999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

OSCILLATION OF NONLINEAR IMPULSIVE DELAY HYPERBOLIC EQUATION WITH FUNCTIONAL ARGUMENTS VIA RICCATI METHOD

2017-09-15 05:55:57ZOUMinCHENRongsanLIUAnping
數學雜志 2017年5期
關鍵詞:振動

ZOU Min,CHEN Rong-san,LIU An-ping

(School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)

OSCILLATION OF NONLINEAR IMPULSIVE DELAY HYPERBOLIC EQUATION WITH FUNCTIONAL ARGUMENTS VIA RICCATI METHOD

ZOU Min,CHEN Rong-san,LIU An-ping

(School of Mathematics and Physics,China University of Geosciences,Wuhan 430074,China)

In this paper,we mainly deal with the oscillation problems of nonlinear impulsive hyperbolic equation with functional arguments.By using integral averaging method and a generalized Riccati technique,a sufficient condition for oscillation of the solutions of nonlinear impulsive hyperbolic equation with functional arguments is obtained.We can make better use of some existing conclusions about oscillation of the solutions of impulsive ordinary dif f erential equations with delay.

oscillation;impulsive;delay;hyperbolic equation;Riccati inequality

1 Introduction

The theories of nonlinear partial functional di ff erential equations are applied in many fi elds.In recent years the research of oscillation to impulsive partial di ff erential systems caught more and more attention.In this paper,we study the oscillation properties of the solutions to impulsive delay hyperbolic equation

The following is the boundary conditionwhere G is a bounded domain of Rnwith the smooth boundary?G and n is the unit exterior normal vector to?G.

Following are the basic hypothesis

(H1)r(t)∈C([0,+∞);(0,+∞)),a(t),bi(t)∈PC([0,+∞);[0,+∞)),i=1,2,···,n.j=1,2,···,m,where PC denotes the class of functions which are piecewise continuous in t with discontinuities of the fi rst kind only at t=tk,k=1,2,···.

(H2)τi(t)∈C([0,+∞);R)=+∞,i=1,2,···,n.

(H3)h(u),hi(u)∈C(R,R),uh(u)≥0,uh′(u)≥0,≥0,i=1,2,···,n;φj(s)∈C(R,R),=const.>0 for s 6=0.αk,βk=const.>-1,0<t1<t2<···<tk<

We introduce the notations

De fi nition 1.1The solution u(x,t)of the problems(1.1)-(1.4)is said to be nonoscillatory in domain Ω if it is either eventually positive or eventually negative.Otherwise,it is called oscillatory.

Def i nition 1.2We say that functions Hi,i=1,2,belong to a function class H,if Hi∈C(D;[0,+∞)),i=1,2,satisfy

1.Hi(t,s)=0,i=1,2 for t=s, 2.Hi(t,s)>0,i=1,2 for t>s,

where D={(t,s):0<s≤t<+∞}.Moreover,the partial derivatives?H1/?s and?H2/?s exist on D such that

where h1,h2∈Cloc(D;R).

In recent years,there was much research activity concerning the oscillation theory of nonlinear hyperbolic equations with functional arguments by employing Riccati technique. Riccati techniques were used to obtain various oscillation results.Recently,Shoukaku and Yoshida[2]derived oscillation criteria by using oscillation criteria of Riccati inequality.In this work,we study the hyperbolic equation with impulsive.

2 Main Results

Theorem 2.1If for each T≥0,there exist(H1,H2)∈H and a,b,c∈R such that T≤a<c<b and

then every solution of the problems(1.1)-(1.4)oscillates in Ω,where

ProofSuppose to the contrary that there is a nonoscillatory solution u(x,t)of the problems(1.1)-(1.4).Without loss of generality we may assume that u(x,t)>0 in G× [t0,+∞)for some t0>0 because the case where u(x,t)<0 can be treated similarly.Since (H2)holds,we see that u(x,τi(t))>0(i=1,2,···n)in G×[t1,+∞)for some t1≥t0.

(1)For t≥t1,t 6=tk,k=1,2,···,integrating(1)with respect to x over G,we obtain

that is

Thus we obtain that the functions U(t)is a eventually positive solution of the impulsive dif f erential inequality

Multiplying(2.4)by H2(t,s)and integrating over[c,t]for t∈[c,b),we have

which contradicts condition(2.1).

[1]Lakshmikantham V,Bainov D,Simeonov P S.Theory of impulsive dif f erential equations[M].Singapore:World Scientif i c,1989.

[2]Yutaka Shoukaku,Norio Yoshida.Oscillations of nonlinear hyperbolic equations with functional arguments via Riccati method[J].Appl.Math.Comput.,2010,217:143-151.

[3]Luo Zhiguo,Shen Jianhua.Oscillations of second linear dif f erential equations with impulses[J].Appl. Math.Lett.,2007,20:75-81.

[4]Bainov D D,Minchev E.Oscillation of the solutions of impulsive parabolic equations[J].J.Comput. Appl.Math.,1996,69:207-214.

[5]Liu Anping,Liu Ting,Zou Min.Oscillation of nonlinear impulsive parabolic dif f erential equations of neutral type[J].Rocky Mount.J.Math.,2011,41:833-850.

[6]Chen Rongsan,Zou Min,Liu Anping.Comparison of several numerical schemes for scalar linear advaction equation[J].J.Math.,2015,35(4):977-982.

里卡蒂方法研究帶泛函參數的非線性脈沖時滯雙曲方程的振動性

鄒敏,陳榮三,劉安平

(中國地質大學(武漢)數學與物理學院,湖北武漢430074)

本文研究了帶泛函參數的非線性脈沖時滯雙曲方程的振動性問題.利用積分平均法和里卡蒂方法得到了這類方程解的振動性的一個充分條件,對非線性時滯雙曲方程解的震動性進行了推廣,能更好地利用一些現有的脈沖時滯常微分方程解的振動性的結論.

振動;脈沖;時滯;雙曲方程;Riccati不等式

O175.27

A

0255-7797(2017)05-1007-06

?Received date:2015-11-25Accepted date:2016-03-04

Supported by National Natural Science Foundation of China(11201436).

Biography:Zou min(1981-),female,born at Xiantao,Hubei,lecturer,major in partial dif f erential equation.

2010 MR Subject Classif i cation:58J45;35B05

猜你喜歡
振動
振動的思考
科學大眾(2023年17期)2023-10-26 07:39:14
某調相機振動異常診斷分析與處理
大電機技術(2022年5期)2022-11-17 08:12:48
振動與頻率
天天愛科學(2020年6期)2020-09-10 07:22:44
This “Singing Highway”plays music
具非線性中立項的廣義Emden-Fowler微分方程的振動性
中立型Emden-Fowler微分方程的振動性
基于ANSYS的高速艇艉軸架軸系振動響應分析
船海工程(2015年4期)2016-01-05 15:53:26
主回路泵致聲振動分析
UF6振動激發態分子的振動-振動馳豫
計算物理(2014年2期)2014-03-11 17:01:44
帶有強迫項的高階差分方程解的振動性
主站蜘蛛池模板: 亚洲天堂日韩在线| 欧美日本在线播放| 永久成人无码激情视频免费| 中文字幕波多野不卡一区| 国产成人啪视频一区二区三区| 在线观看国产精美视频| 少妇人妻无码首页| 中文字幕无码电影| 国产成+人+综合+亚洲欧美| 国产成人一级| 国产欧美日韩另类| 97色婷婷成人综合在线观看| 老熟妇喷水一区二区三区| 99久久国产综合精品女同| a毛片在线播放| 在线观看国产精品一区| 欧美亚洲国产视频| 日韩大乳视频中文字幕| 国产经典三级在线| 五月丁香伊人啪啪手机免费观看| 中文字幕欧美日韩高清| A级毛片无码久久精品免费| 伊人激情综合网| 真实国产乱子伦高清| jizz在线观看| 亚洲国产成人精品青青草原| 国产超碰一区二区三区| 亚洲无线一二三四区男男| 亚洲人妖在线| 91无码人妻精品一区二区蜜桃| 在线日韩日本国产亚洲| 无码精品国产VA在线观看DVD| 自拍亚洲欧美精品| 国产高清精品在线91| 国产精品亚洲一区二区三区在线观看 | 国产在线第二页| 国产成人凹凸视频在线| 2020国产在线视精品在| 无码综合天天久久综合网| 亚洲最新在线| 中国丰满人妻无码束缚啪啪| 国产国语一级毛片| 久久人人97超碰人人澡爱香蕉| 日韩在线永久免费播放| 成人免费视频一区| 亚洲国产无码有码| 97se亚洲综合| 91久久国产综合精品女同我| 国产成人一区在线播放| 国产精品亚洲欧美日韩久久| 自拍欧美亚洲| 国产精品密蕾丝视频| 尤物成AV人片在线观看| 99久久人妻精品免费二区| 亚洲性网站| 一级毛片免费高清视频| 高潮毛片免费观看| 亚洲国产成人综合精品2020| 欧日韩在线不卡视频| 成人小视频在线观看免费| 亚洲成a人片| 国产第一福利影院| 在线无码av一区二区三区| 18禁黄无遮挡网站| 国产不卡网| 呦女精品网站| 色偷偷男人的天堂亚洲av| 亚洲av日韩综合一区尤物| 波多野结衣久久高清免费| 欧美精品一区在线看| 国产人成在线视频| 国产黄色片在线看| 国产青榴视频| 久草中文网| 久久香蕉国产线看精品| 天堂亚洲网| 欧美成人午夜视频免看| 日韩无码视频专区| 国产97公开成人免费视频| 久久精品嫩草研究院| 亚洲中文精品人人永久免费| 黄色网站不卡无码|