999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

AN EXPLICIT FORMULA FOR THE FOURTH MOMENT OF TWO-TERM EXPONENTIAL SUMS

2017-09-15 05:56:56AIXiaochuanCHENHuaZHANGSilan
數(shù)學(xué)雜志 2017年5期

AI Xiao-chuan,CHEN Hua,ZHANG Si-lan

(1.Department of Applied Mathematics,School of Science,Naval University of Engineering, Wuhan 430033,China)

(2.School of Science,Hubei University of Technology,Wuhan 430068,China)

(3.College of Science,Huazhong Agricultural University,Wuhan 430070,China)

AN EXPLICIT FORMULA FOR THE FOURTH MOMENT OF TWO-TERM EXPONENTIAL SUMS

AI Xiao-chuan1,CHEN Hua2,ZHANG Si-lan3

(1.Department of Applied Mathematics,School of Science,Naval University of Engineering, Wuhan 430033,China)

(2.School of Science,Hubei University of Technology,Wuhan 430068,China)

(3.College of Science,Huazhong Agricultural University,Wuhan 430070,China)

The fourth power mean of two-term exponential sums is studied in this paper. By elementary and algebraic methods,an explicit computation formula and a transform formula are proposed,which extend the original research results and discover the essential relation between fourth moment and congruence equations.

two-term exponential sums;mixed exponential mean;fourth power mean;transform formula

1 Introduction

For integers m,n,q,k with q≥3,k≥2,we def i ne a two-term exponential sums

or(p,m)=1,where θ=2/3 for k=3 and θ=3/4 for k>3.Afterwards,Hua[9]showed that θ=1/2 for all k≥2 by using Weil’s estimate for exponential sums over f i nite f i elds.Till now,many improvements for(1.2)were made by Loxton,Vaughan and Smith[5,6,11]. Carlitz[7,8]studied the computation problem of the two-term exponential C(m,n,k;p) over fi nite fi elds and obtained the computational formulas for k=3 and k=p+1.As to the two-term exponential sums with Dirichlet character C(m,n,k,χ,q)= Xu[13],Liu[3],Chen[14,15],Ai[16]and Calderon[1]also acquired a lot of research results.More,about the three-term exponential sums,there were also some interesting results[17-19].

Though the single value of C(m,n,k;q)is irregular,the high power means that value of C(m,n,k;q)owns graceful arithmetical properties and it in turn becomes an interesting focus for many attentions.In 2010,Liu[4]acquired the computational formula of the fourth mean value,i.e.,when p is an odd prime with(n,p)=1,then

In 2011,Wang,Zhang[12]studied the computation problem of the fourth moment of two-term mixed exponential sums with elementary algebraic method.They proved that when p is a prime and(n,p)=1,then

When p is a prime,(n,p)=1 and(3,p-1)=1,then p

Unfortunately,though Liu,Wang got the explicit formulas ofwith k≥1,k=-1,1,2,3(mod(p-1)),the result under the condition k≥1,k≡5(mod(p-1)) was not solved.In this paper,this computation problem will be solved and the explicit formulas will be given.Moreover we shall give a transform formula and a lower bound formula for the fourth moment of two-term exponential sums.The main results are the following two theorems.

Theorem 1.1 Let p be a prime with p≥5,(5,p-1)=1,n be an integer with (n,p)=1,then for k≥1,k≡5(mod(p-1)),we have

Theorem 1.2 Let p be a prime with p≥3,(k,p-1)=1,n be an integer with (n,p)=1,then we have

2 Preliminaries

To prove the main results,necessary lemmas are listed and proved as below.

Lemma 2.1 For arbitrary integers a,b,c,let p be an odd prime with(a,p)=1 and denote N1as the number of the solutions of the congruence equation ax2+bx+c≡0(mod p), then

Proof From Theorem 3.5.1 in ref.[10],we immediately get the result.

Lemma 2.2 Let p be an odd prime,N2denote the number of the solutions of the congruence equation c2-c+1≡0(modp),then

And if p≡1,-5(mod12),1,p are not solutions.

Proof Since(1,p)=1,by Lemma 2.1,we have

In conclusion,we have

And straight forward calculation shows that 1,p are not solutions.

Proof See Theorem 7.8.2 in ref.[10].

Lemma 2.4Let p be an odd prime,k be an odd positive integer anddenote the number of the solutions of the congruence equation

where a,c are integers with 2≤a,c≤p-1,then we have Nk,p≥2p-5.

Proof It is obviously to show that a≡c(mod p)is fi t for equation(2.1),now we consider the case c≡a(mod p).

After substituting c≡a(mod p)into the left part of formula(2.1),we have

Again,c≡a(mod p)is substituted into the right part of(2.1).Since k is an odd integer,then

Therefore

So c≡a(mod p)is also fi t for equation(2.1).

Moreover a≡c(mod p)and a≡c(mod p)have the same solution(a,c)=(p-1,p-1). Hence Nk,p≥2p-5.

Lemma 2.5Let p be a prime with p>3 and N3denote the number of the solutions of the congruence equation

where a,c are integers with 2≤a,c≤p-1,then we have

Proof Case 1For a fi xed c,2≤c≤p-1,if c2-c+1 6≡0(mod p),from Lemma 2.1, the number of the solutions of equation(2.2)is

where 3 satis fi es 3·3≡1(mod p).If a≡1(mod p)satis fi es equation(2.2),then c≡1(mod p);If a≡0(mod p)satis fi es equation(2.2),then c2-c+1≡0(mod p),that contradicts.

Case 2 For a fi xed c,2≤c≤p-1,if c2-c+1≡0(mod p),then equation(2.2)is (c2+1)a≡0(mod p),namely ca≡0(mod p),therefore congruence equation(2.2)has nosolution.So we have

By using Lemma 2.3,we have

Lemma 2.6 Let p be a prime,p>5 and N5,pdenote the number of the solutions of the congruence equation

where a,c are integers with 2≤a,c≤p-1,then we have

Proof By using factorization method,we know that equation(2.3)equivalents to

Noting that p is a prime with p>5 and 2≤a,c≤p-1,we have

where||denotes the number of the elements of the set.

(a)It is obviously that S1∩S2={(p-1,p-1)}and thus|S1∩S2|=1.

Now we can see that the case is similar to case(b).Therefore we have if p≡1(mod4),then |S2∩S3|=2;if p≡-1(mod4),then|S2∩S3|=0.So

Lemma 2.7Let p be an odd prime with(n,p)=1 and(k,p-1)=1,then we have

With the condition(n,p)=1 and from the trigonometric identity,

3 Proof of the Theorems

First we prove Theorem 1.1.

Proof By Lemma 2.7,we have

From Lemma 2.6,we have

This proves Theorem 1.1.

Finally we complete the proof of Theorem 1.2.

Proof By Lemma 2.7 and Lemma 2.4,we have

[1]Calderon C,Develasco M J,Zarate M J.An explicit formula for the fourth moment of certain exponential sums[J].Acta Math.Hungar,2011,130(3):203-222.

[2]Darvenport H,Heibronn H.On an exponential sum[J].Proc.London Math.Soc.,1936,41:49-53.

[3]Liu H N.Mean value of mixed exponential sums[J].Proc.Amer.Math.Soc.,2008,136(4):1193-1203.

[4]Liu H N.Mean value of some exponential sums and applications to Kloosterman sums[J].J.Math. Anal.Appl.,2010,361(4):205-223.

[5]Loxton J H,Smith R A.On Hua’s estimate for exponential sums[J].J.London Math.Soc.,1982, 26(2):15-20.

[6]Loxton J H,Vaughan R C.The estimate for complete exponential sums[J].Canada Math.Bull., 1995,26(4):442-454.

[7]Carlitz L.Explicit evaluation of certain exponential sums[J].Math.Scand.,1979,44:5-16.

[8]Carlitz L.Evaluation of some exponential sums over a f i nite f i eld[J].Math.Nachr.,1980,96:319-339.

[9]Hua L K.On exponential sums[M].Peking,N.S.:Sci.Record,1957.

[10]Hua L K.Introduction to number theory[M].Beijing:Sci.Press,1979.

[11]Smith R A.On n-dimensional Kloosterman sums[J].J.Number Theory,1979,11:324-343.

[12]Wang T T,Zhang W P.Mean value of the mixed fourth and sixth exponential sums[J].China Sci., 2011,41(3):265-270.

[13]Xu Z F,Zhang T P,Zhang W P.On the mean value of the two-term exponential sums with Dirichlet characters[J].J.Number Theory,2007,123(2):352-362.

[14]Chen H,Chen J H,Cai G X,Ai X C,Zhang S L.Explicit formulas for the fourth moment of mixed exponential sums[J].J.Number Theory,2013,133(5):1484-1491.

[15]Chen H,Ai X C,Cai G X.A note on mean value of mixed exponential sums[J].J.Number Theory, 2014,144(11):234-243.

[16]Ai X C,Chen J H,Chen H,Zhang S L.Explicit formulas for the fourth moment of certain two-term exponential sums[J].J.Comp.Model.New Tech.,2014,18(12A):232-239.

[17]Ai X C,Chen J H,Chen H,Zhang S L.Explicit formulas for the fourth moment of three-term exponential sums[A].2014 International Joint Conference on Applied Mathematics,Statistics and Public Administration(IJAMSPA 2014)[C].Changsha:ISBN:978-1-60595-187-4.

[18]Ai X C,Chen J H,Zhang S L,Chen H.Researching the relation between the three-term exponential sums and the system of the congruence equations[J].J.Math.,2013,33(3):535-540.

[19]Ai X C,Chen J H,Chen H,Zhang S L.Explicit formulas for the mean value of high gauss sums.J. Math.,2015,35(4):941-944.

二項(xiàng)指數(shù)和四次混合均值的計(jì)算

艾小川1,陳華2,張四蘭3

(1.海軍工程大學(xué)理學(xué)院應(yīng)用數(shù)學(xué)系,湖北武漢430033)
(2.湖北工業(yè)大學(xué)理學(xué)院,湖北武漢430068)
(3.華中農(nóng)業(yè)大學(xué)理學(xué)院,湖北武漢430070)

本文研究了二項(xiàng)指數(shù)和四次均值的計(jì)算問(wèn)題.利用初等數(shù)論及代數(shù)數(shù)論的方法獲得了一個(gè)精確的計(jì)算公式以及一個(gè)轉(zhuǎn)換公式,推廣了已有的結(jié)果,揭示了均值計(jì)算與同余方程組的本質(zhì)聯(lián)系.

二項(xiàng)指數(shù)和;混合均值;四次均值;轉(zhuǎn)換公式

O156.2

A

0255-7797(2017)05-0945-11

?Received date:2015-09-06Accepted date:2015-11-25

Supported by National Natural Science Foundation of China(61502156); NSF Grants of Naval University of Engineering(HGDQNSQJJ15001);NSF Grants of Hubei Province (2014CFB189).

Biography:Ai Xiaochuan(1978-),female,born at Nanjing,Jiangsu,lector,major in number theory and cryptography.

Chen Hua.

2010 MR Subject Classif i cation:11T23;11T24

主站蜘蛛池模板: 亚洲第一视频免费在线| 91年精品国产福利线观看久久| 亚洲精品动漫| 精品国产网| 国产精品美人久久久久久AV| 国产成人精品优优av| 国产精品55夜色66夜色| 国产亚洲美日韩AV中文字幕无码成人 | 在线不卡免费视频| 亚洲自偷自拍另类小说| 国产午夜在线观看视频| 超碰91免费人妻| 午夜国产精品视频| 91精品人妻互换| 一区二区日韩国产精久久| 无码久看视频| 国产精品jizz在线观看软件| 成人福利在线免费观看| 国产女人18水真多毛片18精品| 国产香蕉在线| 99精品免费欧美成人小视频| 三级国产在线观看| 国产成人精品高清不卡在线 | 伊人精品视频免费在线| 四虎永久在线精品影院| 国产91导航| 色网站免费在线观看| 伊人久久大线影院首页| 日韩A∨精品日韩精品无码| aaa国产一级毛片| 2019年国产精品自拍不卡| 国产精品久久久久久久伊一| 中文无码日韩精品| 国产主播福利在线观看| 色综合久久88色综合天天提莫| 国内精品小视频福利网址| 日本一区二区不卡视频| 日日噜噜夜夜狠狠视频| 欧美日韩中文国产va另类| 精品超清无码视频在线观看| 一区二区在线视频免费观看| 国产美女91视频| 99re经典视频在线| 国产网站在线看| 日韩高清在线观看不卡一区二区| 日本不卡在线播放| 亚洲中文无码h在线观看| 999国产精品永久免费视频精品久久 | 91麻豆精品国产高清在线| 国产黄在线观看| 波多野结衣二区| 狠狠色噜噜狠狠狠狠色综合久| 国产打屁股免费区网站| 欧美精品在线观看视频| 亚洲中文字幕在线观看| 干中文字幕| 色播五月婷婷| 18禁不卡免费网站| 日韩一区二区在线电影| 久久久四虎成人永久免费网站| 亚洲天堂久久新| 国产剧情伊人| 国产精品女同一区三区五区 | 欧美一级高清视频在线播放| 亚洲AV电影不卡在线观看| 成人免费黄色小视频| 亚洲无线一二三四区男男| 国产美女在线观看| 久久99国产乱子伦精品免| 亚洲国产日韩一区| 亚洲日韩高清无码| 国产亚洲欧美另类一区二区| 成人午夜久久| 欧美日一级片| 国产欧美日本在线观看| P尤物久久99国产综合精品| 久久黄色影院| 亚洲综合二区| 91在线无码精品秘九色APP| 欧美97欧美综合色伦图| 香蕉蕉亚亚洲aav综合| 野花国产精品入口|