999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

LIOUVILLE TYPE THEOREMS FOR A NONLINEAR ELLIPTIC EQUATION

2017-09-15 05:57:28XIANGNiCHENYong
數學雜志 2017年5期

XIANG Ni,CHEN Yong

(School of Mathematics and Statistics,Hubei University,Wuhan 430062,China)

LIOUVILLE TYPE THEOREMS FOR A NONLINEAR ELLIPTIC EQUATION

XIANG Ni,CHEN Yong

(School of Mathematics and Statistics,Hubei University,Wuhan 430062,China)

Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold.In this paper,we consider the Liouville type theorems for positive solutions to the following nonlinear elliptic equation:Δfu+aulogu=0,where a is a nonzero constant.By applying Bochner formula and the maximum principle,we obtain local gradient estimates of the Li-Yau type for positive solutions of the above equation on Riemannian manifolds with Bakry-Emery Ricci curvature bounded from below and some relevant Liouville type theorems,which improve some results of[7].

gradient estimate;nonlinear elliptic equation;Liouville-type theorem;maximum principle

1 Introduction

Let(Mn,g)be an n-dimensional complete Riemannian manifold.The drifting Laplacian is def i ned by Δf=Δ-?f?,where f is a smooth function on M.The N-Bakry-Emery Ricci tensor is def i ned by

for 0≤N<∞and N=0 if and only if f=0,where f is some smooth function on M,?2is the Hessian and Ric is the Ricci tensor.The∞-Bakry-Emery Ricci tensor is def i ned by

In particular,Ricf=λg is called a gradient Ricci soliton which is extensively studied in Ricci f l ow.

In this paper,we want to study positive solutions of the nonlinear elliptic equation with the drifting Laplacianon an n-dimensional complete Riemannian manifold(Mn,g),where a is a nonzero constant. When f=constant,the above equation(1.1)reduces to

Equation(1.2)is closely related to Ricci soliton[9]and the famous Gross Logarithmic Sobolev inequality[6].Ma[9]f i rst studied the positive solutions of equation(1.2)and derived a local gradient estimate for the case a<0.Then the gradient estimate for the case a>0 is obtained in[4]and[15]by studying the related heat equation of(1.2).More progress of this and related equations can be found in[2,8,10,13,14]and the references therein.Recently, inspired by the method used by Brighton in[1],Huang and Ma[7]derived local gradient estimates of the Li-Yau type for positive solutions of equations(1.2).These estimates are dif f erent from those in[4,9,15].Using these estimate,they can easily get some Liouville type theorems.We want to generalize their results to equation(1.1)and we obtain the following results

Theorem 1.1Let(Mn,g)be an n-dimensional complete Riemannian manifold with≥-K,where K is a nonnegative constant.Assuming that u is a positive solution of the nonlinear elliptic eq.(1.1).Then on Bp(R),we have the following inequalities

(1)If a>0,then

Let R→∞,we have the following gradient estimates on complete noncompact Riemannian manifolds.

Corollary 1.2Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold with-K,where K is a nonnegative constant.Assuming that u is a positive solution of the nonlinear elliptic eq.(1.1).Then the following inequalities hold

(1)if a>0,then

In particular,for a<0,if a≤-K,then max{0,a+K}=0.Thus,(1.5)implies |?u|≤0 whenever u is a bounded positive solution of the nonlinear elliptic(1.1).Hence u≡1.Therefore the following Liouville-type result follows.

Corollary 1.3Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold with RicNf≥-K,where K is a nonnegative constant.Assuming that u is a bounded positive solution of(1.1)with a<0.If a≤-K,then u≡1.

In particular,we have the following conclusion

Corollary 1.4Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold with RicNf≥0.Assuming that u is a bounded positive solution def i ned of(1.1) with a<0,then u≡1.

The above results are obtained under the assumption that RicNfis bounded by below. We can also obtain similar results under the assumption that Ricfis bounded by below.

Theorem 1.5Let(Mn,g)be an n-dimensional complete Riemannian manifold with Ricf(BP(2R))≥-(n-1)H,and|?f|≤K,where K and H is a nonnegative constant. Assuming that u is a positive solution of the nonlinear elliptic eq.(1.1)on Bp(2R).Then on Bp(R),the following inequalities hold

(1)if a>0,then

In particular,for a<0,if a≤-(n-1)H,then max{0,a+(n-1)H}=0.Thus,(1.10) implies|?u|≤0 whenever u is a bounded positive solution to(1.1).Hence,that u≡1. Therefore,the following Liouville-type result follows

Corollary 1.7Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold with Ricf≥-(n-1)H,and|?f|≤K,where K and H is a nonnegative constant. Assuming that u is a bounded positive solution of(1.1)with a<0.If a≤-(n-1)H,then u≡1.

In particular,we have the following conclusion.

Corollary 1.8Let(Mn,g)be an n-dimensional complete noncompact Riemannian manifold with Ricf≥0.Assuming that u is a bounded positive solution of(1.1)with a<0, then u≡1.

2 The Proof of Theorems

Now we are in the position to give the proof of Theorem 1.1.First we recall the following key lemma.

Lemma 2.1 Let(Mn,g)be an n-dimensional complete Riemannian manifold with RicNf(BP(2R))≥-K,where K is a nonnegative constant.Assuming that u is a positive solution to nonlinear elliptic eq.(1.1)on Bp(2R).Then on Bp(R),the following inequalities hold

(1)If a>0,then

Proof of Lemma 2.1 Let h=u?,where ? 6=0 is a constant to determined.Then we have

A simple calculation implies

Therefore we get

In order to obtain the bound of|?h|by applying the maximum principle to(2.7),it is sufficient to choose the coefficienis positive,that is

Now we begin to prove Theorem 1.1 which will follow by applying comparison theorems and Bochner formula to an appropriate function h.

Proof of Theorem 1.1 We f i rst prove the case of a>0.Let m be a cut-of ffunction such that m(r)=1 for r≤1,m(r)=0 for r≥2,0≤m(r)≤1,and

for positive constants c1and c2.Denote by ρ(x)=d(x,p)the distance between x and p in (Mn,g).Let

Making use of an argument of Calabi[3](see also Cheng and Yau[5]),we can assume without loss of generality that the function φ is smooth in Bp(2R).Then we have

It was shown by Qian[11]that

Hence we have

It follows that

Def i ne G=φ|?h|2,we will use the maximum principle for G on Bp(2R).Assume G achieves its maximum at the point x0∈Bp(2R)and assume G(x0)>0(otherwise this is obvious).Then at the point x0,it holds that

Using(2.1)in Lemma 2.1,we obtain

where the second inequality used(2.10).Multiplying both sides of(2.14)by,we obtain

Then using the Cauchy inequality,we have

So for x0∈Bp(R),we have

This shows

and

This concludes the proof of inequality(1.4)of Theorm 1.1.

Now we are in the position to give a brief proof of Theorem 1.5.

Skept of the Proof of Theorem 1.5 Noticing that we have the following Bochner formula to h with Ricf,

Moreover,the comparison theorem holds true in the following form(see Theorem 1.1 in [12]):if Ricf≥-K and|?f|≤K,we have

Noticing the above facts,the proof of Theorem 1.5 is the same to that of Theorem 1.1,so we omit it here.

[1]Brighton K.A Liouville-type theorem for smooth metric measure spaces[J].Geom.Anal.,2010, 23(2):562-570.

[2]Cao X,Ljungberg B F,Liu B.Dif f erential Harnack estimates for a nonlinear heat equation[J].Funct. Anal.,2013,265(10):2312-2330.

[3]Calabi E.An extension of E.Hopf’s maximum principle with a pplication to Riemannian geometry [J].Duke Math.,1958,25(1):45-56.

[4]Chen L,Chen W.Gradient estimates for a nonlinear parabolic equation on complete noncompact Riemannian manifolds[J].Ann.Glob.,Anal.Geom.,2009,35(4):397-404.

[5]Cheng S,Yau S.Dif f erential equations on Riemannian manifolds and their geometric applications[J]. Communn.Pure.,Appl.Math.,1975,28(3):333-354.

[6]Gross L.Logarithmic Sobolev inequality and contractivity properties of semigroups[J].Berlin:Springer,1993,61(2):318-322.

[7]Huang G,Ma B.Gradient estimates and Liouville type theorems for a nonlinear elliptic equation[J] Arch.Math.,2015,105(5):491-499.

[8]Huang G,Huang Z,Li H.Gradient estimates and dif f erential Hararck inequalities for a nonlinear parabolic equation on Riemannian manifolds[J].Ann.Glob.,Anal.Geom.,2013,43(3):209-232

[9]Ma L.Gradient estimates for a simple elliptic equation on complete noncompact Riemannian manifolds[J].Funct.Anal.,2006,241(1):374-382.

[10]Qian B.A uniform bound for the solutions to a simple nonlinear equation on Riemannian manifolds[J].Nonlinear Anal,2010,73(6):1538-1542.

[11]Qian Z.A comparison theorem for an elliptic operator[J].Potent.Anal.,1998,8(2):137-142.

[12]Wei G,Wylie W.Comparison geomtry for the Bakry-Emery Ricci tensor[J].Dif f.Geom.,2009, 83(2):377-405.

[13]Wu J Y.Li-Yau type estimates for a nonlinear parabolic equation on complete manifolds[J].Math. Anal.,2010,369(1):400-407.

[14]Yau S T.Harmonic functions on complete Riemannian manifolds[J].Comm.Pure.,Anal.Math., 1975,28(2):201-228.

[15]Yang Y.Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds[J].Proc. Amer.,Math.Soc.,2008,136(11):4095-4102.

一類非線性橢圓方程的劉維爾型定理

向妮,陳勇

(湖北大學數學與統計學院,湖北武漢430062)

設(Mn,g)是一個n維非緊的完備黎曼流行.本文考慮有正解的非線性橢圓方程Δfu+ aulogu=0的劉維爾型定理,其中a是一個非零常數.利用Bochner公式和極大值原理,獲得了以上方程在Bakry-Emery里奇曲率有下界時正解的Li-Yau型梯度估計和某些有關的劉維爾理論,推廣了文獻[7]的結果.

梯度估計;非線性橢圓方程;劉維爾型定理;極大值原理

O175.25;O175.29

A

0255-7797(2017)05-0977-10

?Received date:2016-04-29Accepted date:2016-08-24

Supported by the National Natural Science Foundation of China(11201131); Hubei Key Laboratory of Applied Mathematics(Hubei University).

Biography:Xiang Ni(1981-),female,born at Chongqing,associate professor,major in fully nonlinear partial dif f erential equations.

2010 MR Subject Classif i cation:53C21;35J60

主站蜘蛛池模板: 色亚洲成人| 99色亚洲国产精品11p| 日韩国产黄色网站| 不卡无码网| 欧美日韩激情在线| 亚洲天堂伊人| 97成人在线视频| 精品久久久久久成人AV| 欧美精品H在线播放| 伊人无码视屏| 无码内射在线| 国产黑丝一区| 视频二区亚洲精品| 国产无遮挡猛进猛出免费软件| 国产亚洲精品精品精品| 日韩天堂网| yjizz视频最新网站在线| 精品视频在线观看你懂的一区| 干中文字幕| 欧美一区日韩一区中文字幕页| 亚洲精品第一在线观看视频| 国产成人欧美| 色综合狠狠操| 色综合中文字幕| 五月丁香伊人啪啪手机免费观看| 国产不卡国语在线| 国产精品视屏| 蜜桃臀无码内射一区二区三区| 欧美色亚洲| h网站在线播放| 国产香蕉97碰碰视频VA碰碰看| 欧美中文字幕一区| 亚洲国产精品无码久久一线| 亚洲成A人V欧美综合| 亚洲精品高清视频| 久久精品欧美一区二区| 久久熟女AV| 国产精品v欧美| 亚洲第一网站男人都懂| 浮力影院国产第一页| 国产尤物jk自慰制服喷水| 91精品免费高清在线| 国产靠逼视频| 99无码中文字幕视频| 亚洲成人精品| 国产永久在线观看| 欧美色99| 在线日本国产成人免费的| 欧美天堂在线| 91偷拍一区| 亚洲一级毛片免费看| 欧美激情综合| 中国精品自拍| 婷婷六月激情综合一区| 国产成人精品在线| 天堂亚洲网| 99青青青精品视频在线| 亚洲一区二区日韩欧美gif| 岛国精品一区免费视频在线观看| 亚洲第一综合天堂另类专| 亚洲,国产,日韩,综合一区 | 亚洲视频欧美不卡| 日韩免费视频播播| 久久国产乱子伦视频无卡顿| 亚国产欧美在线人成| 国产毛片高清一级国语| 日韩免费毛片视频| 亚洲综合激情另类专区| 久久女人网| 91在线精品麻豆欧美在线| 国产日韩久久久久无码精品| 日韩欧美高清视频| 亚洲视频免| 国产精品无码一二三视频| 在线国产91| 国产成人AV综合久久| 在线精品亚洲一区二区古装| 久久伊人色| 国产va在线| 午夜精品福利影院| 9cao视频精品| 国产一区二区三区在线观看视频|