999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

Relation between Cartesian product andadjacent vertex distinguishing coloring

2017-10-10 01:02:23WANGGuoxing
浙江大學學報(理學版) 2017年5期
關鍵詞:施工

WANG Guoxing

(1. Gansu Business Development Research Center, Lanzhou University of Finance and Economics, Lanzhou 730020, China;2. College of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China)

Relation between Cartesian product andadjacent vertex distinguishing coloring

WANG Guoxing1,2

(1. Gansu Business Development Research Center, Lanzhou University of Finance and Economics, Lanzhou 730020, China;2. College of Information Engineering, Lanzhou University of Finance and Economics, Lanzhou 730020, China)

Cartesian product; proper edge coloring; proper total coloring; adjacent vertex distinguishing proper edge coloring; adjacent vertex distinguishing total coloring

0 Introduction

The graph coloring has a widely applications in many subject. We only consider simple, finite and undirected graph in this paper.

The adjacent vertex distinguishing proper edge coloring of graphs is investigated in several papers[1-6]. The adjacent vertex distinguishing total coloring of graphs is proposed in [7] and studied in several papers[7-16]. Especially, the adjacent vertex distinguishing total chromatic number ofPmKnis obtained in [11] and the adjacent vertex distinguishing total chromatic numbers of the Cartesian products ofPmwithPnandCn, and the Cartesian product ofCmwithCnare given in [13]. We use the usual notation as can be found in any book on graph theory[17].

1 Preliminaries

Lemma2[18]χ″=(Cm□Cn)=5(m,n≥3).

From lemma 2, we can obtain the following lemma 3 immediately since anr-regular graphGhas (equitable) total chromatic numberr+1 if and only ifGhas adjacent vertex distinguishing proper edge chromatic numberr+1.

SupposeGis a graph. If a bijectionσfromV(G) toV(G) preserves the adjacency relation, i.e.,σ(u) is adjacent toσ(v) if and only ifuis adjacent tovfor any two distinct verticesuandvofG, thenσis called an automorphism of graphG.

IfGhas an automorphismσ, such that for any vertexv∈V(G),vandσ(v) are adjacent (and thenv≠σ(v)), then we say that graphGis of property (P).

The Cartesian product of two graphsGandH, denoted byG□H, is a graph with vertex setV(G)×V(H) and edge set {(u,v)(u′,v′)|uu′∈E(G),v=v′oru=u′,vv′∈E(H)}.

LetQtdenotet-cube, i.e.,

For two types of adjacent vertex distinguishing colorings of the Cartesian product of a graph with another graph which is of property (P), we will give some important results in section 2 and section 3.

2 The relation between AVDPEC andCartesian product of two graphs

Theorem1SupposeGis a graph without isolated edge andGhas property (P),tis a positive integer.

Theorem 1 (i) follows.

(ii) Since for any positive integerl,G□Qlis of property (P) whenGis of property (P), we can obtain (ii) by applying (i) repeatedly .

(iv) We can obtain (iv) by using (iii) repeatedly.

Fig.1 AVDPEC of Q3

Lemma5For any graphG,G□K2has property (P).

From theorem 1 and lemma 5, we may obtain the following corollary 1.

Corollary1For any graphGwith no isolated edge and integert(≥1), we have

Note that for any graphGand integer numberr(≥3),G□Crhas property (P), so we have the following corollary 2 by theorem 1.

Theorem2Suppose that graphGhas property (P) and has no isolated edge,r(≥4) is an even integer.

We will give an edge coloring ofG□Crusings+2 colors as follows:

(4) 受注漿施工影響,隧道管片的水平位移和道床沉降在施工前期增長較快,后期增長緩慢;水平收斂和豎直收斂在施工前期增長較慢,而后期增長較快。

From theorem 2, we will obtain the following corollary 3 immediately.

Corollary3Suppose thatGis of property (P) and has no isolated edge,r1,r2,…,rsare even integers at least 4.

ProofSimilar to the proof of theorem 2(i), we can complete the proof of theorem 3.

3 The relation between AVDTC andCartesian product of two graphs

Theorem4SupposeGis of property (P), andtis a positive integer.

The theorem 4(i) follows.

(ii) Since for any positive integerl,G□Qlis of property (P) whenGis of property (P), we can obtain theorem 4(ii) by applying theorem 4(i) repeatedly.

(iv) We can obtain theorem 4(iv) by using theorem 4(iii) repeatedly.

From theorem 4 and thatG□K2is of property (P), we obtain the following corollary 5.

Corollary5Supposet(≥2) is an integer.

From theorem 4 and thatG□Cris of property (P), we obtain the following corollary 6.

Theorem5Suppose thatGis of property (P),r(≥4) is even.

ProofSimilar to the proof of theorem 2, we can complete the proof of theorem 5. The process is easy, so we omitted it.

By generalizing theorem 5, we have

Corollary7SupposeGis of property (P) andr1,r2,…,rs(≥4) are even.

From lemma 4, theorem 4(iv) and corollary 7(ii), we may deduce the following corollary 8.

Corollary8Ifm≥3,n≥3,t≥1,r1,r2,…,rs(≥4) are even, then

ProofSimilar to the proof of theorem 5(i) or theorem 2(i), we can complete the proof of theorem 6.

[1]BALISTERPN,GY?RIE,LEHELJ,etal.Adjacentvertexdistinguishingedge-colorings[J].SIAMJDiscreteMath,2007,21(1):237-250.

[2] BARIL J L, KHEDDOUCI H, TOGNI O. Adjacent vertex distinguishing edge colorings of meshes[J].AustralasianJournalofCombinatorics,2006,35:89-102.

[4] HATAMI H. Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number[J].JournalofCombinatorialTheory:SeriesB,2005,95:246-256.

[6] ZHANG Z F, LIU L Z, WANG J F. Adjacent strong edge coloring of graphs[J].ApplMathLett,2002,15:623-626.

[7] ZANG Z F, CHEN X E, LI J W, et al. On adjacent vertex distinguishing total coloring of graphs[J].ScienceinChina(SerA):Mathematics,2005,48(3):289-299.

[8] CHEN X E. Adjacent-vertex-distinguishing total chromatic numbers onK2n+1-E(P3)[J].InternationalJournalofPureandAppliedMathematics,2004,13(1):21-29.

[9] CHEN X E. On the adjacent vertex distinguishing total coloring numbers of graphs with Δ=3[J].DiscreteMathematics,2008,308:4003-4007.

[10] CHEN X E, ZHANG Z F. AVDTC numbers of generalized Halin graphs with maximum degree at least 6[J].ActaMathematicaeApplicataeSinica:EnglishSeries,2008,24(1):55-58.

[11] CHEN X E, ZHANG Z F. Adjacent-vertex-distinguishing total chromatic numbers ofPm×Kn[J].JMathematicalResearchandExposition,2006,26(3):489-494.

[12] CHEN X E, ZHANG Z F, SUN Y R. Adjacent-vertex-distinguishing total chromatic numbers on monocycle graphs and the square of cycles[J].InternationalJournalofPureandAppliedMathematics,2005,18(4):481-491.

[13] CHEN X E, ZHANG Z F, SUN Y R. A note on adjacent-vertex-distinguishing total chromatic numbers forPm×Pn,Pm×CnandCm×Cn[J].JMathematicalResearchandExposition,2008,28(4):789-798.

[14] HULGAN J. Concise proofs for adjacent vertex distinguishing total colorings[J].DiscreteMathematics,2009,309:2548-2550.

[15] SUN Y L, SUN L. The (adjacent) vertex-distinguishing total coloring of the Mycielski graphs and the Cartesian product graphs[C]//7-thChina-JapanConference,DiscreteGeometry,CombinatoricsandGraphTheory. Heidelberg: Springer-Verlag,2007:200-205.

[16] WANG H Y. On the adjacent vertex distinguishing total chromatic numbers of graphs with Δ=3[J].JCombOptim,2007,14:87-109.

[17] BONDY J A, MURTY U S R.GraphTheorywithApplications[M]. New York: Elsevier Science Publishing Co. Inc.,1976.

[18] TONG C L, LIN X H, YANG Y S, et al. Equitable total coloring ofCmCn[J].DiscreteAppliedMathematics,2009,157:596-601.

王國興1,2

(1.蘭州財經大學 甘肅商務發展研究中心,甘肅 蘭州 730020;2.蘭州財經大學 信息工程學院, 甘肅 蘭州 730020)

Cartesian積;正常邊染色;正常全染色;鄰點可區別邊染色;鄰點可區別全染色

O 157.5

:A

:1008-9497(2017)05-520-06

date:Dec.26, 2016.

Supported by the National Natural Science Foundation of China (61662066), Gansu Business Development Research Center Project of Lanzhou University of Finance and Economics(JYYY201506) and Key Science and Research Project of Lanzhou University of Finance and Economics(LZ201302).

Abouttheauthor:WANG Guoxing(1976-),ORCID:http://orcid.org/0000-0001-6582-650X, male, master, associate professor, the field of interest are the graph theory and its applications,E-mail: wanggx@lzufe.edu.cn.

10.3785/j.issn.1008-9497.2017.05.004

Cartesian積與鄰點可區別著色之間的關系.浙江大學學報(理學版),2017,44(5):520-525

猜你喜歡
施工
后澆帶施工技術在房建施工中的運用
鋁模板在高層建筑施工中的應用
后澆帶施工技術在房建施工中的踐行探索
新型環保建筑材料在土木工程施工中的應用
防滲漏技術在民用建筑施工中的應用
后澆帶施工技術在房建施工中的應用
后澆帶施工技術在房建施工中的應用
土木工程施工技術創新探討
防滲漏施工技術在房建施工中的應用
上海建材(2017年4期)2017-10-16 01:33:34
土木工程施工實習的探討與實踐
主站蜘蛛池模板: 青青操视频在线| 最新国产精品第1页| 亚洲人成网站日本片| 天天躁夜夜躁狠狠躁图片| 99热这里只有精品在线观看| 国产无码精品在线播放| 五月激情婷婷综合| 亚洲91在线精品| 国产91小视频在线观看| 国产极品美女在线| 免费无遮挡AV| 国产精品一区在线观看你懂的| 亚洲—日韩aV在线| 午夜精品久久久久久久99热下载| 欧美日韩国产在线人| 亚洲精品无码久久久久苍井空| 日韩在线播放中文字幕| 国产91麻豆免费观看| 国产va欧美va在线观看| 99精品久久精品| 亚洲中文字幕无码爆乳| 久久情精品国产品免费| 婷婷亚洲视频| 国产免费人成视频网| 一本一道波多野结衣一区二区 | 亚洲天堂自拍| 国产精品短篇二区| 欧美亚洲欧美区| 亚洲日韩在线满18点击进入| 国产亚洲视频中文字幕视频| 欧美激情,国产精品| 亚欧美国产综合| 香蕉eeww99国产在线观看| 国产剧情一区二区| 国产全黄a一级毛片| 亚洲一区毛片| 2022精品国偷自产免费观看| 久操线在视频在线观看| 免费在线a视频| 亚洲区第一页| 亚洲欧洲国产成人综合不卡| 激情乱人伦| 色综合色国产热无码一| 日韩AV无码一区| 久久a毛片| 香蕉久人久人青草青草| 亚洲国产天堂久久综合226114| 青草视频久久| 国产毛片片精品天天看视频| 精品综合久久久久久97超人该| 日韩大乳视频中文字幕| 五月天久久综合| 中文字幕调教一区二区视频| 正在播放久久| 黄色在线网| 欧美国产中文| 国产成人综合日韩精品无码首页| 亚洲天堂免费在线视频| 国产成人麻豆精品| 国产av剧情无码精品色午夜| 欧美成人精品在线| 黄色一及毛片| 色呦呦手机在线精品| 91九色国产在线| 欧美不卡在线视频| 日韩高清一区 | 综合五月天网| 99er精品视频| 无码乱人伦一区二区亚洲一| 无码免费视频| 国内黄色精品| 国产高清不卡视频| 在线精品欧美日韩| 亚洲天堂久久久| www.91在线播放| 日韩欧美国产精品| 欧洲av毛片| 在线视频亚洲欧美| 国产成人一级| 亚洲无码在线午夜电影| 亚洲精品午夜天堂网页| 亚洲va在线观看|