邵巖+盧迪+楊廣學



摘 要:在對滾動軸承微弱故障診斷時,故障信號容易受到噪聲的干擾,為了獲取滾動軸承數據的有效故障信息,研究用分數階傅里葉變換(fractional Fourier transform,FRFT)的方法對滾動軸承工作中產生的微弱故障進行診斷。該方法可以將滾動軸承數據變換到分數階域的空間中進行分析,在此空間中變換分數階的階次從而搜索提取出微弱故障的最大峰值,分析結果表明用分數階傅里葉算法可以有效的降低其他分量和噪聲的互相干擾,準確的提取目標分量,實驗結果證實了該方法的有效性和可行性。
關鍵詞:滾動軸承;分數階傅里葉變換(FRFT);故障診斷;
DOI:10.15938/j.jhust.2017.03.012
中圖分類號: TN911.2
文獻標志碼: A
文章編號: 1007-2683(2017)03-0068-05
Abstract:In fault diagnosis of rolling bearings, the fault signal is easy to be interfered by the ambient noise, Therefore, an approach based on Fractional Fourier Transform(FRFT) is studied in this research to collect valid data of rolling bearing fault. With utilizing this approach, data can be analyzed by being converted into fractional domain, as well as 3D simulation. Consequently, the fractional can be changed to extract the weak fault to search for the maximum peak of weak fault. According to the analysis, the Fractional Fourier Transform algorithm is able to effectively reduce the mutual interference of other components and noise,and accurately extract the target component. Hence, the research findings are able to prove the validity and feasibility of the approach studied in this paper.
Keywords:FRFT; rotating machinery; fault diagnosis
5 結 論
分數階傅里葉變換算法的應用對于實際旋轉機械故障振動信號的分析起到了重要的作用,解決了這類信號在分析上具有非平穩,非線性的難題。在復雜的干擾環境中,能有效的對信號進行分離,克服了信號交叉項的干擾,尤其在微弱信號的分析中,對在背景噪生干擾很強的環境下,對微弱故障信號有很好的聚集性。本文軸承的振動干擾信號微弱,通過對目標的多重掃描,提高了對信號的時頻分辨率,分離出微弱故障信號的最高峰值和振幅,本文所提出的算法能夠在分數階域上對噪聲信號進行分離,為進一步提取信號的時域和頻域特性提供了良好的條件。
參 考 文 獻:
[1] 李興林,張仰平,曹茂來.滾動軸承故障監測診斷技術應用進展[J].工程與試驗,2009,49(4):1-5.
[2] 林英祥,孫清磊,陳萍,等.沖擊脈沖技術在滾動軸承診斷中的應用[J].海軍工程大學學報,2013,25(4):85-90.
[3] 陳金文,楊明發.異步電機故障早期檢測技術綜述[J].微電機,2014(1):7-10.
[4] 張倩,張志新,王亮.基于振動測試的滾動軸承故障診斷技術進展[J].風機技術,2012(1):67-70.
[5] 劉建國,趙治博,章國平,等.地鐵車輛轉向架軸承故障診斷方法研究[J].鐵道學報,2015(1):30-36.
[6] 劉金偉,王俊玲.機械故障診斷技術的現狀及發展趨勢[J].科技創新與應用,2013(19):92-93.
[7] TIWARI R,KANKAR P,GUPTA K.Bearing Fault Diagnosis Using Radial Basis Function Network and Adaptive Neuro Fuzzy Classsifier[C]//Control,Automation,Robotics and Embedded Systems,2013 international Conference on.IEEE,2013:1-4.
[8] 曹婧華,趙飛,李聰,等.狀態參數識別在齒輪箱故障診斷中的應用[J].哈爾濱理工大學學報,2013,18(3):95-101.
[9] MARCO Cococcioni,BEATRICE Lazzerini,SARA Lioba Volpi.Robust Diagnosis of Rolling Element Bearings Based on Classification Techniques[J].IEEE Transactions on industrial informations2012,9(4):2256-2263.
[10]王金福,李富才.機械故障診斷的信號處理方法:頻域分析[J].噪聲與振動控制,2013(1):173-180.
[11]Aye S A,Heyns P S,Thiart C J H.Fault Detection of Slow Speeed Bearings Using an Integrated Approach[J].Ifac Papersonline,2015,48(3):1779-1784.
[12]JONGHyo A,DAEHo K,BONGHwan K.Fault Detection of a RollerBearing System through the EMD of a Wavelet Denoised Signal[J].Sensors,2014,14(8):15022-15038.
[13]TARAPHDER A,CHAKRAVERTY B K.Early Damage Detection of Roller Bearings Using Wavelet Packet Decompositionensemble Empirical Mode Decomposition and Support Vetor Machine[J].Meccanica,2015,50(3):865-874.
[14]王見,李金同,盧華玲.采用STFTWigner交換抑制WignerVille分布交叉項[J].重慶大學學報,2013,36(8).
[15]肖鵬,楊承志,吳宏超.基于STFT與WVD的LPI雷達信號檢測[J].船舶電子工程,2014,34(8):63-66.
[16]秦敏,劉志國,劉剛,等.基于加速度傳感器的高頻振動信號檢測分析[J].測控技術,2013,32(5):1-4.
[17]孫靖杰,趙建軍,王漢昌,等.基于FRFTKPCA的模擬電路非線性故障特征提取[J].電機與控制學報,2013,17(8):100-106.
[18]TOKSOY E,SANDIKCI A.Onfunction Spaces with Fractional Fourier Transform in Weighted Lebsgue Spaces[J].Acm Transactions on Graphics,2015,2015(1):1-10.
[19]OZAKTAS H M,ANKAN O,KUTAY M A.Digital Computation of the Fractional Fourier Transform[J].IEEE Transactions On Signal Processing,1996,44(9):2141-2150.
[20]唐先廣,郭瑜,丁彥春,等.基于短時傅里葉變換和獨立分量分析的滾動軸承包絡分析[J].機械強度,2012,34(1):1-5.
[21]陶然,鄧冰,王越.分數階Fourier變換在信號處理領域的研究進展[J].中國科學,2006(2):113-136.
(編輯:溫澤宇)