999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

基于大數據分析的運動損傷估計模型設計

2017-09-08 10:45:48趙丹
現代電子技術 2017年17期

趙丹

摘 要: 為了預防運動損傷,保證運動員的身體安全,提出一種基于大數據分析的運動損傷估計模型。介紹了大數據分析技術,將引發運動損傷的原因劃分成A內部致傷因子、B外部致傷因子、C刺激誘發因子。在大數據分析技術的基礎上,通過RBF神經網絡構建運動損傷估計模型。分析了基本RBF神經網絡,將高斯函數看作隱含層單元的激活函數,通過一種簡單的方式設計隱含層,令所有風險等級和一個高斯函數相對應。對徑向基函數中心、權值和寬度進行更新,通過梯度下降法對徑向基函數中心和其余參數進行學習。依據運動損傷風險樣本庫對RBF神經網絡進行訓練,將運動損傷數據輸入到RBF神經網絡中,當傳輸數據和某運動損傷風險等級相對應時,RBF神經網絡將輸出相應值,從而實現運動損傷估計。實驗結果表明所設計模型精度和效率都高。

關鍵詞: 大數據分析; 運動損傷; 估計模型; RBF神經網絡

中圖分類號: TN911.1?34; G804.53 文獻標識碼: A 文章編號: 1004?373X(2017)17?0101?04

Design of sports injury estimation model based on big data analysis

ZHAO Dan

(School of Physical Education, Zhengzhou Institute of Technology, Zhengzhou 450044, China)

Abstract: In order to prevent sports injury and ensure the physical safety of athletes, a sports injury estimation model based on big data analysis is proposed. The big data analysis technology is introduced. The reasons for sports injury are divided into A internal injury factor, B external injury factor and C stimulation inducing factor. On the basis of big data analysis technology, a sports injury model was constructed by means of RBF neural network. The basic RBF neural network is analyzed. The Gaussian function is regarded as the activation function of the hidden layer unit. The hidden layer was designed in a simple way to let all risk levels correspond to a Gaussian function. The center, weight and width of the radial basis function are updated. The gradient descent method is used to learn center and other parameters of radial basis function. On the basis of risk sample database of sports injury, the RBF neural network is trained, and the sports injury data is input into the RBF neural network. While the transmission data corresponds to the risk level of sports injury, RBF neural network will output the corresponding value to estimate sports injury. Experimental results show that the model has high accuracy and high efficiency.

Keywords: big data analysis; sports injury; estimation model; RBF neural network

運動損傷是運動員訓練時常見的問題。近年來,隨著體育領域的逐漸發展,運動員間的競爭越來越激烈,運動員因訓練時間長導致機體負荷大,使運動損傷發病率越來越高,嚴重影響了運動員保持及提高成績,甚至會造成運動員過早離開賽場[1?2]。所以運動損傷的治療與估計成為體育領域研究的重點課題。為了改善運動損傷估計結果,提出一種基于大數據分析的運動損傷估計模型,通過構建的運動損傷模型為預防運動損傷,保護運動員安全提供重要依據。

1 大數據分析介紹

大數據分析技術因具有數據量大、結構復雜、數據形成效率高等特點被廣泛應用,大數據分析技術的好壞將直接對分析結果的可靠性產生影響。不一樣的數據需通過不一樣的大數據分析技術進行分析,運動損傷數據和傳統文本關系數據有很大的差異,本文采用神經網絡對運動損傷數據實現大數據分析。

2 基于大數據分析的運動損傷估計模型

2.1 致傷因子分析

經大量研究表明,運動員在運動過程中出現的運動損傷不是一個簡單的原因造成的,通常是由若干個因素共同影響導致的后果[3]。引發運動損傷的危險因素通常被劃分成內部因素與外部因素兩類,然而只從內部因素與外部因素的角度對引起運動損傷的致傷因子進行分析是不充分的,需構建一個完整的運動損傷估計模型,與此同時,還需分析不同因素間的相互作用和引發損傷事件的作用。endprint

在分析國內外學者對運動損傷致傷因子研究的基礎上[4],將引發運動損傷的原因劃分成三種:A內部致傷因子,B外部致傷因子,C刺激誘發因子。依據相關資料與運動員實際出現運動損傷的情況,對不同致傷因子進行風險評估,為運動損傷的預防提供重要依據。在運動損傷估計模型中,當A類因子出現時,將運動員看作“有損傷傾向人群”;當前,如果有不同B類因子出現,則可將運動員看作 “損傷易發人群”,當前不同項目運動員出現某類特異性損傷的風險逐漸增加[5]。若運動員已屬“損傷易發人群”,則C類因子的出現會大大增加運動損傷的概率。下面對三種不同類型致傷因子進行詳細分析,表1描述的是內部致傷因子風險評估表。表2描述的是外部致傷因子風險評估表,表3描述的是刺激誘發因子風險評估表。

2.2 運動損傷估計模型設計

在大數據分析技術的基礎上,通過RBF神經網絡構建運動損傷估計模型,下面進行詳細的分析。

2.2.1 RBF神經網絡

RBF神經網絡主要包括輸入層、隱含層以及輸出層[6],其詳細結構圖如圖1所示。

RBF神經網絡的輸出可描述成:

(1)

式中:描述隱層神經元數量;描述輸入向量;描述第個隱層神經元和輸出層神經元的聯結權重;描述第個隱層神經元的輸出,即:

(2)

式中:描述中心矢量;描述方差。

通過RBF神經網絡,依據輸入信息對運動員損傷風險等級進行評估,詳細情況如表4所示。也就是利用RBF神經網絡建立一個估計模型,主要包含基函數選取、隱含層設計以及徑向基函數中心、權值和寬度的變更[7]。

2.2.2 基函數選擇

將高斯函數看作隱含層單元的激活函數:

(3)

式中:描述第個隱層節點的輸出;描述網絡的維輸入向量;描述第個隱層節點的核函數中心矢量。網絡輸出可描述成:

(4)

式中:描述第個輸出層節點是輸出;描述第個隱層節點到第個輸出層節點的連接權值。

2.2.3 隱含層設計

采用RBF神經網絡構建運動損傷估計模型時,輸出是運動損傷風險評估等級[8],所以令所有風險等級和一個高斯函數相對應,將三類樣本和中心點距離的均值看作高斯函數的寬度參數,依次將三類樣本的均值看作高斯函數的中心。

2.2.4 參數更新及網絡學習

徑向基函數中心和其余參數均需進行學習,一般選用誤差修正學習過程,通過梯度下降法實現[9]。假設共有個運動損傷樣本輸入,針對全部樣本,其誤差函數可通過下式求出:

(5)

式中描述誤差,其計算公式如下:

(6)

式中描述運動損傷樣本所需類型的取值。

不同參數的迭代過程如下:

(1) 輸出單元權值的迭代公式為:

(7)

(8)

式中:描述此刻變量取值;描述迭代后的修正取值。

(2) 隱單元中心的迭代公式如下:

(9)

(10)

(3) 函數寬度的迭代公式如下:

(11)

(12)

式中:描述學習效率,通常是常數。

RBF神經網絡的學習過程如下:

(1) 依據已知的運動損傷類別數量確定隱層節點數量,計算出該類別中全部輸入向量的均值,將其看作該類中心初始值將所有類的全部輸入向量和中心間隔的均值看作該類寬度初始值所有類別均輸入一個樣本,計算初始設置允許誤差將學習效率取為其中代表迭代循環變量。假設循環變量的初值是1,最高值是Max;

(2) 輸入第個訓練樣本,獲取RBF神經網絡實際輸出

(3) 求出實際輸出和期望輸出間的誤差,若則該樣本無需調整網絡參數,直接進行步驟(6);反之,繼續進行下一步;

(4) 計算式(7)~式(12);

(5) 對網絡參數進行更新,若則不收斂,直接進入步驟(6);反之,重新進行步驟(2);

(6) 完成學習,對此刻網絡參數進行儲存。

2.3 RBF神經網絡訓練

依據運動損傷風險樣本庫對RBF神經網絡進行訓練,訓練過程如圖2所示。完成RBF神經網絡的訓練后,將運動損傷數據輸入到RBF神經網絡中,當傳輸數據和某運動損傷風險等級相對應時,RBF神經網絡將輸出相應值,從而實現運動損傷估計。

3 實例分析

為了驗證基于大數據分析的運動損傷估計模型的有效性,通過實驗進行分析,并將貝葉斯模型和拉格朗日模型作為運動損傷估計的對比模型,選擇估計準確率和估計效率作為衡量指標,圖3為三種模型針對運動損傷估計精度的比較結果。圖4為三種模型評估時間比較結果。綜合分析圖3和圖4可知,本文模型評估精度曲線一直高于拉格朗日模型和貝葉斯模型,且所需的評估時間明顯低于其他兩種模型,說明本文模型估計精度和效率高。

4 結 語

為了提高運動損傷估計準確性,本文提出基于大數據分析的運動損傷估計模型,在大數據分析技術的基礎上,通過RBF神經網絡構建運動損傷估計模型,經實驗驗證所設計模型的精度和效率較高。

參考文獻

[1] 侯云飛,呂揚,周方,等.急性創傷性頸髓損傷患者氣管切開預測模型[J].中國脊柱脊髓雜志,2015,25(2):148?157.

[2] 彭發勝.籃球運動員過度訓練對肘膝關節損傷建模仿真[J].計算機仿真,2015,32(12):382?385.

[3] 郭曉輝,王晶,楊揚,等.基于虛擬現實的下肢主被動康復訓練系統研究[J].西安交通大學學報,2016,50(2):124?131.

[4] 張美珍,劉卉,劉萬將,等.隨機生物力學模型分析籃球運動員和普通大學生ACL損傷危險因素的差異[J].體育科學,2016,36(10):40?47.

[5] 張凱.大數據網絡入侵過程的痕跡數據監測方法研究[J].科學技術與工程,2016,16(14):254?258.

[6] 何玉新.增廣鏈修復下大數據并行搜索聚類算法[J].科技通報,2016,32(3):109?113.

[7] 劉述芝,胡志剛,張健.沖擊載荷作用下運動員下肢動態響應的逆向動力學仿真[J].醫用生物力學,2015,30(1):30?37.

[8] 李亞如,劉建華.大數據環境下MapReduce準入控制的設計與實現[J].計算機測量與控制,2016,24(2):114?117.

[9] 張翔,柴志銘,趙麗.延遲性肌肉酸痛與骨骼肌衛星細胞:骨骼肌損傷的修復[J].中國組織工程研究,2015,19(37):6031?6036.endprint

主站蜘蛛池模板: 国产91高跟丝袜| 中文字幕久久亚洲一区| 一级香蕉人体视频| 成色7777精品在线| 色网站在线免费观看| 国产主播在线一区| 成年人免费国产视频| 国产乱码精品一区二区三区中文 | 国产自在线拍| 欧美视频免费一区二区三区 | 99草精品视频| 亚洲αv毛片| 黄色福利在线| 丁香婷婷激情网| 日本妇乱子伦视频| 亚洲精品桃花岛av在线| 国产成人精品2021欧美日韩 | 欧洲高清无码在线| 熟女日韩精品2区| 久久国产高清视频| 亚洲不卡影院| 永久天堂网Av| 亚洲第一黄色网| 欧美精品综合视频一区二区| 国产av无码日韩av无码网站| 无码中文字幕精品推荐| 一本二本三本不卡无码| 国产swag在线观看| 精品99在线观看| aaa国产一级毛片| 国产在线观看第二页| 国产91色在线| 亚洲精品无码日韩国产不卡| 99热这里只有免费国产精品| 99久久无色码中文字幕| 免费a在线观看播放| 天天干天天色综合网| 欧美精品成人一区二区视频一| 亚洲人成高清| 国产成人调教在线视频| 亚洲国产成人精品一二区| 精品色综合| www.亚洲天堂| 国产特级毛片| 在线观看亚洲国产| 91精品国产情侣高潮露脸| 国产精品成| 99精品福利视频| 四虎国产精品永久在线网址| 久久毛片免费基地| 欧美三级自拍| 一本一道波多野结衣av黑人在线| 在线视频亚洲色图| 欧美成人午夜影院| 国产精品区视频中文字幕 | 久久a级片| 亚洲精品动漫| 亚洲欧美不卡| 久久精品中文字幕少妇| 国产精品成人一区二区| 一本大道在线一本久道| 久久人与动人物A级毛片| 91福利免费| 99久久精品国产综合婷婷| 91精品最新国内在线播放| 人人91人人澡人人妻人人爽| 国产91在线免费视频| 欧美午夜理伦三级在线观看| 黑人巨大精品欧美一区二区区| 大香网伊人久久综合网2020| 亚洲男人天堂2018| 国产成人1024精品| 亚洲成人网在线播放| 久久中文字幕不卡一二区| 2020亚洲精品无码| 丝袜美女被出水视频一区| 中文字幕在线观看日本| AV网站中文| 欧美日韩一区二区在线免费观看| 鲁鲁鲁爽爽爽在线视频观看 | 国产精品久久久久久久久久98| 伊人久久久大香线蕉综合直播|