999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Theoretical and Experimental Study on CTOD for Notch Plate Under Low Cycle Fatigue

2017-10-11 05:33:24XUGengYANRenjunYAOGuoquanDONGQin
船舶力學 2017年9期
關鍵詞:裂紋

XU Geng,YAN Ren-jun,YAO Guo-quan,DONG Qin

(a.Key Laboratory of High Performance Ship Technology;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

Theoretical and Experimental Study on CTOD for Notch Plate Under Low Cycle Fatigue

XU Genga,b,YAN Ren-juna,b,YAO Guo-quanb,DONG Qina,b

(a.Key Laboratory of High Performance Ship Technology;b.School of Transportation,Wuhan University of Technology,Wuhan 430063,China)

Abstract:This paper aims to study the crack tip opening displacement(CTOD)for notch plate under large scale yielding.An analytical model is presented to determine CTOD for notch plate based on the theory of elastic-plastic fracture mechanics.Moreover,an experimental campaign in high strength steel AH36,performed in the low cycle fatigue regime,was performed on specimens with pre-cracks.The effect of stress ratio,stress amplitude and mean stress on CTOD were investigated.

Key words:low cycle fatigue;CTOD;experimental study;high strength steel

0 Introduction

The fatigue strength of ship’s structure has very important significance on the safety and survivability.Along with the increasing in ship dimensions and more use of high-strength steel in recent years,the stress and deformation of ship structures are so high and large,which result in prominent problem demanding prompt solution in the development of large-scale ships.Crack tip opening displacement(CTOD)and J integral are the major parameters to describe the resistance to crack propagation of ductile structural materials[1].However,at the load controlled experiments the results show that J integral was unable to correlate the low cycle fatigue crack growth rates.Therefore,studying and establishing assessment methods of CTOD under cyclic loading are of great practical significance.

The CTOD is less frequently used but it holds a direct physical meaning and can be measured directly in an experiment together with the crack opening/closing level.Furthermore,CTOD can be determined numerically for applications.Jiang[2]analyzed CTOD of ship stiffened plate based on Dugdale model and found out the influence rule caused by external load,stiffness ratio and other factors.Finite element method[3-8]is one of the efficient ways in studying elastic-plastic fracture problems,thus it is widely used in various kinds of fracture assessments.It is used to study CTOD and other relative parameters through calculation of crack tip stress-field and displacement-field.The CTOD has in fatigue crack growth investigations often connected with a micro-mechanical examination of the striation spacing on the fracture sur-face.Neumann[9]and Kikukawa et al[10]made quantitative observations on fatigue crack growth rates in combination with CTOD.In 1984,Tanaka et al[11]put forward a thorough investigation on the crack tip displacement as a fatigue crack growth mechanism.Both load and displacement controlled fatigue experiments were conducted for three different materials.However,no direct proportionality was observed between the fatigue crack growth rate and CTOD.

The present work presents an analytical model to determine the crack tip opening displacement for notch plate subjected to cyclic loading.A series of experiments were conducted to study the effect of stress ratio,stress amplitude and mean stress on CTOD.

1 Theoretical analysis

Shih[12]proposed an equation between the cyclic crack tip opening displacement and cyclic J-integral for notch plate subjected to uniaxial loading:

In the viewpoint of Kumar et al[14]and Heitmann et al[15],△J can be attributed by the sum of an elastic(small scale yielding)and a plastic(large scale yielding)approximately.For I crack with crack length a in a flat specimen under plane stress,one obtains:

where△σ and△εpare the stress and plastic strain range respectively.Crack closure is taken into account by the use of the effective stress range △σeff=σmax-σopin the elastic part of△J.σmaxand σopare the maximum and crack opening stress,respectively.The crack opening stress σop,which can either be estimated with empirical formulas or taken from numerical calculations.Here,the crack opening stress equation by Newman[16]is used,then the crack opening stress is obtained as follows:

of the material is usually defined as the average value between the material yielding and ulti-mate strength for convenience.

2 Experimental investigation

2.1 Material and campaign overview

The steel employed for testing is AH36 steel.The steel AH36,is a high strength steel which is widely used in the ship and ocean engineering in China,was employed to the tests,where the basic mechanics properties of material are showed in Tab.1.Chemical composition(in%wt)of this material is:C 0.18,Si 0.43,Mn 1.4,P 0.02,S 0.013 and Nb 0.018.In order to study CTOD for notch plate under low cycle fatigue,three different loading conditions were considered:The first,keep the maximum stress unchanged and take different stress ratio,second,keep the stress amplitude unchanged and take different mean stress,and third,keep mean stress unchanged and take different stress amplitude.

Tab.1 The mechanics properties of AH36

2.2 Experimental setup

The fatigue crack growth experiments were made on 12 mm thick low cycle fatigue standard specimen(notch plate)with other dimensions shown in Fig.1.The total length L=360 mm,the total width W=50 mm,the radius of notch R=2.4 mm,the precrack length a=1 mm.In order to remove nucleation time from the experiments,before testing,all the specimens were precracked.

Fig.1 Geometry of test specimen

The fatigue crack growth experiments were performed in air and at room temperature by using a computer controlled servo-hydraulic test machine,MTS322 250 kN.The crack lengthwas simultaneously measured by using strain extensometer with a 10 mm gauge length,±1 mm range,and 0.01%extensometer strain control accuracy whose operating temperature ranges from-80℃ to 200℃,as shown in Fig.2.A uniaxial controlled load was used to control the total stress range and a tensile-compression loading with a triangular waveform was used to ensure that the strain rate remained constant in a loop beginning with the tensile load.A 0.5 Hz frequency was chosen based on other low cycle fatigue test results available in the literature.The specimens were tested in cyclic loading,considering the influence of stress ratio,stress amplitude and mean stress.Each test is performed to failure and an average of three measurements under each condition was taken.The real-time information such as time,load,crack tip opening displacement and extensometer strain were recorded.The loading conditions and experimental results of AH36 were summarized in Tab.2.An example of the appearance of the surface was shown in Fig.3.

Tab.2 The loading condition and experimental results of AH36

2.3 Experimental result and discussion

2.3.1 The effect of stress ratio on the CTOD

The stress controlled low cycle fatigue experiment with constant applied peak stress and various stress ratio was carried out under uniaxial cyclic loading.Keep the maximum stress unchanged and different stress ratio R=-1,0,0.1,0.2,it can be seen from Fig.4 that with the increasing of stress ratio,the CTOD is increasing.It is obvious that the stress ratio apparently influences the relationship between CTOD and fatigue life,i.e.,the CTOD rapidly increases with stress ratio at a constant maximum stress.Meanwhile,when the stress ratio is negative,in the initial cycle the CTOD is small,while the stress amplitude is large,so the trend of CTOD changes rapidly.

2.3.2 The effect of mean stress on the CTOD

In order to discuss the impact of mean stress on the CTOD,the stress controlled low cycle fatigue experiment with constant stress amplitude and various mean stress was carried outunder uniaxial cyclic loading.Keep the stress amplitude unchanged and different mean stress σm=10,20,30 MPa,the evolution result of CTOD is shown in Fig.5.Experimental results reveal that for the smaller mean stress applied in the test,the CTOD shows monotonically increasing with the increase of mean stress.The change of CTOD is small in the early cycle,while in the late fatigue life,the CTOD increases violently.

Fig.5 The crack tip opening displacement vs fatigue life for different mean stress

2.3.3 The effect of stress amplitude on the CTOD

In order to discuss the impact of stress amplitude on the CTOD,the stress controlled low cycle fatigue experiment with constant mean stress and various stress amplitude was carried out under uniaxial cyclic loading.Keep the mean stress unchanged and different stress amplitude σa=170,180,190,200 MPa,the evolution results of CTOD is shown in Fig.6.The experimental results show that with the increasing of stress amplitude,the CTOD exhibits monotonically increasing.Tab.2 shows that the stress amplitude has a significant effect on fatigue life under stress controlled cyclic loading,the fatigue life decreases with the increases of stress amplitude.

Fig.6 The crack tip opening displacement vs fatigue life for different stress amplitude

3 Conclusions

In the present work,an analytical model is presented to determine the CTOD for notch plate subjected to cyclic loading.Based on the experimental study of fatigue crack growth of AH36 steel,the following concluding remarks can be drawn:

(1)The study reveals that stress ratio,mean stress and stress amplitude have obvious influence on the relationship of CTOD vs fatigue life.The experimental results reveals that the increasing stress amplitude and mean stress shorten the fatigue life of the material significantly.

(2)The experimental results suggest that with the increasing of stress ratio,the CTOD is increasing while the fatigue life is decreasing.

[1]Hutchinson J W.Fundamentals of the phenomenological theory of nonlinear fracture mechanics[J].J Appl.Mech.,1982,49:103-197.

[2]Jiang Cuixiang.Research on fracture and crack arrest in ship structures[D].Wuhan:Huazhong University of Science and Technology,2005.

[3]Potirniehe G P,Daniewiez S R.Analysis of crack tip plasticity for microstructuralIy small cracks using crystal plasticity theory[J].Eng.Fraet.Meeh.,2003,70:1623-1643.

[4]Wu F W,Ibrahim R N,Das R,et al.Fracture toughness for CNT specimens from numerieally obtained critical CTOD values[J].Theor.Appl.Fract.Meeh.,2009,52:50-54.

[5]Chen Jingjie.Strength analysis method research of cracked ship structure[D].Dalian:Dalian University of Technology,2011.

[6]Chen Jingjie,Huang Yi.A study on evaluation method of crack tip reverse plastic zone size for the center cracked steel plate model under tension-compression cyclic loading[J].Engineering Fracture Mechanics,2015(133):138-151.

[7]Dong Qin,Yang Ping,Deng Junlin,Wang Dan.The theoretical and numerical research on CTOD for ship plate under cyclic loading considering accumulative plastic strain[J].Journal of Ship Mechanics,2015,19(12):1507-1516.

[8]Dong Qin,Yang Ping,Xu Geng,Deng Junlin.Mechanisms and modeling of low cycle fatigue crack propagation in a pressure vessel steel Q345[J].International Journal of Fatigue,2016,89:2-10.

[9]Neumann P.Coarse slip model of fatigue[J].Acta Metall,1969,17(9):1219-1225.

[10]Kikukawa M,Jono M,Adachi M.Direct observation and mechanisms of fatigue crack propagation[M].In:ASTM STP 675.American Society for Testing and Materials,1979:234-253.

[11]Tanaka K,Hoshide T,Sakai N.Mechanics of fatigue crack propagation by crack-tip plastic blunting[J].Engng Fract Mech,1984,19(5):805-825.

[12]Shih C F.Relationship between the J-integral and the crack opening displacement for stationary and extending cracks[J].Mech Phys Solids,1981,29(4):305-326.

[13]Shih C F.Tables of Hutchinson-Rice-Rosengren singular field quantities[R].Tech.rep.Brown University Report MRL E-147,1983.

[14]Kumar V,German M D,Shih C F.An engineering approach for elastic-plastic fracture analysis[R].Tech.rep.Report NP-1931 on Project 1237-1 for Electric Power Research Institute,Palo Alto,California,1983.

[15]Heitmann H H,Vehoff H,Neumann P.Advances in fracture research 84[M].In:Valluri SR,et al.,editor.Proc of ICF6,vol.5.Oxford and New York:Pergamon Press Ltd.,1984:3599-3606.

[16]Newman J C.A crack opening stress equation for fatigue crack growth[J].International Journal of Fatigue,1984,24:131-135.

低周疲勞下船體缺口板的裂紋尖端張口位移理論及試驗研究

徐 庚a,b, 嚴仁軍a,b, 姚國全b, 董 琴a,b
(武漢理工大學a.高性能船舶技術教育部重點實驗室;b.交通學院,武漢 430063)

文章旨在研究大范圍屈服下船體缺口板的裂紋尖端張口位移。基于彈塑性斷裂力學理論,建立了循環載荷下船體缺口板CTOD理論模型。進而,對于船用高強度鋼AH36進行低周疲勞試驗研究,對于影響裂紋尖端張口位移的參數,如應力比、應力幅和平均應力進行了深入探討。

低周疲勞;CTOD;試驗研究;高強度鋼

U661.4

A

國家自然科學基金資助(51479513);中央高校科研資助基金(2016-YB-014)

徐 庚(1988-),男,武漢理工大學交通學院博士研究生,E-mail:xugeng_1988@163.com;嚴仁軍(1962-),男,武漢理工大學交通學院教授,E-mail:renjun_yan@163.com;姚國全(1986-),男,武漢理工大學交通學院實驗研究員;董 琴(1988-),女,武漢理工大學交通學院博士研究生,E-mail:dongqin19881022@163.com。

10.3969/j.issn.1007-7294.2017.09.007

Article ID: 1007-7294(2017)09-1128-08

Received date:2017-02-25

Foundation item:Supported by the National Natural Science Foundation of China(Grant No.51479153);the Fundamental Research Funds for the Central Universities(Grant No.2016-YB-014)

Biography:XU Geng(1988-),male,doctoral student of Wuhan University of Technology,E-mail:xugeng_1988@163.com;YAN Ren-jun(1962-),male,professor/tutor of Wuhan University of Technology,E-mail:renjun_yan@163.com.

猜你喜歡
裂紋
基于擴展有限元的疲勞裂紋擴展分析
裂紋長度對焊接接頭裂紋擴展驅動力的影響
裂紋圓管彎曲承載能力研究
一種基于微帶天線的金屬表面裂紋的檢測
裂紋敏感性鋼鑄坯表面質量控制
山東冶金(2019年6期)2020-01-06 07:45:58
Epidermal growth factor receptor rs17337023 polymorphism in hypertensive gestational diabetic women: A pilot study
42CrMo托輥裂紋的堆焊修復
山東冶金(2019年3期)2019-07-10 00:54:06
心生裂紋
揚子江(2019年1期)2019-03-08 02:52:34
微裂紋區對主裂紋擴展的影響
A7NO1鋁合金退火處理后焊接接頭疲勞裂紋擴展特性
焊接(2015年2期)2015-07-18 11:02:38
主站蜘蛛池模板: 中文字幕第4页| 精品福利视频网| 国产精品久久久久久久伊一| 影音先锋丝袜制服| 久久这里只精品国产99热8| 波多野结衣一二三| 国产精品色婷婷在线观看| 日本高清成本人视频一区| 72种姿势欧美久久久久大黄蕉| 日韩av无码DVD| 成人噜噜噜视频在线观看| 呦视频在线一区二区三区| 欧美国产日韩在线播放| 高清欧美性猛交XXXX黑人猛交| 男女精品视频| 日韩第八页| 日韩欧美国产精品| 国产婬乱a一级毛片多女| 日本高清有码人妻| 9啪在线视频| 伊人精品成人久久综合| 国产成人综合亚洲欧美在| 国产精品第| 国产精品19p| 色视频久久| 无码在线激情片| a级毛片免费在线观看| 97色伦色在线综合视频| 中文字幕2区| 久久伊人色| 免费高清a毛片| 亚洲精选高清无码| 国产精品美女免费视频大全| 亚洲高清日韩heyzo| 欧美成人综合视频| 久久久久久久久18禁秘| 综合色亚洲| a级毛片在线免费| 高清无码不卡视频| 久久精品嫩草研究院| 久久国产高潮流白浆免费观看| 欧美激情伊人| 草草线在成年免费视频2| 亚洲精品第五页| аⅴ资源中文在线天堂| 中文字幕日韩视频欧美一区| 99热这里只有免费国产精品 | 欧美一级黄色影院| 国产区人妖精品人妖精品视频| 国产白浆在线观看| 国产91视频观看| 久久亚洲国产最新网站| 高清不卡毛片| 韩国v欧美v亚洲v日本v| 综合亚洲网| 久久永久视频| 久久精品这里只有国产中文精品| 好久久免费视频高清| 伊人久久精品亚洲午夜| 中文一级毛片| 精品伊人久久久香线蕉| 四虎亚洲精品| 国产一级在线观看www色 | 久久精品丝袜| 国产性生大片免费观看性欧美| 欧美亚洲欧美区| 国产裸舞福利在线视频合集| 国产精品99久久久久久董美香| 一本大道视频精品人妻| 日韩欧美亚洲国产成人综合| 欧洲亚洲欧美国产日本高清| 日本久久网站| 国产玖玖视频| 欧美精品成人一区二区视频一| 无码高潮喷水在线观看| 亚洲欧美一区二区三区麻豆| 巨熟乳波霸若妻中文观看免费| 欧美激情福利| 欧美精品H在线播放| 亚洲欧洲日产国码无码av喷潮| 日韩av无码精品专区| 超碰免费91|