熊強強,鐘 蕾,沈天花,陳小榮,朱昌蘭,彭小松,傅軍如,賀浩華
?
穗分化期旱澇急轉對雙季超級雜交稻物質積累和產量形成的影響*
熊強強,鐘 蕾,沈天花,陳小榮**,朱昌蘭,彭小松,傅軍如,賀浩華
(江西農業大學農學院/作物生理生態與遺傳育種教育部重點實驗室/江西省超級稻工程技術研究中心/雙季稻現代化生產協同中心,南昌 330045)
采用桶栽方式,以超級雜交早稻品種(淦鑫203)、超級雜交晚稻品種(五豐優T025)為材料,于穗分化初期設置不旱不澇(對照CK)、輕旱不澇(T1)、重旱不澇(T2)、不旱輕澇(T3)、不旱重澇(T4)、重旱輕澇(T5)、重旱重澇(T6)、輕旱輕澇(T7)和輕旱重澇(T8)處理,分析各處理產量及其構成因素、干物質積累與分配和凈光合速率等指標。結果表明:(1)“旱”、“澇”及“旱澇急轉”使超級雜交早、晚稻單株產量不同程度下降,早稻T1、T2、T3、T4、T5、T6、T7和T8單株產量分別比CK降低8.89%、21.42%、8.33%、12.04%、19.65%、31.23%、15.39%和17.29%,晚稻分別降低6.21%、15.06%、7.77%、11.53%、17.40%、20.85%、13.46%和11.70%,早、晚稻以T2和T6處理產量下降較多,尤其T6處理產量降幅最大,表明單純前期輕旱(T1)和后期輕澇(T3)對產量的影響相對較小,而單純前期重旱(T2)和后期重澇(T4)對產量的影響相對較大,T2比T4對產量的影響更大,且重旱重澇處理下水稻單株產量存在一定程度的疊加減產效應。產量構成上,早、晚稻產量下降的主要原因是較大幅度降低了單株有效穗數、每穗總粒數、結實率和二次枝梗數,各處理對產量構成的影響規律與單株產量大致相同。(2)早、晚稻“旱”、“澇”及“旱澇急轉”等處理結束初期與CK比較,其莖、葉干物質量均不同程度下降,其中早、晚稻成熟期T6處理穗干物質量分別比CK下降33.40%、19.88%,表現為穗型變小。(3)“旱”、“澇”及“旱澇急轉”使早、晚稻葉片葉綠素含量(SPAD值)降低,其中早、晚稻均以T6處理的SPAD值降幅最大,且與CK一直呈顯著性差異。(4)至抽穗期,早、晚稻葉片凈光合速率均以T6處理最低,分別比CK下降37.57%、10.17%。研究結果說明,生長前期重旱后期急轉重澇對早、晚稻成熟期穗部干物質量及總干物質量的影響最大,重旱重澇急轉表現為疊加損傷效應。
雙季超級雜交稻;穗分化期;旱澇急轉;產量;干物質;光合速率
干旱、淹澇災害,作為主要農業自然災害之一,長期影響著中國農業生產[1-2]。江西等南方雙季稻區旱、澇災害近幾十年來發生較頻繁,整體上表現為明顯的增長趨勢[3],特別是干旱后緊接著出現洪澇災害,即“旱澇急轉”事件,造成水稻大面積減產甚至絕收時有發生[4]。旱澇急轉是指前期持續偏旱,接著因一場暴雨以上的強降水或雨量較大的連陰雨致使迅速轉旱為澇的天氣過程[5],該氣象災害易造成農作物大面積減產、減收,故引起人們極大關注[5-6]。統計表明,1960-2012年中國共有14a出現了“旱澇急轉”氣象災害,約4a一遇,淮河流域總共發生23次“旱澇急轉”事件[4],其中2011年6月全國范圍遭受“旱澇急轉”自然災害,對水稻生產造成了很大影響。近年來科研工作者有關穗分化期“旱澇急轉”對水稻產量及其構成因子、有關生理特征特性等影響已有一些研究報道[7-9],也有從農業工程(水利)等角度對水稻旱澇交替條件下產量形成方面的研究報道[10-11]。然而,有關不同程度“旱”、“澇”及“旱澇急轉”組合對水稻產量形成、生長發育及物質積累的問題卻尚未引起足夠重視,有關不同程度“旱澇急轉”組合對水稻產量形成機制的研究不夠深入,關于旱后淹澇到底將產生疊加損傷還是拮抗作用爭議較大[12]。另一方面,近年來在南方雙季稻區推廣了一大批超級雜交稻品種,推動了增產增收及品種的更新換代,這些超級稻品種物質生產能力及產量潛力水平得到較大改善,但對水肥需求更大,對水分、氮素虧缺等更為敏感[13-14],探討不同程度“旱”、“澇”,尤其是“旱澇急轉”組合處理對雙季超級雜交稻產量及其干物質積累與分配的影響尤為必要。
本研究選用江西等雙季稻區近年來大面積種植的超級雜交早稻品種淦鑫203,超級雜交晚稻品種五豐優T025,選擇模擬該地常年發生“旱澇急轉”災害天氣時雙季稻所處的生育階段,于幼穗分化初期設置不同程度的“旱”、“澇”及“旱澇急轉”組合處理,分析雙季超級雜交稻“旱”、“澇”及多種不同程度“旱澇急轉”組合下的水稻產量及其構成、干物質積累與分配和光合速率等指標的差異,以期為該氣象災害的抗災減災、水分合理利用提供科學依據。
1.1 試驗材料
2個供試水稻品種均為秈型雜交組合,江西省主栽品種。淦鑫203為早稻類型,2009年被認定為超級稻;五豐優T025為晚稻類型,2010年被認定為超級稻。
1.2 試驗設計
1.2.1 栽培方法
試驗于2015年在江西農業大學科技園網室內進行,均采用桶栽方式。塑料桶桶高為24.0cm、上部外徑29.0 cm、底部內徑23.5cm。栽培土壤取自稻田0-20cm耕層土壤,將其自然晾曬風干,用FT-1000A土壤粉碎機(中國產)粉碎過100目網篩,移栽前預先淹水2周。早稻3月20日播種,4月23日移栽,晚稻6月25日播種,7月23日移栽;統一于四葉一心期,選取長勢良好、一致的秧苗移栽,每桶栽插3穴,每穴1株苗;每桶裝風干土10kg,拌施底肥施復合肥(N-P-K=15%-15%-15%)5g,移栽7d后每桶追施2g氯化鉀,2g尿素。移栽前大田統一管理,移栽至塑料桶后均按高產栽培方式進行水分、病蟲害管理,待“旱”、“澇”及“旱澇急轉”處理結束后,均按水稻桶栽正常水分(保持水層3~5cm)及病蟲害防治管理。
1.2.2 試驗設計
干旱、淹澇及“旱澇急轉”處理起止日期、持續天數主要根據長江流域雙季稻區常發生的“旱”、“澇”及“旱澇急轉”災害天氣及前人研究[5,15-17]而設定,即模擬長江流域雙季稻區實際生產過程中旱、澇情況,重旱一般為干旱至土壤發白開裂,植株萎蔫干枯;重澇一般為淹澇6~8d。一般雙季早稻于5月下旬,雙季晚稻于8月下旬,此時稻株剛進入穗分化初期。早稻于2015年5月23日、晚稻從8月21日開始進行干旱處理,即倒去桶內明水后移至防雨棚,安裝真空表式土壤濕度計(測定范圍0~85kPa,中國科學院某研究所)監測土壤含水率,水稻自然落干。早稻幼穗分化期干旱處理第8天的土壤水勢超過最大測量值,晚稻幼穗分化期干旱處理第6天的土壤水勢超過最大測量值,繼續統一干旱至土壤發白開裂,植株呈萎蔫干枯狀(重旱),當“旱澇急轉”處理達到設定的干旱級別后立即開始淹澇處理,將需要進行淹澇試驗的盆桶移至水深100cm高的水箱,受澇試驗水箱中水為靜止、潔凈的自來水,受澇期間不換水,并完全浸沒稻株;對照(CK)一直保持3~5cm水層。試驗共設9個處理,不旱不澇(CK)、輕旱不澇(T1)、重旱不澇(T2)、不旱輕澇(T3)、不旱重澇(T4)、重旱輕澇(T5)、重旱重澇(T6)、輕旱輕澇(T7)和輕旱重澇(T8),每處理重復3次,每個重復15桶,隨機區組排列。各處理持續天數和日期見表1。

表1 超級雜交早、晚稻幼穗分化期旱澇處理設置方案
注:CK為不旱不澇(對照);T1為輕旱不澇;T2為重旱不澇;T3為不旱輕澇;T4為不旱重澇;T5為重旱輕澇;T6為重旱重澇;T7為輕旱輕澇;T8為輕旱重澇。下同。
Note: CK is no drought in earlier stage and no floods in later stage(control); T1 is mild drought in earlier stage and no floods in later stage; T2 is severe drought in earlier stage and no floods in later stage; T3 is no drought in earlier stage and mild floods in later stage; T4 is no drought in earlier stage and severe floods in later stage; T5 is severe drought in earlier stage and mild floods in later stage abrupt alternation; T6 is severe drought in earlier stage and severe floods in later stage abrupt alternation; T7 is mild drought in earlier stage and mild floods in later stage abrupt alternation; T8 is mild drought in earlier stage and severe floods in later stage abrupt alternation. The same as below.
1.3 項目測定
1.3.1 凈光合速率
早、晚稻于“旱澇急轉”處理結束水稻生長至抽穗期,選擇晴朗無云的天氣,于上午9:00-11:00,每重復選取3~5株生長良好、長勢一致的水稻葉片掛牌標記,用 CI-340便攜式光合測定儀(美國)測定倒2葉中部凈光合速率(net photosynthetic rate,Pn)。
1.3.2 SPAD值
早稻分別于“旱澇急轉”處理結束后1d(06-11)、8d(06-18)、12d(06-22),晚稻分別于“旱澇急轉”處理結束后2d(09-06)、8d(09-12)、13d(09-17),選取6~8株生長良好、長勢一致水稻的倒2葉葉片,采用SPAD-502葉綠素測定儀(浙江)測定葉片基部、中部和頂部的SPAD值,取其平均值。
1.3.3 干物質
早稻于“旱澇急轉”處理結束初期即穗分化中后期(06-11)、抽穗期(06-22)、成熟期(07-14),晚稻于“旱澇急轉”處理剛結束初期即穗分化中后期(09-04)、抽穗期(09-16)、成熟期(10-18),每處理每重復取水稻3株,取樣后于實驗室用清水清洗水稻植株,按器官部位莖、葉、穗分樣,在105℃殺青30min后再置于70℃烘箱烘至恒質量,測定各器官干物質量。
1.3.4 產量及產量結構
成熟后各處理每重復取5株未損傷的水稻植株收獲考種,分別考察穗長、穗實粒數、穗空粒數、千粒重、一次枝梗數、二次枝梗數、單株有效穗數、每篼產量及生物量。計算每穗總粒數、結實率和收獲指數。
1.4 數據處理
使用SPSS17.0和Microsoft Excel 2003軟件對有關數據進行分析和作圖。
2.1 “旱澇急轉”對超級雜交稻產量的影響
由表2可看出,與CK相比,僅前期干旱而后期不澇(T1、T2)和前期不旱僅后期澇(T3、T4)的處理中,無論早稻(淦鑫203)還是晚稻(五豐優T025)單株產量及相應的產量構成性狀均有不同程度的降低;從數值上看,單純前期輕旱(T1)和后期輕澇(T3)對產量的影響相對較小,而且影響程度相當,早稻產量分別比對照(CK)減少8.89%和8.33%,晚稻產量分別比對照(CK)減少6.21%和7.77%,差異均不顯著;而單純前期重旱(T2)和后期重澇(T4)對產量的影響相對較大,早稻產量分別比對照(CK)減少21.42%和12.04%,晚稻產量分別比對照(CK)減少15.06%和11.53%。除了水稻一次枝梗數,其它產量構成性狀的影響規律與此大致相同,早稻T1、T2和T4處理的一次枝梗數均大于CK,晚稻T1、T2、T3和T4處理一次枝梗數均大于CK。
分析“旱澇急轉”情形對超級雜交稻產量的影響可見(表2),與CK相比,前期重旱狀態下后期急轉為輕澇的處理(T5)、前期重旱后期急轉重澇的處理(T6)中,無論早稻(淦鑫203)還是晚稻(五豐優T025)單株產量及相應的產量構成均有更大程度的降低;重旱重澇(T6)早稻產量僅為CK的68.77%,是單純干旱(重旱)狀態下的87.52%,晚稻僅為CK的79.15%,是單純干旱(重旱)狀態下的93.17%;重旱轉輕澇(T5)早稻產量僅為CK的80.35%,是單純干旱(重旱)狀態下的102.25%,晚稻僅為CK的82.60%,是單純干旱(重旱)狀態下的97.25%;早、晚稻重旱重澇處理(T6)產量下降程度最大,表明重旱重澇處理下水稻單株產量存在一定程度的疊加減產效應,除千粒重和一次枝梗數,其它產量構成性狀的影響規律與此大致相同。

表2 各處理超級雜交早、晚稻產量及其構成因素的比較

注:小寫字母表示處理間在0.05水平上的差異顯著性。下同。
Note:Lowercase indicates the difference significance among treatments at 0.05 level. TR is treatment, YP is yield per plant, GW is 1000-grain weight, NP is number of grains per panicle, SR is seed setting rate, EP is effective panicles per plant, PN is primary branch number, SN secondary branch number, EL is ear length, HI is harvest index. The same as below.
2.2 “旱澇急轉”對超級雜交稻地上部分物質積累與分配的影響
從表3可看出,與CK相比,僅前期干旱而后期不澇(T1、T2)和前期不旱僅后期澇(T3、T4)的處理中,在處理結束初期,無論早稻(淦鑫203)還是晚稻(五豐優T025)其莖、葉干物質量均有不同程度的降低;抽穗階段主要進行生殖生長,干物質分配到生殖器官的比例逐漸升高,前期干旱而后期不澇(T1、T2)和前期不旱僅后期澇(T3、T4)的處理,無論早稻(淦鑫203)還是晚稻(五豐優T025)穗部干物質量均呈不同程度的降低,早稻單純前期輕旱(T1)和后期輕澇(T3)處理的穗部干物質量分別比對照(CK)減少0.68%和45.25%,晚稻穗部干物質量分別比對照(CK)減少3.43%和5.66%;早稻單純前期重旱(T2)和后期重澇(T4)處理的穗部干物質量分別比對照(CK)減少3.39%和16.78%,晚稻穗部干物質量分別比對照(CK)減少39.80%和5.05%,表明“旱”、“澇”水分脅迫處理對水稻莖、葉積累影響較大,且前期重旱比后期重澇對穗部干物質量的影響更大一些,穗部干物質量下降較多;成熟期時,各干旱處理,尤以單純前期重旱(T2)處理其穗部干物質量下降較明顯,穗型變小,與CK相比,早稻穗部干物質量下降24.90%,晚稻穗部干物質量下降13.98%,并且單純前期重旱對總干物質量的影響規律與此大致相同。

表3 各處理超級雜交早、晚稻各器官干物質積累與分配的比較(g)
分析“旱澇急轉”情形對超級雜交稻干物質分配的影響可見(表3),與CK相比,處理結束初期,前期重旱后期急轉重澇的處理(T6)中,無論早稻(淦鑫203)還是晚稻(五豐優T025)其莖、葉干物質量均有不同程度的降低,早稻莖、葉干物質量分別比對照(CK)減少50.71%和31.08%,晚稻莖、葉干物質量分別比對照(CK)減少33.48%和20.48%,且早、晚稻T6處理的莖、葉干物質量較其它“旱澇急轉”處理莖、葉干物質量下降最多;至抽穗期,晚稻前期輕旱急轉為輕澇的處理(T7)和前期輕旱急轉為重澇的處理(T8)其莖、葉干物質量均高于CK,但穗部干物質量分別比對照(CK)減少6.87%和15.35%,重旱重澇(T6)穗部干物質量分別比對照(CK)減少58.99%,下降最為顯著;抽穗-成熟期階段為生產上水稻奪取高產的主要階段,水稻植株生產的干物質主要轉移向穗部,“旱澇急轉”各處理穗干物質量下降幅度較大,穗型變小,早稻T5、T6、T7和T8成熟期穗部干物質量、總干物質量分別比對照(CK)減少22.18%、33.40%、20.40%和19.90%,19.56%、32.10%、18.27%和20.88%,晚稻T5、T6、T7和T8成熟期穗部干物質量、總干物質量分別比對照(CK)減少14.61%、19.88%、13.22%和8.85%,12.46%、20.37%、14.30%和9.45%,且早、晚稻重旱重澇處理(T6)成熟期穗部干物質量為單純重旱處理(T2)的87.52%、93.14%,總干物質量也呈相應的下降,由此可知,早、晚稻前期重旱后期急轉重澇的處理對水稻成熟期穗部干物質量及總干物質量影響最大。
2.3 “旱澇急轉”對超級雜交稻葉片SPAD值的影響
圖1可看出,與CK相比,僅前期干旱而后期不澇(T1、T2)或前期不旱僅后期澇(T3、T4)的處理中,在處理結束初期,無論早稻(淦鑫203)還是晚稻(五豐優T025)葉綠素含量(SPAD值)均有不同程度的降低,早稻單純前期輕旱(T1)和后期輕澇(T3)處理的SPAD值分別比對照(CK)減少2.68%和0.61%,晚稻SPAD值分別比對照(CK)減少10.34%和11.73%,早稻單純前期重旱(T2)和后期重澇(T4)處理的SPAD值分別比對照(CK)減少4.43%和1.33%,晚稻葉綠素分別比對照(CK)減少9.90%和7.54%,表明水稻單純旱、澇脅迫下葉片受損,造成短時間內SPAD值大幅下降,但隨著生育期推進各處理與對照差距縮小。
分析“旱澇急轉”情形對超級雜交稻葉片葉綠素的影響可見(圖1),前期重旱后期急轉重澇的處理(T6)中,在處理結束初期,無論早稻(淦鑫203)還是晚稻(五豐優T025)其SPAD值有較大程度的降低,且均達顯著性差異,早稻重旱重澇(T6)處理期SPAD值僅為CK的91.51%,晚稻重旱重澇(T6)處理其SPAD值僅為CK的88.20%,在處理后期早、晚稻重旱重澇(T6)葉片SPAD值在各處理中一直最低,且與CK差異均達顯著水平。表明水稻在重旱重澇急轉脅迫下葉片受損嚴重,造成葉綠素大幅降解,難以恢復至正常水平。
注:圖中柱狀數據為平均值,短線表示均方差。下同
Note: The column data in figure is average and the short lines represents the mean square deviation. The same as below
2.4 “旱澇急轉”對超級雜交稻葉片凈光合速率的影響
圖2可看出,與CK相比,僅前期干旱而后期不澇(T1、T2)或前期不旱僅后期澇(T3、T4)的處理中,在處理結束初期,無論早稻(淦鑫203)還是晚稻(五豐優T025)其凈光合速率均有不同程度的降低,從數值上看,單純前期輕旱(T1)和后期輕澇(T3)對凈光合速率的影響相對較小,早稻凈光合速率分別比對照(CK)減少7.78%和23.72%,晚稻凈光合速率分別比對照(CK)減少5.81%和5.08%;而單純前期重旱(T2)和后期重澇(T4)對凈光合速率的影響相對較大,而且前期重旱比后期重澇對產量的影響更大一些,凈光合速率下降更多,早稻凈光合速率分別比對照(CK)減少30.36%和31.65%,晚稻凈光合速率分別比對照(CK)減少7.36%和7.80%。表明幼穗分化期單純重旱或者重澇對水稻葉片損傷更大,致使在抽穗期時凈光合速率下降程度更大。
分析“旱澇急轉”情形對超級雜交稻葉片凈光合速率的影響可見(圖2),前期重旱后期急轉為輕澇的處理(T5)和前期重旱后期急轉重澇的處理(T6),無論早稻(淦鑫203)還是晚稻(五豐優T025)其凈光合速率均有更大程度的降低;重旱重澇處理(T6)早稻凈光合速率僅為CK的62.43%,兩者差異顯著,是重旱不澇處理(T2)的89.65%;晚稻僅為CK的91.77%,兩者差異顯著,是重旱不澇處理(T2)的96.97%;重旱轉輕澇處理(T5)早稻凈光合速率僅為CK的75.90%,是重旱不澇處理(T2)的108.99%,晚稻僅為CK的89.83%,是重旱不澇處理(T2)的99.06%,說明稻株重旱重澇處理比單純重旱和重旱輕澇處理的葉片凈光合速率下降更多,表明重旱重澇急轉處理對水稻葉片凈光合速率具有一定的疊加損傷作用,前期重旱后期急轉為輕澇對水稻影響相對較小。
3.1 穗分化期“旱澇急轉”對超級雜交稻產量及其構成的影響
已有研究指出[16,18],水稻孕穗期是水分臨界期,對水分最為敏感,水稻幼穗分化期干旱處理導致水稻相關產量構成因素發生變化,從而導致產量的下降。另有研究指出[15,17,19],淹澇脅迫致使水稻產量下降,不同生育期受澇水稻減產順序表現為孕穗期>拔節期>灌漿期,其中孕穗期受到淹澇脅迫對產量的影響最大,但其與淹澇深度和受澇天數有關。本試驗結果顯示,幼穗分化期“旱”、“澇”處理使超級雜交早、晚稻單株產量不同程度降低,且單純重旱比單純輕旱、單純重澇比單純輕澇影響較大,單株產量下降較多,這與前人研究[15-17]結果基本一致。從產量構成上看,夏瓊梅等[20]研究發現,幼穗分化-齊穗期水分脅迫后產量下降的主要原因是有效穗數、總粒數、實粒數的降低,其中對實粒數影響最大,其次是總粒數。本試驗發現,經過重旱處理的雙季超級雜交早、晚稻重旱不澇(T2)、重旱輕澇(T5)和重旱重澇(T6)處理單株產量下降幅度大,產量下降主要原因是單株有效穗數、每穗總粒數、結實率和每穗二次枝梗數降幅較大,這與夏瓊梅等研究結果基本一致。關于旱后淹澇急轉將產生疊加損傷或是拮抗作用有較大爭議[12],本試驗結果顯示,前期重旱狀態下后期急轉為輕澇的處理(T5)、前期重旱后期急轉重澇的處理(T6)中,早、晚稻單株產量及相應的產量構成均有更大程度的降低,尤其早、晚稻重旱重澇急轉處理單株產量最低,同時說明重旱重澇處理下水稻單株產量存在一定程度的疊加減產效應,但前期重旱后期急轉為輕澇對水稻影響相對較小。造成疊加損傷效應使產量下降的主要原因為每穗總粒數、結實率、單株有效穗數和二次枝梗數的降低。本試驗還發現,重旱處理后水稻葉片葉尖損傷較嚴重,接近1/3葉片枯萎死亡,緊接著重澇使水稻植株小蘗死亡較多,葉片損傷較嚴重。而僅進行淹澇脅迫時,澇后植株生長(莖、節間)過快,劍葉伸出水面,有氧呼吸作用加強,因此,不旱輕澇的產量下降程度較小,且淹澇時間越長對水稻單株產量影響越大,這與前人研究結果一致[21]。說明水稻在“旱”、“澇”及“旱澇急轉”脅迫下的生長發育將不同程度受到損害,尤其重旱重澇處理后,植株難以恢復而導致減產,這也可從本試驗中葉片SPAD值的變化得到印證,尤其是重旱重澇急轉,至處理結束后很長一段時期內其葉片SPAD值仍顯著低于對照CK,難以恢復至正常水平。與前人研究相比[22-23],本試驗中千粒重受影響較小,有些處理還略有增加。造成研究結果差異的原因可能是“旱”、“澇”及“旱澇急轉”脅迫處理時期和持續時長不同,本研究為了模擬長江中下游“旱澇急轉”氣象災害,至抽穗灌漿后期部分植株基本恢復,特別是早稻輕旱輕澇,晚稻輕旱不澇和不旱輕澇3個處理。另外稻株千粒重的不同也可能因為取樣存在一定的誤差。然而,從本研究結果也可看出,即使在水稻幼穗分化期這樣一個對水分極為敏感的階段出現上述較為嚴重的“旱”、“澇”及“旱澇急轉”脅迫,也未出現絕收情況,可見在生產實際中遭遇旱災后,應積極采取抗旱保收措施,進行補水保苗;而對于淹澇災害,應及時排水,同時輔以必要的災后管理措施。由于本研究采用桶栽模擬長江中下游“旱澇急轉”氣象災害進行試驗,可能與大田下有差異,大田種植條件下“旱澇急轉”脅迫對水稻產量及其構成的變化和機理還需深入研究,這對于減輕“旱澇急轉”對水稻的危害具有十分重要的意義。
3.2 穗分化期“旱澇急轉”對超級雜交稻地上部分物質積累和分配的影響
水分是限制作物生產的重要因素,“旱”、“澇”及“旱澇急轉”導致植株損傷,從而影響生理生化過程和器官建成,進而影響生長發育。大量研究表明[19, 24-25],水分脅迫會干擾植物的物質生產。李樹杏等研究指出[24],水稻幼穗形成期經過水分脅迫復水后,短歷時輕、重度脅迫的處理抽穗期莖鞘干物質量高于對照。本試驗結果顯示,晚稻輕旱不澇(T1)復水后在抽穗期莖干物質量高于對照,但與對照CK差異顯著,與李樹杏等研究結果基本一致,其輕旱不澇(T1)處理的凈光合速率與對照CK無顯著性差異;早稻輕旱不澇處理(T1)則未出現類似結果,可能是由于早稻品種輕旱持續6d相對來說時間較長,旱后復水恢復時間延長,與此同時輕旱不澇(T1)處理的凈光合速率較對照降低5.81%,但無顯著性差異。抽穗-成熟期階段為生產上水稻奪取高產的主要階段,水稻植株生產的干物質主要轉移至穗部,本研究發現,在抽穗期,早稻重旱重澇(T6)處理穗部干物質量分別比對照(CK)減少51.19%,晚稻重旱重澇(T6)處理穗部干物質量分別比對照(CK)減少58.99%,重旱重澇處理穗部干物質量下降程度最大,該結果與抽穗期時葉片凈光合速率得到印證,抽穗期早、晚稻重旱重澇(T6)處理凈光合速率較對照CK下降37.57%、10.17%,且均與CK差異顯著。黃元財等[25]研究指出,水分脅迫條件下,各器官中以葉片干物質凈積累量的下降趨勢最為明顯,成熟期水稻穗部干物質比率的大幅提高而莖鞘和葉片的比率下降,植株生產的干物質主要運向穗部。本試驗結果還顯示,超級雜交早、晚稻在處理結束初期和成熟期,與對照CK相比,莖、葉干物質量呈不同程度的下降,這與前人研究結論一致[25]。收獲指數是指籽粒產量與成熟期植株干物質質量的比率,其生理本質反映了作物同化產物在籽粒和營養器官上的分配比例,其高低反映水稻營養生長與生殖生長是否協調,光合產物的積累與分配是否合理的一種標志[26]。抽穗-成熟階段為生產上水稻奪取高產的主要階段,水稻植株生產的干物質主要轉移向穗部,而由于在穗分化期進行了“旱”、“澇”及“旱澇急轉”處理,與對照CK相比,早、晚稻“旱澇急轉”各處理穗干物質量降幅較大,穗型變小,早稻T5、T6、T7和T8成熟期穗部干物質量、總干物質量均呈不同程度的降低,說明穗分化期“旱”、“澇”及“旱澇急轉”處理不僅影響水稻物質生產能力,也影響干物質向籽粒的轉化與分配。本試驗研究還表明,超級雜交早、晚稻有的水分干旱脅迫處理下抽穗期莖、葉物質積累高于對照CK,可能與進行了“旱”、“澇”及“旱澇急轉”處理后營養生長較快,生殖生長滯后有關,但在成熟期總干物質量(莖+葉+穗)和穗干物質量均低于對照CK,尤以重旱重澇處理降幅最大,由此可知,早、晚稻前期重旱后期急轉重澇的處理對水稻成熟期穗部干物質量及總干物質量的影響最大,重旱重澇急轉表現為疊加損傷效應。
[1] 黃晚華,隋月,楊曉光,等.氣候變化背景下中國南方地區季節性干旱特征與適應Ⅲ:基于降水量距平百分率的南方地區季節性干旱時空特征[J].應用生態學報,2013,24(2):397-406.
Huang W H,Sui Y,Yang X G,et al.Characteristics and adaptation of seasonal drought in southern China under the background of climate change III:spatiotemporal characteristics of seasonal drought in southern China based on the percentage of precipitation anomalies[J].Chinese Journal of Applied Ecology,2013,24(2):397-406.(in Chinese)
[2] 鄧愛娟,劉敏,萬素琴,等.湖北省雙季稻生長季降水及洪澇變化特征[J].長江流域資源與環境,2012,21(S1):173-178.
Deng A J,Liu M,Wan S Q,et al.Characteristics and impact of rain and floods on double-cropping rice growing seasons in Hubei[J].Resources and Environment in the Yangtze Basin, 2012,21(Supple1):173-178.(in Chinese)
[3] 蔡哲,章毅之,何擁鳳,等.江西省干旱洪澇的時空變化特征分析[J].自然災害學報,2013,22(2):144-149.
Cai Z,Zhang Y Z,He Y F,et al.Analysis of spatiotemporal trend characteristics of droughts and floods in Jiangxi province[J].Journal of Natural Disasters,2013, 22(2): 144-149. (in Chinese)
[4] 封國林,楊涵洧,張世軒,等.2011年春末夏初長江中下游地區旱澇急轉成因初探[J].大氣科學,2012,36(5):1009-1026.
Feng G L,Yang H W,Zhang S X,et al.A preliminary research on the reason of a sharp turn from drought to flood in the middle and lower reaches of the Yangtze River in late spring and early summer of 2011[J].Chinese Journal of Atmospheric Sciences,2012,36(5):1009-1026.(in Chinese)
[5] 王勝,田紅,丁小俊,等.淮河流域主汛期降水氣候特征及”旱澇急轉”現象[J].中國農業氣象,2009,30(1):31-34.
Wang S,Tian H,Ding X J,et al.Climate characteristics of precipitation and phenomenon of drought-flood abrupt alternation during main flood season in Huaihe River basin[J].Chinese Journal of Agrometeorology,2009, 30(1): 31-34.(in Chinese)
[6] 鄧艷,陳小榮.”旱澇急轉”對水稻生長發育的影響及其有關問題的思考[J].生物災害科學,2013,36(2):217-222.
Deng Y,Chen X R.Effects of drought-floods abrupt alternation on growing development of rice and consideration for related issues[J].Biological Disaster Science,2013,36(2): 217-222.(in Chinese)
[7] 鄧艷,鐘蕾,陳小榮,等.穗分化期旱澇急轉對超級雜交早稻產量和生理特性的影響[J].核農學報,2017,31(4):768-776.
Deng Y,Zhong L,Chen X R,et al.Effects of drought-floods abrupt alternation on physiological and yield characteristics in super hybrid early Rice during panicle differentiation stage[J].Journal of Nuclear Agricultural Sciences,2017,31(4): 768-776.(in Chinese)
[8] 熊強強,鐘蕾,陳小榮,等.穗分化期旱澇急轉對雙季超級雜交稻葉片穩定性δ13C和δ15N同位素比值的影響[J].核農學報,2017,31(3):559-565.
Xiong Q Q,Zhong L,Chen X R,et al.Effects of drought-floods abrupt alternation during panicle initiation stage on δ13C and δ15N stable isotope ratios of leaves in double-season super hybrid rice[J].Journal of Nuclear Agricultural Sciences,2017, 31(3):559-565.(in Chinese)
[9] 鐘蕾,湯國平,陳小榮,等.旱澇急速轉換對超級雜交晚稻秧苗素質及葉片內源激素水平的影響[J].江西農業大學學報, 2016,38(4):593-600.
Zhong L,Tang G P,Chen X R,et al.Effects of abrupt drought-flood alternation on seedling quality and content of endogenous hormone of leaves in super hybrid late rice[J].Acta Agriculturae Universitatis Jiangxiensis,2016, 38(4):593-600.(in Chinese)
[10]郭相平,楊骕,王振昌,等.旱澇交替脅迫對水稻產量和品質的影響[J].灌溉排水學報,2015,31(1):13-16.
Guo X P,Yang S,Wang Z C,et al.Effects of alternative stress of drought and waterlogging on rice yield and quality[J]. Journal of Irrigation and Drainage,2015,31(1):13-16.(in Chinese)
[11]陸紅飛,郭相平,甄博,等.旱澇交替脅迫條件下粳稻葉片光合特性[J].農業工程學報,2016,32(8):105-112.
Lu H F,Guo X P,Zhen B,et al.Photosynthetic characteristics of Japonica rice leave under alternative stress of drought and waterlogging[J].Transactions of the CSAE,2016, 32(8): 105-112. (in Chinese)
[12]郭相平,甄博,陸紅飛.水稻旱澇交替脅迫疊加效應研究進展[J].水利水電科技進展,2013,33(2):83-86.
Guo X P,Zhen B,Lu H F.Research advances in pile-up effects of drought and waterlogging alternative stress on rice[J].Advances in Science and Technology of Water Resources,2013,33(2):83-86.(in Chinese)
[13]常碩其,鄧啟云,吳俊.超級雜交稻光合作用和物質積累特性研究進展[J].雜交水稻,2014,29(1):1-5.
Chang S Q,Deng Q Y,Wu J.Research progress on characteristics of photosynthesis and dry matter accumulation of super hybrid rice[J].Hybrid Rice,2014, 29(1): 1-5.(in Chinese)
[14]曾勇軍,石慶華,潘曉華,等.長江中下游雙季稻高產株型特征初步研究[J].作物學報,2009,35(3):546-551.
Zeng Y J,Shi Q H,Pan X H,et al.Preliminary study on the plant type characteristics of double cropping rice in middle and lower reaches of Changjiang River[J].Acta Agronomica Sinica,2009,35(3):546-551.(in Chinese)
[15]吳啟俠,朱建強,晏軍,等.澇脅迫對雜交中稻形態和產量的影響[J].中國農業氣象,2016,37(2):188-198.
Wu Q X,Zhu J Q,Yan J,et al.Morphology of middle-season hybrid rice in Hubei province and its yield under different waterlogging stresses[J].Chinese Journal of Agrometeorology, 2016,37(2):188-198.(in Chinese)
[16]段素梅,楊安中,黃義德,等.干旱脅迫對水稻生長,生理特性和產量的影響[J].核農學報,2014,28(6):1124-1132.
Duan S M,Yang A Z,Huang Y D,et al.Effects of drought stress on growth and physiological feature and yield of various rice varieties[J].Journal of Nuclear Agricultural Sciences, 2014,28(6):1124-1132.(in Chinese)
[17]袁靜,蔣新會,黃錦珠,等.水稻拔節孕穗期旱澇急轉對其生理特性的影響[J].水利科技與經濟,2008,14(4):259-262.
Yuan J,Jiang X H,Huang J Z,et al.Effects of fast conversion from drought to waterlogging stress on physiological characteristics of rice in Jointing-booting stage[J].Water Conservancy Science and Technology and Economy,2008, 14(4):259-262.(in Chinese)
[18]楊瑰麗,楊美娜,黃翠紅,等.水稻幼穗分化期的抗旱性研究與綜合評價[J].華北農學報,2015,30(6):140-145.
Yang G L,Yang M N,Huang C H,et al.Comprehensive evaluation of drought resistance during rice panicle differentiation stage[J].Acta Agriculturae Boreali-Sinica, 2015,30(6):140-145.(in Chinese)
[19]寧金花,霍治國,陸魁東,等.不同生育期淹澇脅迫對雜交稻形態特征和產量的影響[J].中國農業氣象,2013, 34(6):678-684.
Ning J H,Huo Z G,Lu K D,et al.Effects of water logging on morphological characteristics and yield of hybrid rice during growth stages[J].Chinese Journal of Agrometeorology, 2013,34(6):678-684.(in Chinese)
[20]夏瓊梅,毛桂祥,王定開,等.幼穗分化期至齊穗期水分脅迫對水稻產量及功能葉性狀的影響[J].干旱地區農業研究,2015,33(3):111-116.
Xia Q M,Mao G X,Wang D K,et al.Effects of water stress on rice grain yield and functional leaf traits during panicle differentiation to full heading stages[J].Agricultural Research in the Arid Areas,2015,33(3):111-116.(in Chinese)
[21]孫系巍,寧金花,張艷桂,等.乳熟期淹澇脅迫對水稻形態特性及產量的影響[J].湖南農業科學,2015,(6):27-30.
Sun X W,Ning J H,Zhang Y G,et al.Impact of submergence stress at milky stage on morphological characteristics and yield of rice[J].Hunan Agricultural Sciences,2015,(6): 27-30.(in Chinese)
[22]王成璦,王伯倫,張文香,等.不同生育時期干旱脅迫對水稻產量與碾米品質的影響[J].中國水稻科學,2007, 21(6): 643-649.
Wang C A,Wang B L,Zhang W X,et al.Effects of drought stress at different growth stages rice on grain yield and milling quality of rice[J].Chinese Journal of Rice Science, 2007,21(6):643-649.(in Chinese)
[23]張玉屏,朱德峰,林賢青,等.不同時期水分脅迫對水稻生長特性和產量形成的影響[J].干旱地區農業研究,2005, 23(2):48-53.
Zhang Y P,Zhu D F,Lin X Q,et al.Effects of water stress on rice growth and yield at different growth stages[J]. Agricultural Research in the Arid Areas,2005, 23(2): 48-53. (in Chinese)
[24]李樹杏,郭慧,李敏,等.幼穗形成期水分脅迫后復水對水稻葉片光合特性及物質生產的影響[J].華北農學報,2013,28(5): 133-137.
Li S X,Guo H,Li M,et al.Young panicle formation stage after water stress on the production and transport of photosynthate in rice[J].Acta Agriculturae Boreali-Sinica, 2013,28(5):133-137.(in Chinese)
[25]黃元財,王術,吳曉冬,等.肥水條件對不同類型水稻干物質積累與分配的影響[J].沈陽農業大學學報,2004, 35(4): 346-349.
Huang Y C,Wang S,Wu X D,et al.Effect of fertilizer and water conditions on dry matter accumulation and partition of different types of rice[J].Journal of Shenyang Agricultural University,2004,35(4):346-349.(in Chinese)
[26]鐘蕾.不同收獲指數型水稻品種產量構成整齊性及生育后期光合特性的差異性分析[J].江西農業大學學報,2012, 34(4):627-634.
Zhong L.Comparative analysis on the yield component uniformity and photosynthesis characteristics during later growth stages in rice varieties with different harvest indexes[J].Acta Agriculturae Universitatis Jiangxiensis,2012, 34(4):627-634.(in Chinese)
Effects of Drought-floods Abrupt Alternation During Panicle Differentiation Stage on Matter Accumulation and Yield Formation in Double-season Super Hybrid Rice
XIONG Qiang-qiang, ZHONG Lei, SHEN Tian-hua, CHEN Xiao-rong, ZHU Chang-lan, PENG Xiao-song, FU Jun-ru, HE Hao-hua
(College of Agronomy, Jiangxi Agricultural University/Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education/Research Center of Super Rice Engineering and Technology, Jiangxi Province/Collaboration Center for Double-season Rice Modernization Production, Nanchang 330045, China)
In this study, pot experiments were performed and super hybrid early rice(Ganxin 203) and late rice(Wufengyou T025) were selected as the material. During panicle differentiation initiation stage no drought in earlier stage and no floods in later stage(control, CK), mild drought in earlier stage and no floods in later stage(T1), severe drought in earlier stage and no floods in later stage(T2), no drought in earlier stage and mild floods in later stage(T3), no drought in earlier stage and severe floods in later stage(T4), severe drought in earlier stage and mild floods in later stage abrupt alternation(T5), severe drought in earlier stage and severe floods in later stage abrupt alternation(T6), mild drought in earlier stage and mild floods in later stage abrupt alternation(T7), mild drought in earlier stage and severe floods in later stage abrupt alternation(T8) were set. While the indices of the yield and its components, dry matter accumulation and distribution and net photosynthetic rate(Pn) were investigated. The results showed that, (1) the yield per plant in super hybrid early and late rice was decreased in different degrees under “drought”, “flood” and “drought-floods abrupt alternation”. Compared with CK, the early rice T1, T2, T3, T4, T5, T6, T7 and T8 yield per plant were decreased by 8.89%, 21.42%, 8.33%, 12.04%, 19.65%, 31.23%, 15.39% and 17.29%, respectively. The late rice were decreased by 6.21%, 15.06%, 7.77%, 11.53%, 17.40%, 20.85%, 13.46% and 11.70%, respectively. The yield of T2 and T6 treatments in early and late rice was decreased more, especially the yield of T6 treatment was largest decline, it was shown that only mild drought or mild floods on yield were less affected, but only severe drought or severe floods on yield were relatively large affected, and severe drought was greater affected than severe floods on yield. As for rice plants treated with severe drought in earlier stage and severe floods in later stage abrupt alternation, a certain degree of superimposition and reduction effect was existed. In the yield components, the main reasons for the yield decreased by effective panicles per plant, number of grains per panicle, seed setting rate and secondary branch number. The effects of yield and yield components were roughly the same among treatments. (2) Compare with CK, stem and leaf dry mass were decreased in different degrees in early and late rice under “drought”, “flood” and “drought-floods abrupt alternation”. Among the early and late rice at mature stage, the panicle dry mass of T6 treatment decreased by 33.40% and 19.88%, respectively, compared with CK, and the panicle shape becomes smaller. (3) The leaf chlorophyll content(SPAD value) in early and late rice was decreased under “drought”, “flood” and “drought-floods abrupt alternation”. SPAD value of T6 treatment in early and late rice were decreased remarkably, and with CK has a significant difference. (4) Leaf Pn of T6 treatment in early and late rice was the lowest, decreased by 37.57% and 10.17%, respectively, compared with CK. The results of the study were illustrated that severe drought in earlier stage and severe floods in later stage abrupt alternation had the maximum influence on panicle dry mass and total dry mass at mature stage in early and late rice, and severe drought in earlier stage and severe floods in later stage abrupt alternation showed a superposition damage effect.
Double-season super hybrid rice; Panicle differentiation stage; Drought-floods abrupt alternation; Yield; dry matter; Photosynthetic rate
2017-05-15
國家自然科學基金資助項目(314771441;30860136);江西省科技支撐項目(2010BNA03600);江西省教育廳項目(GJJ14283)
熊強強(1993-),博士生,主要從事水稻生理與遺傳育種研究。E-mail:xqq_qiang@163.com
10.3969/j.issn.1000-6362.2017.09.007
**通訊作者。E-mail:ccxxrr80@163.com
熊強強,鐘蕾,沈天花,等.穗分化期旱澇急轉對雙季超級雜交稻物質積累和產量形成的影響[J].中國農業氣象,2017,38(9):597-608