999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

北京市東南郊灌區土壤和農產品酞酸酯污染風險評估

2017-11-01 23:07:31劉洪祿黃權中黃冠華
農業工程學報 2017年18期
關鍵詞:研究

李 艷,劉洪祿,顧 華,黃權中,黃冠華,李 壘

?

北京市東南郊灌區土壤和農產品酞酸酯污染風險評估

李 艷1,2,3,劉洪祿1,2※,顧 華1,2,黃權中3,黃冠華3,李 壘1,2

(1. 北京市水科學技術研究院,北京 100048;2. 北京市非常規水資源開發利用與節水工程技術研究中心,北京 100048;3. 中國農業大學水利與土木工程學院,北京 100083)

為明確北京市東南郊典型灌區土壤和作物酞酸酯PAEs含量和污染水平,2015年利用氣象色譜-質譜儀檢測了該灌區31個表層土壤樣品和38個作物樣品的6種優控PAEs含量。研究結果表明灌區表層土壤PAEs質量分數為1.8~12.2 mg/kg,均值5.1 mg/kg。與國內外相比,該研究中土壤PAEs含量處于較高水平。土壤中鄰苯二甲酸正二丁酯(DnBP)和鄰苯二甲酸二(2-乙基己基)酯(DEHP)含量均值分別占PAEs總量的60.4%和35.9%。土壤樣品鄰苯二甲酸二甲酯(DMP)和DnBP含量均超美國土壤PAEs控制標準,但總體上未超過美國土壤PAEs治理標準。冬小麥籽粒、夏玉米籽粒和果蔬可食用部位PAEs質量分數分別為2.34~3.66、1.76~3.15和2.26~3.76 mg/kg;與其他研究成果相比,該研究區農產品PAEs含量處于中等水平。不同污灌歷史年限區域土壤和糧食作物籽粒PAEs含量均沒有顯著差異。冬小麥籽粒、夏玉米籽粒和果蔬中DEHP和DnBP含量分別占總量的50.3%和30.5%、45.1%和50.2%、47.16%~63.3%和31.96%~46.36%。農產品PAEs總量及各組分含量均低于歐洲的建議標準值。糧食作物籽粒中PAEs和DnBP含量與土壤中相應含量呈顯著正相關,Pearson相關系數()分別為0.74~0.87和0.91~0.92。該研究中農作物對PAEs的遷移系數為0.24~1.65。兒童和成人PAEs致癌風險分別為1.34×10-5和3.87×10-5,非致癌指數分別為9.44×10-1和3.83×10-1,均在可接受范圍內;通過口-作物暴露對PAEs 2種風險貢獻均最大,DEHP對人體2種風險貢獻最大。

土壤;污染;風險評估;冬小麥;夏玉米;蔬菜;酞酸酯

0 引 言

酞酸酯(PAEs),又名鄰苯二甲酸酯,是一類人工合成有機化合物,廣泛應用于增塑劑、農藥載體、化妝品、潤滑劑、清潔劑等行業[1]。PAEs能在周圍環境中長久存在,可通過食物鏈干擾動物和人體正常內分泌功能,甚至引起畸形和癌變等,對生態環境和人類健康造成嚴重危害[2-3]。鄰苯二甲酸二甲酯(DMP)、鄰苯二甲酸正二丁酯(DnBP)、鄰苯二甲酸二乙酯(DEP)、鄰苯二甲酸丁基芐基酯(BBP)、鄰苯二甲酸正二辛酯(DnOP)和鄰苯二甲酸二(2-乙基己基)酯(DEHP)6種PAEs已被美國國家環保署(EPA)列為“優控污染物”[4]。

土壤是PAEs累積和遷移的重要介質,農業土壤中PAEs主要來源是工業污染、大氣沉降、地膜棚膜、污水灌溉或污泥肥料等[5-6]。目前國內外已有大量學者對不同區域不同土壤利用類型(菜地、大田、果園、撂荒地等)和不同種植模式(覆膜、露天、大棚等)下土壤和農產品PAEs組分及污染水平進行了調查研究,總體上得出土壤和農作物PAEs各組分中含量最高的為DnBP和DEHP,大部分土壤DnBP濃度超過美國提出的土壤PAEs控制標準,部分土壤DMP濃度也超標,但土壤PAEs及各組分濃度基本低于美國建議的土壤PAEs治理標準;覆膜或大棚種植土壤PAEs含量高于露地種植土壤含量,菜地土壤PAEs含量高于果園、大田含量;農產品PAEs以及各組分含量總體上低于美國和歐洲提出的指標[7-21]。

上述調查研究主要集中在不同土地利用類型和不同種植模式下進行的,關于污水/再生水灌溉條件下土壤和作物PAEs污染情況調查研究還很少[6],而污水/再生水灌溉是土壤中PAEs主要來源之一[22],因此有必要對污水/再生水灌溉農田土壤和作物PAEs污染情況進行調查研究。

北京市東南郊灌區從20世紀50年代開始利用城市污水進行灌溉,從2003年開始逐步利用再生水灌溉農作物。目前對該灌區的研究主要集中在土壤重金屬和鹽堿性、作物品質和重金屬方面[23-24],以及部分區域土壤有機氯農藥和PAHs含量[25-27],而關于該灌區土壤和作物PAEs含量的研究還很少,灌區PAEs污染水平還不明確。該灌區是北京主要農產品生產基地之一,其土壤和農產品PAEs含量水平影響著人們健康和環境安全。因此有必要對該灌區土壤和農產品PAEs污染情況進行調查研究,以期為保證農產品安全和控制土壤PAEs含量提供理論支撐。

1 材料與方法

1.1 研究區概況及樣品采集

研究區在北京市東南郊,北緯39°26′~40°02′,東經116°32′~116°43′(圖1)。該研究區屬暖溫帶半濕潤大陸性季風氣候,過去50年平均日照時數為2 459 h,平均氣溫在11~12 ℃之間,平均降水565 mm。研究區表層(0~20 cm)土壤粘粒、粉粒及砂礫含量百分比分別為10.5%~27.5%、46%~78.5%和1.5%~43.5%。該研究區從20世紀50年代陸續利用城市排放的污水進行農業灌溉,從2003年開始,該區域陸續引用黃村、小紅門和高碑店污水處理廠的出水(再生水)進行農業灌溉。該研究污水灌溉歷史20~40 a,圖1中zone1區域為污灌40 a,zone2區域為污灌30 a,zone3區域為污灌20 a。

為探討研究區不同污灌歷史年限區域作物和土壤PAEs含量及污染水平,在各區域內沿主要灌溉渠道和河道布置土壤采樣點,土壤采樣點基本位于種植面積相對較大的田塊內,共設置31個土壤監測點,如圖1所示。2015年6月和9月進行土壤和植物采樣,采集土樣時,從田塊里正方形(100 m2)的4個頂點處取表層土壤樣品組成混合樣品,?4 ℃冷藏,?20 ℃冷凍干燥后研磨,過0.3 mm篩。過篩后的樣品置于玻璃瓶中在?20 ℃環境下保存待測。

圖1 研究區示意圖

作物收獲時(6月中旬和9月下旬)在各土壤監測點位采集植物樣品,包括冬小麥籽粒、夏玉米籽粒和夏季果蔬可食用部位,某些監測點位僅6月或9月采集到了作物樣品,作物采樣情況見表1。采集的作物樣品放入保溫箱中運輸至實驗室,依次用自來水、蒸餾水沖洗作物樣品表面土壤和其他雜質,沾干表面水分,4 ℃保存。用于化驗PAEs的土壤和作物采用鋁箔紙包裹,避免二次污染。

表1 農作物樣品數

1.2 土壤和植物中PAEs的索氏提取與測定方法

樣品前處理:取10 g干燥過的土樣,加入一定量的PAEs替代物(0.1 mg/kg),攪拌后密閉過夜,用濾紙包好后再放進索氏提取器內,以甲醇和丙酮混合液作為提取液(220 mL)(體積比為1:1)。在65 ℃真空干燥箱中干燥植物12 h,取一定量(小麥籽粒和玉米籽粒取5 g,果蔬取2 g)干燥過的植物樣品,加入一定量的PAEs替代物(0.1 mg/kg),攪拌后密閉過夜,用濾紙包好后放入索氏提取器,以220 mL正己烷作為提取液。土樣和作物樣品索氏提取12 h后,把提取液用50 g無水硫酸鈉過濾脫水,用約15 mL的提取液(土壤用液體為丙酮和甲醇混合液,植物用液為正己烷溶液)進行潤洗。脫水后的提取液用旋轉蒸發儀(50 ℃)和氮吹儀(50 ℃)濃縮至0.8~1.5 mL,用0.22m濾膜過濾,將過濾液倒入1.5 mL的樣品瓶(液體最后體積在0.5~1.0 mL之間),放入冰箱保存待測。

PAEs測定:使用氣相色譜(7890A)/質譜聯用儀(5975C)進行樣品分析,包括DMP、DEP、DnBP、BBP、DEHP、DnOP 6種化合物。氣相色譜(7890A)-質譜(5975C)聯用儀采用DB-5MS毛細管柱:其型號為30 m×0.25 mm×0.25m(美國安捷倫公司生產)。進樣口的溫度為280 ℃,采用無分流式進樣,采用程序控制GC爐溫升溫,先在40 ℃保持2 min,而后以5 ℃/min升溫到290 ℃,在290 ℃保持4 min。采用SIM掃描模式分析樣品,定性分析利用保留時間和特征峰分析,定量分析利用基峰面積分析。

質量控制和質量保證:每批次試劑分析試劑空白,每批次樣品做3個空白,空白測試結果均低于檢出限。空白樣品加標樣后回收率為70%~120%,樣品替代物的回收率在80%~120%范圍內;為了檢查儀器是否受到污染,每12 h做一次溶劑空白;本研究PAEs組分檢出限為0.032~0.191g/kg。

1.3 數據處理

1)土壤-植物系統PAEs遷移系數計算如下:

BCF=Cplant/Csoil (1)

式中BCF為土壤-植物系統中PAEs遷移系數,Cplant為作物中PAEs質量濃度,Csoil為土壤中PAEs質量濃度(均以干質量表示,mg/kg)。

2)人體健康風險評價

采用美國能源部風險評估信息系統化學物質風險模型用戶指南里暴露模型計算人群經皮膚接觸、口攝入和呼吸吸入途徑每天平均暴露劑量[28],計算式如下

皮膚-土壤=(2××1×××2×2)/(×) (2)

口-作物=(1×1×1×1)/(×) (3)

口-土壤=(2×2××2×2)/(×) (4)

呼吸-土壤=(2××(1/)×2×2×3)/(×) (5)

式中為物質日均暴露劑量,mg/(kg·d);其余參數定義和參考值見表2,參數取值參考美國土壤篩選水平補充指導[29]。

根據PAEs組分致癌性,分別進行非致癌風險和致癌風險評價,計算式如下,相應參數參考美國土壤篩選水平補充指導、美國能源部風險評估信息系統中化學物質毒性查詢系統和中國污染場地風險評估技術導則[29-31].

HI=/(6)

低劑量暴露Risk=×(7)

高劑量暴露Risk=1-exp(-×) (8)

皮膚=口×ABS(9)

皮膚=口/ABS(10)

呼吸=呼吸×/IRa(11)

式中HI為PAEs各組分非致癌風險指數;為PAEs各組分非致癌參考劑量mg/(kg·d);皮膚和口分別為經皮膚和口途徑的攝入參考劑量;Risk為PAEs各組分致癌暴露風險,先利用式(7)計算,若計算結果大于0.01則用式(8)計算;為PAEs各組分的致癌斜率因子,(kg·d)/mg,皮膚、口、呼吸分別為經皮膚、口和呼吸途徑的致癌斜率因子;ABS為經腸胃吸收的污染物比例,本文取1.0;3為成人日均空氣攝入量,m3/d;為成人體質量,kg;呼吸為經呼吸途徑吸入的單位致癌因子。PAEs各組分毒性因子參考值見表3。

表2 健康風險評價暴露參數

表3 PAEs非致癌參考劑量(RfD)和致癌斜率因子(SF)

注:BBP、DEHP、DnBP、DMP、DEP分別代表鄰苯二甲酸丁基芐基酯、鄰苯二甲酸二(2-乙基己基)酯、鄰苯二甲酸正二丁酯、鄰苯二甲酸二甲酯和鄰苯二甲酸二乙酯,下同。

Note:BBP、DEHP、DnBP、DMP、DEP arebutyl benzyl phthalate, di(2-ethylhexyl) phthalate, di-n-butyl phthalate, dimethyl phthalate and diethyl phthalate, respectively, the same below.

利用Microsoft excel 2010軟件對數據進行處理和畫圖,利用SPSS 20.0軟件對數據進行統計分析,包括利用獨立樣本檢驗法對2個歷史污灌區域冬小麥PAEs含量差異顯著性分析,利用方差分析中LSD法對3個歷史污灌區域夏玉米PAHs含量差異顯著性分析,顯著性水平選取0.05。

2 結果與討論

2.1 灌區表層土壤PAEs空間分布

圖2顯示灌區表層土壤PAEs質量分數為1.8~12.2 mg/kg,均值為5.1 mg/kg。總體上灌區西南部PAEs含量最高,主要分布在安定鎮和長子營鎮;其次為灌區東部和西北部部分地區;灌區中部和東南部表層土壤PAEs含量稍低。

表4顯示了研究區不同污灌歷史區域土壤PAEs含量,總體上污灌歷史年限長的區域(zone 1和zone 2)土壤PAEs含量均值稍高,但各區域差異不顯著(>0.05)。表4還顯示了國內外部分區域關于土壤PAEs含量的研究成果。本研究灌區表層土壤PAEs含量高于貴州農業土壤、廣東(中山市、汕頭、高州)農業土壤、山東壽光蔬菜基地和花生主產區土壤、北京市大棚土壤、咸陽市郊菜地、南京城郊、長江三角洲農業土壤以及東北部黑土PAEs含量,與珠江三角洲稻田土壤PAEs含量接近,遠低于青島市覆膜花生和棉花土壤PAEs含量[13-17,19-20,32-39]。總體上,與國內土壤PAEs含量相比,本研究中土壤PAEs含量處于相對較高水平。與國外研究成果相比(丹麥、美國、荷蘭和捷克共和國農業土壤以及法國和塞爾維亞土壤PAEs含量)[7-8,18,21,40-41],本研究區表層土壤PAEs含量也處于較高水平。Cheng等[35]調查得出北京郊區(4環至6環)表層土壤6種PAEs質量分數為0.02~1.36 mg/kg,其中含量較高值分布在大興舊宮鎮和亦莊西北部。這2個區域位于東南郊典型灌區(歷史污灌)以外且屬于臨近區域,可作為本研究灌區對照點。可以看出本研究灌區土壤PAEs含量明顯高于對照點含量,說明研究區土壤PAEs含量高主要是由污灌引起。

圖2 灌區表層土壤PAEs空間分布

2.2 灌區表層土壤PAEs各組分含量及占總量比例

表5顯示了整個灌區表層土壤PAEs各檢測組分含量及占總量比例。灌區表層土壤樣品均檢測出DMP、DEP、DnBP、BBP、DEHP;土壤DnOP含量低于檢出限,均未檢測出。檢測出的5種PAEs各組分中DnBP占總量比例最高,為60.4%;其次為DEHP,占總量比例35.9%;剩余各組分占總量的比例均低于3%。其他學者研究也得出土壤PAEs各組分中以DnBP和DEHP含量最高[8,11,17,20-21,34],主要是DnBP和DEHP屬于高分子化合物,水溶性較差,容易被土壤吸附,不易被生物降解或通過其他途徑消失[42];而DMP和DEP等分子量相對較小,容易被降解[43]。

本研究表層土壤DMP、DEP、DnBP、BBP、DEHP含量分別為0.09~0.37、0.03~0.07、0.55~10.8、0.001~0.006和0.42~7.06 mg/kg,均值分別為0.14、0.05、3.07、0.002、1.83 mg/kg。目前,中國還未制訂土壤PAEs污染控制標準,參考美國土壤PAEs化合物的控制標準(DMP、DEP、DnBP、BBP、DEHP質量分數限值分別為0.02、0.071、0.081、1.215、4.35 mg/kg)[44],本研究區5%的土壤樣品DEHP含量超標,所有采集的土壤樣品DMP和DnBP含量均超過控制標準,其均值分別為控制標準的7倍和38倍,說明該灌區土壤受到PAEs污染;土壤樣品DEP和BBP含量均未超過控制標準。11%的土壤樣品DnBP含量超美國土壤PAEs治理標準(DMP、DEP、DnBP、BBP、DEHP質量分數分別為2.0、7.1、8.1、50、50 mg/kg)[45],但僅為治理標準的1.2~1.3倍,土壤樣品其余各組分含量均未超過美國土壤治理標準。其他學者調查研究也發現土壤DMP和DnBP含量超美國土壤PAEs控制標準,如徐雪等[15]研究發現咸陽市郊菜地土壤中分別有100%和85%的土壤樣品DMP和DnBP含量超過美國土壤PAEs控制標準;鄭順安等[19]得出山東壽光設施菜地采集的土壤樣品DnBP含量均超控制標準,52%的土壤樣品DMP含量超控制標準;陳佳袆等[20]調查得出北京設施蔬菜基地95%的土壤樣品DnBP含量超過控制標準,且最高超標14倍。Tran等[18]研究得出巴黎土壤DEP和DnBP超控制標準率為40%。

表4 不同地區土壤PAEs含量的比較

表5 灌區表層土壤PAEs各檢測組分含量及占總量比例

2.3 灌區各植物PAEs含量

本研究采集的作物均檢測出PAEs,其含量見圖3。

注:a圖橫坐標(1)、(2)、(3)分別代表區域1、區域2和區域3。

由圖3a可以看出zone 1和zone 2區域冬小麥籽粒PAEs質量分數均值分別為3.66和2.34 mg/kg,zone 1、zone 2和zone 3區域夏玉米籽粒PAEs質量分數均值分別為3.15、1.76和2.47 mg/kg,顯著性分析顯示不同污灌歷史年限區域冬小麥籽粒PAEs含量無顯著差異(>0.05),不同區域夏玉米籽粒PAEs含量也無顯著差異(>0.05)。由圖3b可以看出果蔬可食用部位PAEs質量分數為2.26~3.76 mg/kg,葉菜PAEs含量較莖菜和根菜高。本研究區農作物PAEs含量顯著高于山東花生主產區花生和壽光設施菜地黃瓜PAEs質量分數(0.17~1.62 mg/kg)[19,34];高于廣東中山市蔬菜PAEs質量分數(均值1.15 mg/kg)[17];與珠江三角洲、南京城郊、廣東東升以及廣州黃埔、靈山菜地蔬菜PAEs質量分數相當(均值為2.56~3.5 mg/kg)[46-49];低于廣東汕頭蔬菜樣品中PAEs質量分數(均值為7.16 mg/kg)[16]。說明本研究區農產品PAEs含量處于中等水平。

2.4 灌區作物PAEs各組分含量及占總量比例

表6顯示了作物PAEs各檢測組分檢出率、含量以及各組分占總量的比例。

表6 灌區作物PAEs各檢測組分含量及占總量比例

注:ND表示組分質量分數低于檢出限未檢測出。

Note: ND indicates the concentration of component is below the limits of detection.

冬小麥PAEs檢出組分中含量最高的為DEHP和DnBP,占總量比例分別為50.3%和30.5%;其次為DMP,占總量的14.8%;其余組分占總量比例均小于5%。夏玉米PAEs檢出組分中也以DnBP和DEHP含量最高,占總量比例分別為50.2%和45.1%;其余組分各自占總量比例小于3%。果蔬以DEHP和DnBP含量最高,分別占總量的47.16%~63.3%和31.96%~46.36%,其余組分各自占總量比例小于4%。其他學者在珠江三角洲蔬菜基地、山東壽光設施蔬菜基地等調查研究結果顯示農產品中PAEs均以DEHP和DnBP含量為主,兩者之和超過總量的50%,其余組分含量均較低[19,47,49],本研究結果與此相似。農產品PAEs以DnBP和DEHP含量最高,主要是DnBP和DEHP分子量相對較大,水溶性較低,容易在土壤中積累(表5)而被作物吸收;而DMP、DEP等由于水溶性較高,容易發生生物降解,故農產品中含量較低。

目前國內沒有食品中PAEs含量限制標準,參考歐洲經濟共同體食品科學委員會警告和歐洲食品安全局規定,人體每日對PAEs化合物攝入總量不能超過0.3 mg/kg體質量;攝入DnBP最大參考劑量為每日0.01 mg/kg體質量;每日DEHP最大攝入量不超過0.05 mg/kg體質量[50-52]。若按成人體質量60 kg計算,每人每天攝入小麥0.15 kg,玉米0.1 kg,果蔬0.345 kg(鮮質量),則歐洲建議攝入的冬小麥籽粒、夏玉米籽粒和果蔬PAEs質量分數限值分別為120、180、521 mg/kg,DnBP質量分數限值分別為4、6、17 mg/kg,DEHP質量分數限值分別為20、30、87 mg/kg。本研究中農產品PAEs、DEHP和DnBP含量均未超標。

2.5 糧食作物籽粒與土壤PAEs含量相關性分析

利用SPSS 20.0統計軟件對土壤和冬小麥籽粒、夏玉米籽粒PAEs含量進行相關分析,結果如表7,糧食作物籽粒PAEs、DnBP均分別與土壤中PAEs和DnBP含量顯著正相關(<0.05),Pearson相關系數()分別為0.74~0.87和0.91~0.92;冬小麥籽粒DMP與土壤中DMP含量顯著正相關(<0.05),Pearson相關系數()為0.94;糧食作物籽粒-土壤中DEP、BBP、DEHP含量均不相關。總體上糧食作物中PAEs、DnBP含量隨土壤中相應含量增加而增加。崔明明等[34]研究證實花生籽粒中PAEs和DnBP均隨土壤相應含量增加而增加,吳山等[16]研究也發現蔬菜中PAEs、DEHP、DnOP與土壤中相應含量顯著正相關。這說明糧食作物籽粒PAEs及某些組分含量與土壤中相同物質存在一定的線性共變趨勢。

表7 土壤PAEs及各組分含量與糧食作物籽粒相應含量的回歸關系

注:為冬小麥籽粒或夏玉米籽粒各物質質量濃度,為土壤各物質質量濃度。

Note:is the concentration of wheat grain or maize grain,is the concentration of soil.

2.6 不同作物對PAEs的遷移系數

表8顯示PAEs及各組分在土壤-作物系統中的遷移系數。冬小麥籽粒、夏玉米籽粒和果蔬對PAEs的遷移系數分別為0.74~0.82、0.28~0.90和0.24~1.65,對PAEs各組分的遷移系數分別為0~4.83、0~7.62和0~11.0。除BBP和DEHP外,不同污灌年限區域同一作物對PAEs和其余組分遷移系數相近。總體上糧食作物和果蔬對PAEs同一組分遷移能力相似,但對PAEs各組分遷移能力存在差異。

表8 灌區PAEs各檢測組分在土壤-作物系統中遷移系數

本研究中農產品對PAEs的遷移系數與山東壽光蔬菜基地蔬菜、珠江三角地區稻田對PAEs的遷移系數相近(分別為0.37~1.5和0.37~1.27)[19,39],低于廣東汕頭市蔬菜基地農產品、中山市農產品對PAEs的遷移系數(分別為1.23~6.96和1.02~5.91)[16-17],主要可能與作物種類和采樣時間、位置等情況有關[46]。

2.7 人體健康風險評估

表9顯示了灌區PAEs各組分人體健康致癌風險和非致癌風險水平(作物、土壤PAEs各組分質量分數取灌區均值)。US EPA提出一般可接受的致癌風險水平上限為10-4;當非致癌危害指數大于1時,認為對人體健康產生危害[49,52]。本研究灌區兒童和成人PAEs致癌風險分別為1.34×10-5和3.87×10-5,均低于致癌風險水平上限,在可接受范圍內;兒童和成人PAEs非致癌指數分別為9.44×10-1和3.83×10-1,均低于1,說明PAEs未對人群產生明顯的非致癌健康危害;從安全角度考慮,應繼續關注區域PAEs濃度水平。

從暴露介質和暴露途徑分析,對PAEs致癌風險和非致癌風險貢獻最大的均為口-作物(小麥、玉米和果蔬),其對成人和兒童致癌總風險貢獻率分別為99.96%和99.81%,對成人和兒童非致癌總風險貢獻率分別為99.95%和99.85%。從PAEs各組分分析,對人體致癌總風險和非致癌總風險貢獻最大的均為DEHP,對成人風險貢獻率分別為99.94%(致癌)和84.15%(非致癌),對兒童風險貢獻率分別為99.91%(致癌)和84.37%(非致癌),主要是DEHP含量相對較高同時其非致癌參考劑量較低所致(表3)。

表9 PAEs致癌和非致癌健康風險計算結果

3 結 論

本文研究了再生水灌區表層土壤、冬小麥籽粒、夏玉米籽粒和果蔬PAEs含量、組分和遷移規律等,主要結論如下:

1)表層土壤PAEs質量分數為1.8~12.2 mg/kg,均值為5.1 mg/kg,不同污灌歷史年限區域土壤PAEs含量沒有顯著差異。與國內外研究結果相比,本研究中土壤PAEs含量處于較高水平。灌區表層土壤檢測出的5種PAEs組分中DnBP占總量比例最高,為60.4%;其次為DEHP,占總量比例35.9%。與美國土壤PAEs控制和治理標準相比,土壤樣品DMP和DnBP含量均超控制標準,但未超過治理標準。

2)冬小麥籽粒、夏玉米籽粒和果蔬可食用部位PAEs質量分數分別為2.34~3.66、1.76~3.15和2.06~3.76 mg/kg。不同污灌歷史年限對糧食作物籽粒PAEs含量均無顯著影響。與其他研究結果相比,本研究區農產品PAEs含量處于中等水平。糧食作物籽粒和果蔬DEHP和DnBP占總量比例分別為45.1%~50.3%和30.5%~50.2%、47.16%~63.3%和31.96%~46.36%。農產品PAEs及各組分含量均低于歐洲的建議指標。

3)糧食作物籽粒中PAEs和DnBP含量均隨土壤中相應含量增加而增加。冬小麥籽粒、夏玉米籽粒和果蔬對PAEs的遷移系數分別為0.74~0.82、0.28~0.90和0.24~1.65。

4)兒童和成人PAEs致癌風險分別為1.34×10-5和3.87×10-5,非致癌指數分別為9.44×10-1和3.83×10-1,兒童和成人健康風險均在可接受范圍內。

口-作物對PAEs致癌風險和非致癌風險貢獻最大,對致癌總風險貢獻率為99.81%~99.96%,對非致癌總風險貢獻率為99.85%~99.95%。各組分中DEHP對人體致癌總風險和非致癌總風險貢獻最大,對成人風險貢獻率分別為99.94%(致癌)和84.15%(非致癌),對兒童風險貢獻率分別為99.91%(致癌)和84.37%(非致癌)。

[1] Hens G A, Caballos M P. Social and economic interest in the control of phthalic acid esters[J]. Trends in Analytical Chemistry, 2003, 22(11): 847-857.

[2] Mckee R H, Butala J H, David R M, et al. NTP center for the evaluation of risks to human reproduction reports on phthalates: Addressing the data gaps[J]. Reproductive Toxicology, 2004, 18(1): 1-22.

[3] Dickson S M, Siegrist M, Keller C, et al.Phthalate exposure through food and consumers’risk perception of chemicals in food[J]. Risk Analysis, 2009, 29(8): 1170-1181.

[4] United States Environmental Protection Agency(USEPA). Effluent Guidelines Home, Toxic and Priority Pollutants Under the Clean Water Act. Priority Pollutants[EB/OL]. https://www.epa.gov/eg/toxic-and-priority-pollutants-under-clean-water-act#modifications.

[5] 何麗芝,陸扣萍,秦華,等.我國設施菜地鄰苯二甲酸酯污染現狀及防治研究進展[J].安徽農業科學,2012,40(28):13973-13975,14063.

He Lizhi, Lu Kouping, Qin Hua, et al. Research progress in the phthalate acid esters(PAEs)pollution and remediation in the soil of vegetable greenhouses in China[J]. Journal of Anhui Agricultural Sciences, 2012, 40(28): 13973-13975, 14063. (in Chinese with English abstract)

[6] 王凱榮,崔明明,史衍璽,等.農業土壤中鄰苯二甲酸酯污染研究進展[J].應用生態學報,2013,24(9):2699-2708.

Wang Kairong, Cui Mingming, Shi Yanxi, et al. Phthalic acid esters (PAEs) pollution in farmland soils: A review[J]. Chinese Journal of Applied Ecology, 2013, 24(9): 2699-2708. (in Chinese with English abstract)

[7] Vikels?e J, Thomsen M, Carlsen L. Phthalates and nonylphenols in profiles of differently dressed soils[J]. The Science of the Total Environment, 2002, 296: 105-106.

[8] Gibson R, Wang M J, Padgett E, et al. Analysis of 4-nonylphenols, phthalates, and polychlorinated biphenyls in soils and biosolids[J]. Chemosphere, 2005, 61: 1336-1344.

[9] 李米,蔡全英,曾巧云,等.綠色食品和有機食品蔬菜基地土壤和蔬菜中鄰苯二甲酸酯的分布特征[J].安徽農業科學,2010,38(19):10189-10191.

Li Mi, Cai Quanying, Zeng Qiaoyun, et al. Occurrence of phthalic acid esters in soil and vegetables from green food and organic vegetable fields[J]. Journal of Anhui Agricultural Sciences, 2010, 38(19): 10189-10191. (in Chinese with English abstract)

[10] Xia Xinghui, Yang Lingyan, Bu Qingwei, et al. Levels, distribution, and health risk of phthalate esters in urban soils of Beijing, China[J]. Journal of Environmental Quality, 2011, 40: 1643-1651.

[11] Kong Shaofei, Ji Yaqin, Liu Lingling, et al. Diversities of phthalate esters in suburban agricultural soils and wasteland soil appeared with urbanization in China[J]. Environmental Pollution, 2012, 170: 161-168.

[12] 譚鎮,李傳紅,莫測輝,等.惠州市農業土壤中鄰苯二甲酸酯(PAEs)含量的分布特征[J].環境科學與管理,2012,37(5):120-123.

Tan Zhen, Li Chuanhong, Mo Cehui, et al. Distribution of phthalic acid esters in agricultural soils of Huizhou City[J]. Environmental Science and Management, 2012, 37(5): 120-123. (in Chinese with English abstract)

[13] 張海光,孫國帥,孫磊,等.典型覆膜作物土壤中鄰苯二甲酸酯污染的初步研究[J].中國環境監測,2013,29(4):60-63.

Zhang Haiguang, Sun Guoshuai, Sun Lei, et al. Preliminary study on phthalic acid esters pollution of typical plastic mulched crops soils[J]. Environmental Monitoring in China, 2013, 29(4): 60-63. (in Chinese with English abstract)

[14] Wang Jun, Luo Yongming, Teng Ying, et al. Soil contamination by phthalate esters in Chinese intensive vegetable production systems with different modes of use of plastic film[J]. Environmental Pollution, 2013, 180: 265-273.

[15] 徐雪,王利軍,盧新衛.咸陽市郊菜地土壤中鄰苯二甲酸酯(PAEs)污染研究[J].農業環境科學學報,2014,33(10):1912-1919.

Xu Xue, Wang Lijun, Lu Xinwei. Pollution of phthalic acid esters(PAEs)in vegetable soils in Xianyang Suburbs, Northwest China[J]. Journal of Agro-Environment Science, 2014, 33(10): 1912-1919. (in Chinese with English abstract)

[16] 吳山,李彬,梁金明,等.汕頭市蔬菜產區土壤-蔬菜中鄰苯二甲酸酯(PAEs)污染分布特征研究[J].農業環境科學學報,2015,34(10):1889-1896.

Wu Shan, Li Bin, Liang Jinming, et al. Distribution characteristics of phthalic acid esters in soil and vegetables producing areas of Shantou City, China[J]. Journal of Agro-Environment Science, 2015, 34(10): 1889-1896. (in Chinese with English abstract)

[17] 李彬,吳山,梁金明,等.中山市農業區域土壤-農產品中鄰苯二甲酸酯(PAEs)污染特征[J].環境科學,2015,36(6):2283-2291.

Li Bin, Wu Shan, Liang Jinming, et al. Characteristics of phthalic acid esters in agricultural soils and products areas of Zhongshan City, South China[J]. Environmental Science, 2015, 36(6): 2283-2291. (in Chinese with English abstract)

[18] Tran B C, Teil M J, Blanchard M, et al. Fate of phthalates and BPA in agricultural and non-agricultural soils of the Paris area (France)[J]. Environmental Science Pollution Research, 2015, 22: 11118-11126.

[19] 鄭順安,薛穎昊,李曉華,等.山東壽光設施菜地土壤-農產品鄰苯二甲酸酯(PAEs)污染特征調查[J]. 農業環境科

學學報,2016,35(3):492-499.

Zheng Shunan, Xue Yinghao, Li Xiaohua, et al. Phthalate acid esters(PAEs) pollution in soils and agricultural products of vegetable greenhouses in Shouguang City, Shandong Province[J]. Journal of Agro-Environment Science, 2016, 35(3): 492-499. (in Chinese with English abstract)

[20] 陳佳袆,李成,欒云霞,等.北京設施蔬菜基地土壤中鄰苯二甲酸酯的污染水平及污染特征研究[J].食品安全質量檢測學報,2016,7(2):472-477.

Chen Jiayi, Li Cheng, Luan Yunxia, et al. Pollution characteristics and pollution level of phthalic acid ester in soils of facility vegetable bases of Beijing[J]. Journal of Food Safety and Quality, 2016, 7(2): 472-477. (in Chinese with English abstract)

[21]B D, Ji Y Q, Durisic-Mladenovic N, et al. Occurrence of the phthalate esters in soil and street dust samples from the Novi Sad city area, Serbia, and the influence on the children’s and adults’ exposure[J]. Journal of Hazardous Materials, 2016, 312: 272-279.

[22] He Lizhi, Gielen G, Bolan N S, et al. Contamination and remediation of phthalic acid esters in agricultural soils in China: a review[J]. Agronomy for Sustainable Development, 2015, 35: 519-534.

[23] 高軍,王會肖,劉海軍,等.北京市再生水灌溉對土壤質量的影響研究[J].北京師范大學學報自然科學版,2012,48(5):572-576.

Gao Jun, Wang Huixiao, Liu Haijun, et al. Effects of reclaimed water irrigation upon soil quality in Beijing[J]. Journal of Beijing Normal University Natural Science, 2012, 48(5):572-576. (in Chinese with English abstract)

[24] 馬闖,楊軍,雷梅,等.北京市再生水灌溉對地下水的重金屬污染風險[J].地理研究,2012,31(12):2250-2258.

Ma Chuang, Yang Jun, Lei Mei, et al. Assessing the effect of reclaimed water irrigation on groundwater pollution of heavy metals in Beijing[J]. Geographical Research, 2012, 31(12): 2250-2258. (in Chinese with English abstract)

[25] 何江濤,金愛芳,陳素暖,等.北京東南郊再生水灌區土壤PAHs污染特征[J].農業環境科學學報,2010,29(4):666-673.

He Jiangtao, Jin Aifang, Chen Sunuan, et al. Distribution characteristics of soil PAHs in reclaimed water irrigation area in the Southeastern Suburb of Beijing[J]. Journal of Agro-Environment Science, 2010, 29(4): 666-673. (in Chinese with English abstract)

[26] 石鈺婷,何江濤,金愛芳.北京市東南郊不同灌區表層土壤中PAHs來源解析[J].現代地質,2011,25(2):393-400.

Shi Yuting, He Jiangtao, Jin Aifang. Sources apportionment of PAHs in the surface soil of different irrigation areas in Southeast Suburb of Beijing[J]. Geoscience, 2011, 25(2): 393-400. (in Chinese with English abstract)

[27] 馬文潔,何江濤,金愛芳,等.北京市郊再生水灌區土壤有機氯農藥垂向分布特征[J].生態環境學報,2010,19(7):1675-1681.

Ma Wenjie, He Jiangtao, Jin Aifang, et al. Verticle distribution of organochlorine pesticides in reclaimed water irrigation area in Beijing suburbs[J]. Ecology and Environmental Sciences, 2010, 19(7): 1675-1681. (in Chinese with English abstract)

[28] RAIS(Risk Assessment Information System). Risk exposure models for chemicals user’s guide[EB/OL]. Washington DC: Department of Energy, 2013[2016-08-20]. http://rais.ornl.gov/ tools/rais-chemical-risk-guide.html.

[29] U S. EPA. Supplement guidance for developing soil screening levels for superfound sites[EB/OL]. 2002[2010-10-8]. http://www.epa.gov/superfund/health/conmedia/soil/pdfs/ ssg-main.pdf

[30] U S. EPA. Chemical Toxicity Values, the risk assessmentinformation system[EB/OL]. https://rais.ornl.gov/cgi-bin/tools/ TOX_search?select=chem

[31] HJ25.3-2014,污染場地風險評估技術導則[S]. 北京:中國環境科學出版社,2014.

[32] 李存雄,方志青,張明時,等.貴州省部分地區土壤中酞酸酯類污染現狀調查[J].環境監測管理與技術,2010,22(1):33-36.

Li Cunxiong, Fang Zhiqing, Zhang Mingshi, et al. Some areas investigation of phthalic esters in soil of Guizhou Province[J]. The Administration and Technique of Environmental Monitoring, 2010, 22(1): 33-36. (in Chinese with English abstract)

[33] Chen Li, Zhao Yan, Li Luxi, et al. Exposure assessment of phthalates in non-occupational populations in China[J]. Science of the Total Environment, 2012(427/428): 60-69.

[34] 崔明明,王凱榮,王琳琳,等.山東省花生主產區土壤和花生籽粒中鄰苯二甲酸酯的分布特征[J].應用生態學報,2013,24(12):3523-3530.

Cui Mingming, Wang Kairong Wang Linlin, et al. Distribution characteristics of phthalic acid esters in soils and peanut kernels in main peanut producing areas of Shandong Province, China[J]. Chinese Journal of Applied Ecology, 2013, 24(12): 3523-3530. (in Chinese with English abstract)

[35] Cheng Xiaomeng, Ma Lingling, Xu Diandou, et al. Mapping of phthalate esters in suburban surface and deep soils around a metropolis-Beijing, China[J]. Journal of Geochemical Exploration, 2015,155: 56-61.

[36] 李霞,鄒建運,吳文成,等.高州農田土壤中鄰苯二甲酸酯污染特征與形態分析[J].土壤通報,2015,46(4):991-996.

Li Xia, Zou Jianyun, Wu Yongcheng, et al. Evaluation of PAEs pollution of farmland soil in Gaozhou[J]. Chinese Journal of Soil Science, 2015, 46(4): 991-996. (in Chinese with English abstract)

[37] Zhang Ying, Wang Pengjie, Wang Lei, et al. The influence of facility agriculture production on phthalate esters distribution in black soils of northeast China[J]. Science of the Total Environment, 2015(506/507): 118-125.

[38] Sun Jianteng, Pan Lili, Zhan Yu, et al. Contamination of phthalate esters, organochlorine pesticides and polybrominated diphenyl ethers in agricultural soils from the Yangtze River Delta of China[J]. Science of the Total Environment, 2016, 544: 670-676.

[39] 魯磊安,陳學斌,趙海明,等.珠三角地區稻田土壤和谷粒中鄰苯二甲酸酯(PAEs)的分布特征及人體健康暴露風險[J].農業環境科學學報,2016,35(7):1242-1248.

Lu Leian, Chen Xuebin, Zhao Haiming, et al. Distribution of phthalic acid esters(PAEs)in paddy soil and grains of rice in the Pearl River Delta region and the health risk assessment[J]. Journal of Agro-Environment Science, 2016, 35(7): 1242-

1248. (in Chinese with English abstract)

[40] Peijnenburg W J G M, Struijs J. Occurrence of phthalate esters in the environment of the Netherlands[J]. Ecotoxicology and Environmental Safety, 2006, 63(2): 204-215.

[41] Dankova R, Jaro?ova A, Polakova S. Monitoring of phthalates in Moravian agricultural soil in 2011 and 2012[J]. Mendelnet, 2013: 563-567.

[42] Inman J G, Strachan S D, Sommers L F, et al. The decomposition of phthalate esters in soil[J]. Journal of Environmental Science and Health, 1984, 19(2): 245-257.

[43] Cartwright C D, Thompson I P, Burns R G. Degradation and inpact of phthalate plasticizers on soil microbial communities[J]. Environmental Toxicology and Chemistry, 2000, 19(5): 1253-1261.

[44] New York State Department of Environmental Conservation. SVOCs Determination of soil cleanup objectives and cleanup levels. ,Appendix A of TAGM# 4046[EB/OL]. http:// www. dec.state.ny. Us/website/dertagm s/prtg 4046.html. 2003, 04, 04.

[45] New York State Department of Environmental Conservation. 2010. CP-51/Soil Cleanup Guidance[EB/OL]. (2010-10-21) http:// www. dec.ny. gov/docs/remediation _hudson _pdf/cpsoil.pdf.

[46] Mo Cehui, Cai Quanying, Tang Shirong, et al. Polycyclic aromatic hydrocarbons and phthalic acid esters in vegetables from nine farms of the Pearl River Delta, South China[J]. Arch Environ Contam Toxicol, 2009, 56: 181-189.

[47] 肖凱恩,莫測輝,蔡全英.珠江三角洲蔬菜基地蔬菜中鄰苯二甲酸酯的含量特征[J].四川環境,2012,31(3):49-55.

Xiao Kaien, Mo Cehui, Cai Quanying. Concentrations of PAEs in vegetable fields of Pearl River Delta[J]. Sichuan Environment, 2012, 31(3): 49-55. (in Chinese with English abstract)

[48] 游遠航.廣州地區蔬菜生產基地有機污染物含量狀況及分布[J]. 吉林大學學報:地球科學版,2015,45(4):1205-1216.

You Yuanhang. Concentrations and distributions of organic pollutants in typical vegetable fields in Guangzhou, China[J]. Journal of Jilin University: Earth Science Edition, 2015, 45(4): 1205-1216. (in Chinese with English abstract)

[49] Wang Jun, Chen Gangcai, Christie P, et al. Occurrence and risk assessment of phthalate esters(PAEs) in vegetables and soils of suburban plastic film greenhouses[J]. Science of the Total Environment, 2015, 523: 129-137.

[50] Balafas D, Shaw K J, Whitfield F B. Phthalate and adipate esters in Australian packaging materials[J]. Food Chemistry, 1999, 65: 279-287.

[51] EFSA(European Food Safety Authority).Bis(2-ethylhexyl) phthalate(DEHP) for use in food contact materials[J]. The EFSA Journal, 2005a, 243: 1-20.

[52] EFSA (European Food Safety Authority). Di-butylphthalate (DBP) for use in food contact materials[J]. The EFSA Journal, 2005b, 242: 1-17.

Assessment of contamination risk of PAEs in soils and crops of irrigation district located at southeastern suburbs of Beijing

Li Yan1,2,3, Liu Honglu1,2※, Gu Hua1,2, Huang Quanzhong3, Huang Guanhua3, Li Lei1,2

(1.100048; 2.100048,; 3.100083)

In order to find out the concentration of phthalate acid esters (PAEs) and its pollution characteristics in topsoil and agricultural products in irrigation district at the Southeastern Suburb of Beijing, six kinds of PAEs in 31 topsoil samples and 38 crops samples in the irrigation district were detected by gas chromatography-mass spectrometry (GC-MS) in 2015. Results showed that the total concentration of six PAE compounds (∑PAEs) in topsoil ranged from 1.8 mg/kg to 12.2 mg/kg, with the average concentration of 5.1 mg/kg. There was no significant (>0.05) difference for PAEs in soil among the different sewage irrigation history. Concentration of PAEs in topsoil in this study was relatively higher compared to those reported for other places in literature. The content of di-butyl phthalate (DnBP) and di-(2-ethylhexyl) phthalate (DEHP) in top soils contributed 60.4% and 35.9% to total PAEs, respectively. According to soil allowable concentration of phthalic acid esters compounds in USA, the concentration of dimethyl phthalate (DMP) and DnBP in all soil samples exceeded the control limits, indicating that the topsoil in this district was contaminated by PAEs, but the concentrations of all PAEs compounds were lower than the cleanup objective. The total concentration of PAEs in winter wheat () grain, summer maize () grain, and edible part of vegetables and fruit were 2.34-3.66 mg/kg, 1.76-3.15 mg/kg, and 2.26-3.76 mg/kg, respectively. No significant (>0.05) difference was observed for PAEs in cereals grain among different sewage irrigation history. Concentrations of PAEs in agricultural products in this study were in the middle level compared to the results of other studies. The content of DnBP and DEHP in winter wheat grain contributed 30.5% and 50.3% to the total PAEs, respectively. The content of DnBP and DEHP in summer maize grain contributed 50.2% and 45.1% to the total PAEs, respectively. The content of DnBP and DEHP in vegetable and fruit contributed 31.96%-46.36% and 47.16%-63.3% to the total PAEs, respectively. The concentrations of the total PAEs and each PAE compound in agricultural products were less than the suggested targets in Europe, implying low health risk. The concentrations of PAEs and DnBP in cereal grain showed a significantly (<0.05) positive correlation with those in soils, with Pearson coefficients () of 0.74-0.87 and 0.91-0.92, respectively. The bioaccumulation factors of PAEs in wheat grain, maize grain, and vegetables and fruit were 0.74-0.82, 0.28-0.90, and 0.24-1.65, respectively. The carcinogenic risk of child and adult caused by PAEs were 1.34×10-5and 3.87×10-5, respectively. The non-carcinogenic hazard index of PAHs for child and adult were 9.44×10-1and 3.83×10-1, respectively. All of them were lower than the threshold values. Dietary intake is the major route of human exposure, which accounts for 99.81%-99.96% of the total carcinogenic risk and 99.85%-99.95% of the total non-carcinogenic hazard index, respectively. The carcinogenic risk and non-carcinogenic hazard index caused by DEHP in this study were relative higher, which accounted for 99.91%-99.94% of the total carcinogenic risk and 84.15%-84.37% of the total non-carcinogenic hazard index,respectively.

soil; pollution; risk assessment; winter wheat; summer maize; vegetables; phthalate acid esters

10.11975/j.issn.1002-6819.2017.18.027

X171.5

A

1002-6819(2017)-18-0203-10

2017-05-03

2017-09-06

國家自然科學基金項目、國家科技支撐項目、國家重點研發計劃、北京市自然基金(編號51339007、2012BAD08B00、2016YFC0403105、15J00013)

李 艷,博士生,主要從事農業水肥高效利用機理和技術,以及再生水高效安全利用研究。Email:liyan7986@126.com

劉洪祿,博士,教授級高級工程師,主要從事再生水灌溉、農業節水方向的研究。Email:liuhonglu@yeah.net

猜你喜歡
研究
FMS與YBT相關性的實證研究
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
關于遼朝“一國兩制”研究的回顧與思考
EMA伺服控制系統研究
基于聲、光、磁、觸摸多功能控制的研究
電子制作(2018年11期)2018-08-04 03:26:04
新版C-NCAP側面碰撞假人損傷研究
關于反傾銷會計研究的思考
焊接膜層脫落的攻關研究
電子制作(2017年23期)2017-02-02 07:17:19
主站蜘蛛池模板: 3344在线观看无码| 国产在线观看91精品亚瑟| 国产在线啪| 影音先锋丝袜制服| 亚洲精品无码专区在线观看| 国产在线自在拍91精品黑人| 日韩av无码DVD| 18禁色诱爆乳网站| 福利姬国产精品一区在线| 亚洲美女高潮久久久久久久| 国产成人久视频免费| 国产精品天干天干在线观看| 超碰aⅴ人人做人人爽欧美| 激情综合网激情综合| 国产在线拍偷自揄拍精品| 亚洲国产中文精品va在线播放| 爱爱影院18禁免费| 激情爆乳一区二区| 日本高清视频在线www色| 欧洲免费精品视频在线| 亚洲国产一成久久精品国产成人综合| 波多野结衣中文字幕一区| 91小视频在线播放| 免费看a级毛片| 国产黑人在线| 中文字幕在线欧美| 久久免费观看视频| 国产第二十一页| 日韩久久精品无码aV| 手机在线国产精品| 亚洲九九视频| 久久国产乱子伦视频无卡顿| 国产精品欧美在线观看| 97国产在线播放| 欧美午夜精品| 欧美劲爆第一页| 国产区在线看| 九九免费观看全部免费视频| 欧美日韩精品一区二区视频| 亚洲欧美成人在线视频| 人禽伦免费交视频网页播放| 强乱中文字幕在线播放不卡| 四虎影院国产| 久久美女精品| 色老头综合网| 色综合婷婷| 亚洲V日韩V无码一区二区| 亚洲AV无码精品无码久久蜜桃| 2020久久国产综合精品swag| 在线观看免费国产| 91久久青青草原精品国产| 久久久久久久久18禁秘| 亚洲日产2021三区在线| 欧美曰批视频免费播放免费| 久久精品嫩草研究院| 欧美国产日韩在线| 国产欧美在线| 国产成人无码综合亚洲日韩不卡| 国产精品无码久久久久AV| 日本三级精品| 成年人国产视频| 国产日韩丝袜一二三区| 国产精品jizz在线观看软件| 国产啪在线91| 中文字幕久久亚洲一区| 国产成人亚洲精品无码电影| 国产一区二区影院| 99这里只有精品在线| 国禁国产you女视频网站| 国产伦精品一区二区三区视频优播| 国产噜噜噜视频在线观看| 亚洲AV电影不卡在线观看| 97人妻精品专区久久久久| 99热线精品大全在线观看| 欧美国产日产一区二区| 欧美特黄一级大黄录像| 青青热久麻豆精品视频在线观看| 免费av一区二区三区在线| 日韩av高清无码一区二区三区| 亚洲经典在线中文字幕| 一级看片免费视频| 免费在线观看av|