 hm2in area, 2) variable rate nitrogen fertilization (VF), 6.67 hm2in area.In the VF treatment plot. Crop yield goal was set up, soil samples were taken from a 50 m×50 m grid, and Alkali-soluble soil nitrogen was used as available nitrogen during the growing season. Based on those, we generated a variable rate nitrogen fertilization prescription map for maize using ArcGIS. The fertilizer was applied to the farm land as the prescription by variable-rate fertilizer applicator. Other farmland management measures of these two experiment treatments were the same. The main results were: 1) maize yield was improved by 1.8% through the variable rate fertilization compared with the unified fertilization, and the nitrogen fertilizer application amount was decreased from 171.4 kg/hm2to 138.12 kg/hm2, decreased by 19.4%.2) Applying variable rate fertilization technique need investment 50.63 yuan per hm2more than uniform fertilization, and the net return was 383.23 yuan per hm2higher than uniform fertilization. The rate of return on the increased investment of change from unified fertilization to variablerate fertilization was 753%, much more than the minimum rate of return on agriculture investment (105%).3) Suppose the subsidy for purchase variable rate fertilizer applicator was 30% of the purchase price, the annual depreciation of variable rate fertilizer applicator decreased from 70.95 yuan/year to 49.66 yuan/year. The rate of return on the increased investment of change from unified fertilization to variable rate fertilization increased to 1366% as the increased investment decreased to 29.61 yuan/year. In summary, the new technology should be feasible for farmers to accept according to the criteria for partial budget analysis. In addition, subsidy policy to purchasing variablerate fertilizer could increase the economic benefit of application of variablerate fertilization technology in large farms.
crops; models; design; variable-rate fertilization; large farm; partial budget analysis; economic benefit
10.11975/j.issn.1002-6819.2017.19.018
S24
A
1002-6819(2017)-19-0141-06
2017-04-10
2017-08-04
國家自然基金委國際(地區(qū))合作與交流項目(61661136003);北京市博士后基金(2016 ZZ-65)
陳 靜,漢族,江西玉山人,博士,助理研究員,主要從事現(xiàn)代農(nóng)業(yè)技術(shù)經(jīng)濟評價等方面的研究。北京中國農(nóng)業(yè)科學院農(nóng)業(yè)經(jīng)濟與發(fā)展研究所,100081。Email:chenjing@caas.cn
※通信作者:吳永常,漢族,陜西大荔人,博士,研究員,博士生導師,主要從事縣域經(jīng)濟等方面的研究。北京 中國農(nóng)業(yè)科學院農(nóng)業(yè)經(jīng)濟與發(fā)展研究所,100081。Email:wuyongchang@caas.cn