999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

An eigenvalue inequality of a class of matrices and its applications in proving the Fischer inequality

2017-10-10 01:01:45ZHANGHuaminYINHongcai
浙江大學學報(理學版) 2017年5期
關鍵詞:研究

ZHANG Huamin, YIN Hongcai

(1.Department of Mathematics & Physics, Bengbu University, Bengbu 233030,Anhui Province, China;2.School of Management Science and Engineering, Anhui University of Finance & Economics,Bengbu 233000, Anhui Province, China)

An eigenvalue inequality of a class of matrices and its applications in proving the Fischer inequality

ZHANG Huamin1, YIN Hongcai2

(1.Department of Mathematics & Physics, Bengbu University, Bengbu 233030,Anhui Province, China;2.School of Management Science and Engineering, Anhui University of Finance & Economics,Bengbu 233000, Anhui Province, China)

The Hadamard inequality and Fischer inequality play an important role in the matrix study. Many articles have addressed these inequalities providing new proofs, noteworthy extensions, generalizations, refinements, counterparts and applications. This paper discusses the eigenvalues of a class of matrices related to the real symmetric positive definite matrix and establishes an inequality of the eigenvalues. By using this inequality, the Fischer determinant inequality and Hadamard determinant inequality are proved.

positive definite matrix; eigenvalue; eigenvector; determinant inequality

1 Introduction and preliminaries

Inequality is an active research topic in recent years,the classical convexity has been generalized and extended in a diverse manner.One of them is the pre-invexity,introduced by WEIR et al[1]as a significant generalization of convex functions.Many researchers have studied the basic properties of the pre-invex functions and their role in optimization,variational inequalities and equilibrium problems[2-4].

Hadamard and Fischer inequalities are prima-ry inequalities for the real symmetric positive def-inite matrix, and there are many inequalities can be proved by using these two inequalities.There are many methods to prove these inequalities[5-7].Some results have been established inspired by the Hadamard inequality[8-9].

The real symmetric positive definite matrix has many properties and has been used in many ar-eas[10-12].Some properties can be used to prove the Hadamard inequality.In this note,inspired by the results established in[13-14],a new eigenvalue inequality related to the real symmetric positive definite matrix is proposed, and the Hadamard and Fischer inequality are proved by using this new inequality.

Firstly, let us introduce some notations and lemmas.Inis the identity matrix with ordern×n.For a square matrixA,we use λ[A],det(A) andATrepresent the set of the eigenvalues,the deter-minant and the transpose ofA,respectively.

Next,we introduce two lemmas.The following result about the block matrix determinant is well known[10].

Lemma1If matrixAis invertible,then for any block matrix,we have

(1)

or if marixDis invertible,then we have

(2)

Lemma2IfA∈Rm×nis a full column-rank matrix,theA(ATA)-1ATis idempotent and the eigenvalues ofA(ATA)1ATare 1 or 0, there exists an orthogonal matrixQsuch that

Q[A(ATA)-1AT]Q=diag[1,…,1,0,…,0]=∶Λ.

Furthermore,we have rank [A]=n.

This lemma was suggested in[14],for convenience,we give the proof here.

ProofIf σ∈λ[A(ATA)1AT],then there exists a nonzero vectorx∈Rm, satisfying

A(ATA)1ATx=σx.

Thus,we have

[A(ATA)-1ATx]T[A(ATA)-1ATx]=(σx)T(σx),
xT[A(ATA)-1AT][A(ATA)1AT]x=σ2‖x‖2,
xT[A(ATA)-1ATA(ATA)1AT]x=σ2‖x‖2,
xT[A(ATA)1AT]x=σ-2‖x‖2,
xTσx=2‖x‖2,
σ‖x‖2=σ2‖x‖2.

Since‖x‖2≠0,A(ATA)-1AThas eigenvaluesσ=0 orσ=1.Because of the symmetry ofA(ATA)-1AT,there exists a real orthogonal matrixQ:=[q1,q2,…,qm]∈Rm×msuch that

QT[A(ATA)-1AT]Q= diag[1,…,1,0,…,0]=Λ.

On the other hand,since (ATA)-1ATis the left pseudo-inverse ofA,we have

rank[A]=rank[QT[A(ATA)-1AT]Q]=
rank[A(ATA)-1AT]=rank[A]=n.

This proves lemma 2.

2 An inequality of a class of matrices

In this section,we will establish a new property about the eigenvalues related to the symmetric positive definite matrix.IfA∈Rn×nis a symmetric positive definite matrix,then there exists an invertible matrixBsuch thatA=BBT.Suppose thatBcan be expressed as a block matrix

Set

With these symbols,the following result holds.

Theorem1If the eigenvalues of the matrixN-1Aareδ1,δ2,…,δn,then 0<δ1δ2…δn≤1.

ProofLetf(λ)∶=det(λIn-N-1A)be the characteristic polynomial of matrixN-1A,we have

f(λ)=

(3)

We verify that 2 not belongs to the eigenvalues of the matrixN-1A.If 2 is the eigenvalue of the matrixN-1A,then

On the other hand,

f(2)=

This is a contradiction,so 2 is not a eigenvalue of the matrixN-1A.

According to lemma 1,suppose thatm≥p,equation (3) can be manipulated as

det((λ-1)Im)det((λ-1)Ip-(λ-1)-1Ip×

(4)

[q1,q2,…,qn]diag[1,…,1,0,…,0]=

[q1,q2,…,qm,0,0,…,0],

(5)

(6)

(7)

(k1q2+k2q2+…+knqn)=

(8)

(k1q1+k2q2+…+knqn)=

k1q1+k2q2+…+kmqm.

(9)

The both side of equation (6) multiply byTgives

=.

(10)

According to equations(7) and (9),the left-side of equation (10) can be rewritten as

(k1q1+k2q2+…+knqn)T×

(k1q1+k2q2+…+kmqm)=

(11)

Combining equations(10)(8)and(11)gives

Hence,we have

(12)

(13)

whereRis strictly upper triangular.Substituting equation(13)into equation(4)and simplifying it, give

From this equation,we can see that the eigenvalues ofN-1Aare

1+ρ1,1-ρ1,…,1+ρp,1-ρp,1,…,1.

(14)

From this equation,we have

0≤δ1δ2…δn=

(1+ρ1)(1-ρ1)…(1+ρp)(1-ρp)=

(15)

Since 2 is not the eigenvalue of the matrixN-1A,an improvement of inequality (12) is 0≤ρ<1.

Correspondingly,inequality (15) can be im-proved as

0≤δ1δ2…δn=

(1+ρ1)(1-ρ1)…(1+ρp)(1-ρp)=

The proof is completed.

Remark1The above proof shows that the sup-positionm≥pis not essential.In fact,ifm

f(λ)=

det((λ-1)Ip)det((λ-1)Im-(λ-1)-1×

This manipulation does not change the subsequent proof.

3 New proof of the Fischer inequality

In this section,we will use the results in theo-rem 1 to prove two determinant inequalities related to the symmetric positive definite matrix,that is,the Fischer inequality and the Hadamard inequali-ty.

Theorem2Considering the following symmetric positive definite block matrix

here Mii,i=1,2,…,k,are the definite submatri-ces,then

det(M)≤det(M11)det(M22)…det(Mkk).

det(N-1M)≤det(N-1)det(M)=δ1δ2…δn≤1.

That is,

det(M)≤det(N)=det(M11)det(M22).

Fork>2,using this manipulation successively gives

det(M)≤det(M11)det(M22)…det(Mkk).

The proof is completed.

It is clear that Hadamard inequality is the spe-cial case of Fischer inequality whenk=n,so the following inequality holds.

Theorem3IfM=(mij) ∈Rn×nis a symmetric positive definite matrix,then

det(M)≤m11m22…mnn.

4 Conclusions and future work

The eigenvalues of a class of matrices related to the real symmetric positive definite matrix are discussed in this paper, and an inequality about the eigenvalues is established.Using this result,the Fischer inequality and the Hadamard inequality of the positive definite matrix are proved.

SandTdenote the subsets of set W:= {1,2,…,n}and S and T satisfy S ∪T=W.cd(S) denotes the cardinality of set S.Screpresents the complementary set of S.MSdenotes the principal submatrix determined by set S.

Consider the following of the Koteljanskii,Fan and Szasz inequalities[15],

j=1,2,…,n-1,

[1]WEIRT.Pre-invexfunctionsinmultiobjectiveoptimization[J].JournalofMathematicalAnalysisandApplications,1998,136(1): 29-38.

[2] MOHAN S R,NEOGY S K.On invex sets and pre-invex functions[J].JournalofMathematicalAnalysisandApplications,1995,189(3): 901-908.

[3] NOOR M A.Variational-like inequalities[J].Optimization,1994,30(4): 323-330.

[4] YANG X M,LI D.On properties of pre-invex functions[J].JournalofMathematicalAnalysisandApplications,2001,256(1): 229-241.

[5] WANG S G,WU M X,JIA Z Z.TheMatrixInequalities[M].2nd ed. Beijing: Science Press,2006.

[6] BELLMAN R.IntroductiontoMatrixAnalysis[M].NewYork: Mcgraw-Hill Book Company,1970.

[7] ZENG C N,XU W X,ZHOU J Z.Several notes on Hadamard theorem[J].JournalofMath,2010,30(1): 152-156.

[8] ZHANG X D,YANG S J.A note on Hadamard’s inequality[J].ActaMathematicaeApplicataeSinca,1997,20(2): 269-274.

[9] LI X Y,LENG G S.Inverse forms of Hadamard inequality and Szasz inequality[J].JournalofNaturalScienceofHunanNormalUniversity,2007,30(2): 19-21.

[10] ZHANG X D.MatrixAnalysisandApplications[M].Beijing: Tsinghua University Press,2004.

[11] HORN R A,JOHNSON C R.MatrixAnalysis[M].Cambridge: Cambridge University Press,1985.

[12] GOLUB G H,VAN LOAN C F.MatrixComputations[M].3rd ed.Baltimore,MD: Johns Hopkins University Press,1996.

[13] YIN H C,ZHANG H M.Eigenvalues of a class of matrices related to the positive definite matrices[J].JournalofZhejiangUniversity:ScienceEdition,2014,41(1): 1-5.

[14] ZHANG H M,DING F.A property of the eigenvalues of the symmetric positive definite matrix and the iterative algorithm for coupled Sylvester matrix equations[J].JournaloftheFranklinInstitute,2014,351(1): 340-357.

[15] GOVER E,KRIKORIAN N.Determinants and the volumes of parallelotopes and zonotopes[J].LinearAlgebraandItsApplications,2010,433(1): 28-40.

張華民1,殷紅彩2

( 1.蚌埠學院 數理系,安徽 蚌埠 233030; 2.安徽財經大學 管理科學和工程學院,安徽 蚌埠 233000)

Hadamard和Fischer不等式在矩陣研究中起重要作用.已有大量文獻研究此兩不等式的新證明、 推廣、 細化及應用.本文研究了和實對稱正定矩陣相關的一類矩陣的特征值,并建立了關于這類矩陣特征值乘積范圍的一個不等式,利用此不等式證明了行列式的Fischer和Hadamard不等式.

正定矩陣;特征值;特征向量;行列式不等式

O 151.2

:A

:1008-9497(2017)05-511-05

date:Feb.4,2016.

Supported by Natural Science Foundation of Anhui Provincial Education Department (KJ2016A458) and Excellent Personnel Domestic Visiting Project (gxfxZD2016274).

Abouttheauthor:ZHANG Huamin (1972-),ORCID:http://orcid.org/0000-0002-7416-7415,male,doctor,associate professor,the field of interest are matrix theory and its applications,E-mail:zhangeasymail@126.com.

10.3785/j.issn.1008-9497.2017.05.002

一類矩陣特征值的不等式及其在Fischer不等式證明中的應用.浙江大學學報(理學版),2017,44(5):511-515

猜你喜歡
研究
FMS與YBT相關性的實證研究
2020年國內翻譯研究述評
遼代千人邑研究述論
視錯覺在平面設計中的應用與研究
科技傳播(2019年22期)2020-01-14 03:06:54
關于遼朝“一國兩制”研究的回顧與思考
EMA伺服控制系統研究
基于聲、光、磁、觸摸多功能控制的研究
電子制作(2018年11期)2018-08-04 03:26:04
新版C-NCAP側面碰撞假人損傷研究
關于反傾銷會計研究的思考
焊接膜層脫落的攻關研究
電子制作(2017年23期)2017-02-02 07:17:19
主站蜘蛛池模板: 亚洲免费人成影院| 亚洲婷婷六月| h网站在线播放| a级免费视频| 亚洲国产成人在线| 亚洲精品另类| 男女男免费视频网站国产| 亚洲性网站| 激情影院内射美女| a国产精品| 亚洲欧美成aⅴ人在线观看| 2022国产91精品久久久久久| 国产在线观看人成激情视频| 伊人精品成人久久综合| 天堂va亚洲va欧美va国产 | 激情無極限的亚洲一区免费| 一级成人a毛片免费播放| 国产乱子精品一区二区在线观看| 三级欧美在线| 亚洲欧美另类视频| 亚洲啪啪网| 欧美亚洲欧美| 久草视频精品| 99久久国产精品无码| 欧美精品啪啪一区二区三区| 思思99热精品在线| 成人亚洲视频| 日韩免费毛片| 欧美一区二区三区欧美日韩亚洲| 九一九色国产| 性欧美久久| 成人av专区精品无码国产| 日韩欧美中文| 国产精品视频观看裸模 | 成年免费在线观看| 国产精品第页| 亚洲视频欧美不卡| 国产v精品成人免费视频71pao| 手机在线国产精品| 成人亚洲天堂| 国产白浆视频| 国产大片喷水在线在线视频| 一本大道香蕉中文日本不卡高清二区| 丁香婷婷激情网| a毛片免费在线观看| 亚洲a级毛片| 国产91成人| AV熟女乱| 青青青视频免费一区二区| 亚洲欧美另类久久久精品播放的| 99久久国产综合精品2023| 青青草国产在线视频| 中文精品久久久久国产网址 | 亚洲天堂网2014| 最新国产网站| 亚洲成人黄色在线观看| 51国产偷自视频区视频手机观看| 国产视频欧美| 欧美一级99在线观看国产| 亚洲成a∧人片在线观看无码| 国产成人精品一区二区不卡| 国产精品浪潮Av| 国产精品成人久久| 久久五月天综合| 99久久国产自偷自偷免费一区| 亚洲一区网站| 国产成人亚洲综合a∨婷婷| 精品伊人久久久大香线蕉欧美| 亚洲欧洲一区二区三区| 国产精品美女免费视频大全| 18禁黄无遮挡免费动漫网站| 视频一本大道香蕉久在线播放 | 国产乱人免费视频| 国产精品va| 亚洲αv毛片| 国产大片喷水在线在线视频| 欧美一区二区三区香蕉视| 亚洲人成色在线观看| 四虎精品黑人视频| 欧美日韩在线观看一区二区三区| 在线国产毛片手机小视频| 久久人妻xunleige无码|