999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

ESTIMATION OF GROWTH OF MEROMORPHIC SOLUTIONS OF SECOND ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS

2017-09-15 05:56:08ZHANGJianjunYUANWenjun
數學雜志 2017年5期
關鍵詞:數學

ZHANG Jian-jun,YUAN Wen-jun

(1.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

(2.School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China)

ESTIMATION OF GROWTH OF MEROMORPHIC SOLUTIONS OF SECOND ORDER ALGEBRAIC DIFFERENTIAL EQUATIONS

ZHANG Jian-jun1,YUAN Wen-jun2

(1.School of Mathematics and Information Technology,Jiangsu Second Normal University, Nanjing 210013,China)

(2.School of Mathematics and Information Science,Guangzhou University,Guangzhou 510006,China)

In this paper,we investigate the growth order of meromorphic solution of algebraic dif f erential equations.By using normal family theory,we give an estimation of the growth order of meromorphic solutions of certain class of second order algebraic dif f erential equations,which depend on the degrees of rational function coefficients of the equations,and generalize a result by Liao Liangwen and Yang Chungchun(2001).

algebraic dif f erential equations;meromorphic functions;growth order

1 Introduction

Let f(z)be a function meromorphic in the complex plane C.We assume that the reader is familiar with the standard notations and results in Nevanlinna’s value distribution theory of meromorphic functions(see e.g.[1-3]).We denote the order of f(z)by ρ(f).

As one knows,it was one of the important topics to research the algebraic dif f erential equation of Malmquist type.In 1913,Malmquist[4]gave a result for the f i rst order algebraic dif f erential equations.In 1933,Yosida[5]proved the Malmquist’s theorem by using the Nevanlinna theory.In 1970s,Laine[6],Yang[7]and Hille[8]gave a generalization of Malmquist’s theorem.Later,Steinmetz[9],Rieth[10]and He-Laine[11]all gave corresponding generalizations of Malmquist’s theorem for the f i rst order algebraic dif f erential equations. In 1980,Gackstatter and Laine[12]gave a generalized result of Malmquist’s theorem for some certain type of higher order algebraic dif f erential equations.However,Malmquist type theorem for an arbitrary second order algebraic dif f erential equation remains open.For a second

order algebraic dif f erential equation

where R is a rational function in z,f and f′,a classical and unsolved conjecture is the following.

Conjecture 1.1(see[3])If equation(1.1)has a transcendental meromorphic solution, then the equation can be reduced into the form

where Li(z,f)(i=0,1,2)are rational functions in their variables.

In 2011,Gao,Zhang and Li[13]studied the problem of growth order of solutions of a type of non-linear algebraic dif f erential equations.In 2001,Liao and Yang[14]considered the f i nite order of growth of the meromorphic solutions of equation(1.2)and obtained the following result.

Theorem ALet f be a meromorphic solution of equation(1.2).Further assume that L2(z,f)6≡0 in equation(1.2)and has the form

where ai(z),bj(z)(s≤i≤n,r≤j≤m)are rational functions.If m-n<1 or r-s>1, then ρ(f)<∞.

RemarkThe conditions m-n<1 and r-s>1 in Theorem A cannot be omitted simultaneously.Liao and Yang[14]gave a simple example to show it.

The paper is organized into 3 sections.After introduction some basic concepts and lemmas will be given in Section 2.In Section 3,we will give the main results.

2 Preliminaries

Let D be a domain in C.We say that a family F of meromorphic functions in D is normal,if each sequence{fn}?F contains a subsequence which converges locally uniformly by spherical distance to a meromorphic function g(z)in D(g(z)is permitted to be identically inf i nity).In this paper,we denote the spherical derivative of meromorphic function f(z)by f](z),where

and def i ne

For convenience,we still assume thatrewrite equation(1.2)into

where M(z,f)=Q(z,f)L1(z,f),N(z,f)=Q(z,f)L0(z,f),P,Q are de fi ned as in Theorem A.

We denote the largest number of the degrees at inf i nity of all the rational function coefficients in variable z concerning L(z,f)by degz,∞L(z,f).Denoting

where P(z,f),Q(z,f)are two polynomials in f with rational function coefficients,M(z,f) and N(z,f)are rational functions in variable z and f.

The following lemmas will be needed in the proof of our results.Lemma 2.1 is a result of Zalcman concerning normal families.

Lemma 2.1(see[15])Let F be a family of meromorphic functions on the unit disc,α is a real number.Then F is not normal on the unit disc if and only if there exist,for each -1<α<1,

a)a number r,0<r<1;

b)a sequence points{wk},|wk|<r; c)a sequence{fk}k∈N?F;

d)a positive sequence{ρk},ρk→0

The next lemma is a generalization of the Lemma 2 in[16]of Yuan et al.

Lemma 2.2Let f(z)be meromorphic in the complex plane,ρ:=ρ(f)>2,then for any positive constants ε>0 and 0<λ<,there exist points zk→∞(k→∞),such that

ProofSuppose that the conclusion of Lemma 2.2 is not true,then there exist a positive number M>0,such that for arbitrary z∈C,we have

Thus we obtain an estimation of Ahlfors-Shimizu characteristic function

Therefore,the order of f(z)can be estimated as ρ≤2+,namely,λ≥This is a contradiction with the choice of λ.

Lemma 2.3(see[17])Let f(z)be holomorphic in the complex plane,σ>-1.If f](z)=O(rσ),then T(r,f)=O(rσ+1).

The result of Lemma 2.4 is more sharper than Lemma 2.2 when f(z)is an entire function.

Lemma 2.4Let f(z)be holomorphic in the complex plane,ρ:=ρ(f)>1,then for any positive constants ε>0 and 0<λ<(ρ-1)ε,there exist points zk→∞,as k→∞, such that

ProofSuppose that the conclusion of Lemma 2.4 is not true,then there exist a positive number M>0,such that for arbitrary z∈C,we havenamely,.By Lemma 2.3,we have

Therefore the order of f(z)can be estimated as ρ≤1+λε,namely,λ≥(ρ-1)ε.This is a contradiction with the choice of λ.

3 Main Results

We are now giving our main results as follows.

Theorem 3.1Let f be a meromorphic solution of equation(2.1).Further assume that6≡0 in equation(2.1),M(z,f)6≡0,N(z,f)6≡0 are birational functions and have following forms

where cj1(z)(t1≤j1≤q1),dj2(z)(t2≤j2≤q2),ej3(z)(t3≤j3≤q3)and uj4(z)(t4≤j4≤q4)are rational functions,ct1(z)6≡0,dt2(z)6≡0,et3(z)6≡0 and ut4(z)6≡0,then

By Lemma 2.2 we know that forthere exist points zk→∞,as k→∞,such that

This implies that the family{f(zk+z)}k∈Nis not normal at z=0.Then by Lemma 2.1, there exist a sequence{βk}and a positive sequence{ρk}such that

and gk(ζ):=converges locally uniformly to a nonconstant meromorphic function g(ζ).In particular,we may choose βkand ρk,such that

According to(3.1),(3.2)and(3.3),we can get the following conclusion.

For positive constant α and any constant 0≤λ<we have

Substituting βk+ρkζ for z in(2.1),we have

Case 2 r-s>1.We choose α such that 0<α<minand assume that

Then there exist a sequence{βk}and a positive sequence{ρk}satisfying

such that hk(ζ)=ρ-αkf(βk+ρkζ)converges locally uniformly to a nonconstant meromorphic function h(ζ).By similar argument as in Case 1,we can obtain

Hence h is a constant,which is a contradiction.Thus we have completed the proof of Theorem 3.1.

Similarly,from the proof of Theorem 3.1 and Lemma 2.4,we have

Corollary 3.2Let f be an entire solution of equation(2.1).Further assume that≡0 in equation(2.1),M(z,f)6≡0,N(z,f)6≡0 are birational functions and have the forms

where cj1(z)(t1≤j1≤q1),dj2(z)(t2≤j2≤q2),ej3(z)(t3≤j3≤q3)and uj4(z)(t4≤j4≤q4)are rational functions,ct1(z)6≡0,dt2(z)6≡0,et3(z)6≡0,ut4(z)6≡0,then

-s>1

.

Remark In Theorem 3.1 and Corollary 3.2,if m-n<1,M(z,f)≡0 and N(z,f)6≡0, then for arbitrary 0<α<minthe results of Theorem 3.1 and Corollary 3.2 are also true.Similarly,if m-n<1,M(z,f)6≡0 and N(z,f)≡0,then we may choose any 0<α<min{}.If r-s>1,M(z,f)≡0 and N(z,f)6≡0,then we may choose any 0<α<min{,1}.If r-s>1,M(z,f)6≡0 and N(z,f)≡0,then we may choose any 0<α<min{,1}.If M(z,f)=N(z,f)≡0,m-n<1 or r-s>1, then we may choose any 0<α<1.

ExampleThere exists the entire function f(z)=ezn(n≥1)such that it is of order n and satis fi es the following second-order di ff erential equation

where degz,∞a=2(n-1)and 0<α<1,then the order of any meromorphic solution f of equation(3.6)can be estimated as ρ(f)≤2+and the order of any entire solution f of equation(3.6)can be estimated as ρ(f)by Theorem 3.1 and Corollary 3.2,respectively.In particular,the estimation of growth order of entire solution is sharp when n=1.

[1]Cherry W,Ye Z.Nevanlinna’s theory of value distribution[M].Monogr.Math.,Berlin:Springer-Verlag,2001.

[2]Hayman W K.Meromorphic functions[M].Oxford:Clarendon Press,1964.

[3]Laine I.Nevanlinna theory and complex dif f erential equations[M].Berlin,New York:Walter de Gruyter,1993.

[4]Malmquist J.Sur les fonctions`a un nombre f i ni des branches d′ef i nies par les′equations dif f′erentielles du premier ordre[J].Acta Math.,1913,36:297-343.

[5]Yosida K.A generalisation of Malmquist’s theorem[J].J.Math.,1932,9:253-256.

[6]Laine I.On the behavior of the solutions of some f i rst order dif f erential equations[J].Ann.Acad. Sci.Fenn.Ser.A,1971,497:1-26.

[7]Yang Chungchun.A note on Malmquist’s theorem on f i rst order dif f erential equations[J].Yokohama Math.J.,1972,20(2):115-123.

[8]Hille E.On some generalizations of the Malmquist theorem[J].Math.Scand.,1976,39:59-79.

[9]Steinmetz N.Eigenschaften eindeutiger L¨osungen gew¨ohnlicher dif f erentialgleichungen in komplexen[D].Karlsruhe:Dissertation,1978.

[10]Rieth J V.Untersuchungen gewisser Klassen gew¨ohnlicher dif f erentialgleichungen erster und zweiter ordnung im komplexen[D].Aachen:Doctoral Dissertation,Technische Hochschule,1986.

[11]He Y Z,Laine I.The Hayman-Miles theorem and the dif f erential equation(y0)n=R(z,y)[J].Anal., 1990,10(4):387-396.

[12]Gackstatter F,Laine I.Zur theorie der gew¨ohnlichen dif f erentialgleichungen im komplexen[J].Ann. Polon.Math.,1980,38:259-287.

[13]Gao Lingyun,Zhang Yu,Li Haichou.Growth of solutions of complex non-linear algebraic dif f erential equations[J].J.Math.,2011,31(5):785-790.

[14]Liao Liangwen,Yang Chungchun.On the growth of meromorphic and entire solutions of algebraic dif f erential equations[J].Ann.Mat.Pura Appl.,2001,IV(CLXXIV):149-158.

[15]Zalcman L.Normal families:new perspectives[J].Bull.Amer.Math.Soc.,1998,35:215-230.

[16]Yuan Wenjun,Xiao Bing,Zhang Jianjun.The general result of Gol’dberg’s theorem concerning the growth of meromorphic solutions of algebraic dif f erential equations[J].Compu.Math.Appl.,2009, 58:1788-1791.

[17]Clunie J,Hayman W K.The spherical derivative of integral and meromorphic functions[J].Comment.Math.Helv.,1966,40(1):117-148.

二階代數微分方程亞純解的增長性估計

張建軍1,袁文俊2

(1.江蘇第二師范學院數學與信息技術學院,江蘇南京210013)
(2.廣州大學數學與信息科學學院,廣東廣州510006)

本文研究了代數微分方程亞純解的增長級.運用正規族理論,給出了某類二階代數微分方程亞純解的增長級的一個估計,該估計依賴于方程的有理函數系數.推廣了2001年廖良文與楊重駿的一個結果.

代數微分方程;亞純解;增長級

O174.5

A

0255-7797(2017)05-0925-07

?Received date:2016-08-19Accepted date:2016-08-31

Supported by Natural Science Foundation of Jiangsu Province(BK20140767); Natural Science Foundation of the Jiangsu Higher Education Institutions(14KJB110004);Qing Lan Project of Jiangsu Province.

Biography:Zhang Jianjun(1982-),male,born at Taixing,Jiangsu,associate professor,major in complex analysis.

2010 MR Subject Classif i cation:34A34;30D35

猜你喜歡
數學
中等數學
中等數學(2021年4期)2021-12-04 13:57:52
中等數學
中等數學(2021年7期)2021-12-03 04:01:41
中等數學
中等數學(2021年1期)2021-12-02 03:08:08
中等數學
中等數學(2021年3期)2021-12-02 00:28:14
中等數學
中等數學(2020年11期)2020-12-18 01:23:21
我們愛數學
我為什么怕數學
新民周刊(2016年15期)2016-04-19 18:12:04
數學到底有什么用?
新民周刊(2016年15期)2016-04-19 15:47:52
我難過,因為我看到數學就難過
數學也瘋狂
主站蜘蛛池模板: 久久久久人妻精品一区三寸蜜桃| 日韩123欧美字幕| 伊人久久婷婷| 国产精品观看视频免费完整版| 中文字幕亚洲乱码熟女1区2区| 亚洲中文字幕在线观看| 无码一区中文字幕| 国产黄网永久免费| 免费看美女毛片| 六月婷婷激情综合| 青青青草国产| 67194亚洲无码| 国产精品网拍在线| 一本一道波多野结衣av黑人在线| 麻豆精品在线| 亚洲视频影院| 国产一级毛片网站| 毛片国产精品完整版| 国产色图在线观看| 国产又大又粗又猛又爽的视频| 亚洲欧美不卡中文字幕| 欧美在线网| 丰满人妻中出白浆| 国产精品太粉嫩高中在线观看| 黄色网站在线观看无码| 亚洲精品色AV无码看| 小说区 亚洲 自拍 另类| 亚洲av成人无码网站在线观看| 亚洲成人播放| 久久人搡人人玩人妻精品一| 国产高清不卡| 欧美日韩资源| 中文字幕啪啪| 无码有码中文字幕| 欧美福利在线| 亚洲成人网在线播放| 国产精品吹潮在线观看中文 | 国产成人久久综合777777麻豆| 国产日韩久久久久无码精品| 免费国产好深啊好涨好硬视频| 2024av在线无码中文最新| 免费一看一级毛片| 国产在线观看一区精品| 亚洲中字无码AV电影在线观看| 国产丝袜丝视频在线观看| 国产一线在线| 一级毛片视频免费| 国产女人水多毛片18| 成人国产精品一级毛片天堂| 国产成人av大片在线播放| 无码一区二区三区视频在线播放| 国产欧美在线观看视频| 亚洲欧美不卡| 久久狠狠色噜噜狠狠狠狠97视色| 在线a视频免费观看| 538国产在线| 沈阳少妇高潮在线| 成人一级黄色毛片| 色综合五月婷婷| 亚洲综合久久成人AV| 国产成人亚洲综合A∨在线播放| 亚洲国产成人自拍| 亚洲日韩精品综合在线一区二区| 超清无码一区二区三区| 1769国产精品视频免费观看| 成人韩免费网站| 久久中文电影| 72种姿势欧美久久久久大黄蕉| 亚洲视频三级| 日韩在线第三页| 亚洲天堂视频在线免费观看| 国产幂在线无码精品| 东京热av无码电影一区二区| 日韩不卡高清视频| 99热最新在线| 国产成人1024精品| 国产精品无码影视久久久久久久| 都市激情亚洲综合久久| 亚洲色欲色欲www网| 久久黄色毛片| 国产最新无码专区在线| 宅男噜噜噜66国产在线观看|