999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

The number of solutions of generalized Markoff-Hurwitz-type equations over finite fields

2017-10-10 01:02:00HUShuangnianLIYanyan
浙江大學學報(理學版) 2017年5期
關鍵詞:數學

HU Shuangnian, LI Yanyan

(1. School of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China;2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China; 3. School of Electronicand Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China)

The number of solutions of generalized Markoff-Hurwitz-type equations over finite fields

HU Shuangnian1,2, LI Yanyan3

(1. School of Mathematics and Statistics, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China;2. School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001, China; 3. School of Electronicand Electrical Engineering, Nanyang Institute of Technology, Nanyang 473004, Henan Province, China)

finite field; rational point; Markoff-Hurwitz-type equations

0 Introduction and the main result

Markoff-Hurwitz-type equations are the following type of the Diophantine equation:

wheren,care positive integers andn≥3. This type of equations were firstly studied by MARKOFF[1]for the casen=3,c=3 because of its relation to Diophantine approximation. More generally, these equations were studied by HURWITZ[2].

Recently, BAOULINA[5-7]studied the generalized Markoff-Hurwitz-type equation:

(1)

In this paper, we consider the rational points of the further generalized Markoff-Hurwitz-type equations of the form

(2)

Nq=qt-1+(-1)n-1(q-1)t-n.

Clearly,Nqis independent of the coefficientsai,cand the exponentskn+1,…,kt. Lettingt=n, then theorem 1 reduces to the theorem of PAN et al[8]. Theorem 1 also generalizes the main results of [10] in some other cases.

This paper is organized as follows. In section 1, we recall some useful known lemmas. In section 2, we make use of the results presented in section 1 to show theorem 1. Some interesting applications of theorem 1 will be provided as corollaries at the end.

1 Preliminary lemmas

In this section, we present some useful lemmas which are needed in section 2. Letmbe a positive integer andh(x1,x2,…,xr) be a polynomial with integer coefficients. We useN[h≡0(modm)] to denote the number of the solutions of the congruenceh(x1,x2,…,xr)≡(modm). We first recall two well known results in the elementary number theory.

Lemma1[13]Leta,bbe positive integers. Then

gcd(a,b)lcm[a,b]=ab.

Nq[a(x1x2…xr)d=α].

Since lemma 2 tells us that

Then the desired result follows immediately. This ends the proof of lemma 2.

The following result comes from PAN et al[8].

Nq[a1x1m1+a2x2m2+…+anxnmn=cx1k1x2k2…xnkn]=

qn-1+(-1)n-1.

2 Proof of theorem 1

In this section, we give the proof of theorem 1.

ProofFirstly, we claim that the condition of lemma 5 is equivalent to the conditions of theorem 1. That is, the condition

is equivalent to the following two conditions:

are pairwise coprime. Since

thus we can deduce that the condition

(3)

qt-n-(q-1)t-n.

(4)

Using the assumptiond1,d2,…,dnare pairwise coprime, it follows from (4) and lemma 4 that

(qt-n-(q-1)t-n)×

qn-1(qt-n-(q-1)t-n)=

qt-1-qn-1(q-1)t-n.

(5)

d(q-1)t-n-1×

(6)

Then, it follows from lemma 6 that

(7)

Using (6) and (7), one can derive that

(8)The desired result can follow immediately from (3),(5) and (8). This ends the proof of theorem 1.

In concluding this section, we present some trivial corollaries.

Corollary1For the further generalized Markoff-Hurwitz-type equations of the form

Nq=qt-1+(-1)n-1(q-1)t-n.

Corollary2For the further generalized Markoff-Hurwitz-type equations of the form

(a1x1m1+a2x2m2+…+anxnmn)k=cx1m1x2m2…xtmt

Nq=qt-1+(-1)n-1(q-1)t-n.

Corollary3For the further generalized Markoff-Hurwitz-type equations of the form

Nq=qt-1+(-1)n-1(q-1)t-n.

Clearly, corollaries 1~3 are some special cases of theorem 1. For example, consider the further generalized Markoff-Hurwitz-type equation over

(8)

[1]MARKOFFAA.Surlesformesquadratiquesbinairesindéfinies[J].MathematischeAnnalen,1880,17(3):379-399.

[2] HURWITZ A. über eine aufgabe der unbestimmten analysis[J].ArchivderMathematikundPhysik,1907(3):185-196.

[3] CARLITZ L. Certain special equations in a finite field[J].MonatshefteFürMathematik,1954,58(1):5-12.

[4] CARLITZ L. The number of solutions of some equations in a finite field[J].PortugaliaeMathematica,1954,13(1):25-31.

[6] BAOULINA I. Generalizations of the Markoff-Hurwitz equations over finite fields [J].JournalofNumberTheory,2006,118(1):31-52.

[8] PAN X L, ZHAO X R, CAO W. A problem of Carlitz and its generalizations[J].ArchivderMathematik,2014,102(4):337-343.

[9] CAO W. On generalized Markoff-Hurwitz-type equations over finite fields [J].ActaApplicandaeMathematicae,2010,112(3):275-281.

[10] SONG J, CHEN F Y. The number of some equations over finite fields[J].JournalofUniversityofChineseAcademyofSciences,2015,32(5):582-587.

[11] CAO W, SUN Q. On a class of equations with special degrees over finite fields [J].ActaArithmetica,2007,130(2):195-202.

[12] ZHAO Z J, CAO X W. On the number of solutions of certain equations over finite fields [J].JournalofMathematicalResearchandExposition,2010,30(6):957-966.

[13] KENG H L.IntroductiontoNumberTheory[M]. Heidelberg: Springer-Verlag,1982.

[14] BAOULINA I. Solutions of equations over finite fields: Enumeration via bijections [J].JournalofAlgebraandItsApplications,2016,15(7):1650136.

[15] LIDL R, NIEDERREITER H.FiniteFields-EncyclopediaofMathematicsandItsApplications[M]. 2nd ed. Cambridge: Cambridge University Press,1997.

胡雙年1,2, 李艷艷3

(1. 南陽理工學院 數學與統(tǒng)計學院,河南 南陽 473004; 2. 鄭州大學 數學與統(tǒng)計學院, 河南 鄭州 450001; 3. 南陽理工學院 電子與電氣工程學院, 河南 南陽 473004)

有限域;有理點;Markoff-Hurwitz-type方程

O 156.1

:A

:1008-9497(2017)05-516-04

date:Nov.7, 2016.

Supported by the Key Program of Universities of Henan Province of China (17A110010), China Postdoctoral Science Foundation Funded Project (2016M602251) and by the National Science Foundation of China Grant (11501387).

Abouttheauthor:HU Shuangnian (1982-),ORCID:http://orcid.org/0000-0002-5174-8460,male, Ph.D, lecturer, the field of interest is number theory, E-mail:hushuangnian@163.com.

10.3785/j.issn.1008-9497.2017.05.003

有限域上廣義Markoff-Hurwitz-type方程的有理點個數.浙江大學學報(理學版),2017,44(5):516-519,537

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 国产成人在线小视频| 中文字幕无码制服中字| 国产高清在线丝袜精品一区| 国产欧美专区在线观看| 久操线在视频在线观看| AV片亚洲国产男人的天堂| 性视频久久| 国产精品九九视频| 国产在线91在线电影| 国产成人艳妇AA视频在线| 国产亚洲成AⅤ人片在线观看| 在线免费亚洲无码视频| 在线无码九区| 亚洲无码四虎黄色网站| 97se亚洲综合在线| 欧美国产日产一区二区| 午夜毛片免费观看视频 | 呦系列视频一区二区三区| 久久久久亚洲精品无码网站| 亚洲第一综合天堂另类专| 久久婷婷人人澡人人爱91| 91在线丝袜| 18禁色诱爆乳网站| 97国产精品视频自在拍| 精品久久蜜桃| 爱做久久久久久| 日本五区在线不卡精品| 免费人成在线观看成人片| 九色在线视频导航91| 国产区人妖精品人妖精品视频| 免费国产高清精品一区在线| 国产对白刺激真实精品91| 国产资源免费观看| 六月婷婷激情综合| 国产精品漂亮美女在线观看| 99在线观看精品视频| 国产一级毛片yw| 欧美成人怡春院在线激情| 日韩最新中文字幕| 精品国产毛片| 国产一级裸网站| 欧美成人精品在线| 国产在线98福利播放视频免费| 日韩国产黄色网站| 99在线视频精品| 午夜激情福利视频| 91福利在线看| 国产97区一区二区三区无码| 大学生久久香蕉国产线观看| 国产欧美日韩18| 99久久免费精品特色大片| 第九色区aⅴ天堂久久香| 色天天综合| av一区二区三区高清久久| 国产精品美乳| 国产成人在线无码免费视频| WWW丫丫国产成人精品| 亚洲天堂啪啪| 波多野结衣无码中文字幕在线观看一区二区| 久久人午夜亚洲精品无码区| 另类专区亚洲| 在线免费亚洲无码视频| 亚洲综合色婷婷中文字幕| 这里只有精品在线| 波多野结衣在线se| 中文字幕在线免费看| 亚洲高清无在码在线无弹窗| 欧美色亚洲| 亚洲天堂日本| 久久窝窝国产精品午夜看片| 国产玖玖玖精品视频| 欧美成人精品高清在线下载| 国产网站免费| 欧美不卡在线视频| 亚洲日本中文字幕天堂网| 国产精品极品美女自在线网站| 亚洲黄色成人| 99精品免费在线| 91破解版在线亚洲| 日韩欧美国产三级| 自拍欧美亚洲| 中文字幕乱码二三区免费|