999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

秸稈還田提高水稻-油菜輪作土壤固氮能力及作物產(chǎn)量

2017-06-27 01:31:07胡萬里翟麗梅劉宏斌陳安強(qiáng)蓋霞普張亦濤王洪媛
關(guān)鍵詞:水稻產(chǎn)量質(zhì)量

張 丹,付 斌,胡萬里,翟麗梅,劉宏斌,陳安強(qiáng),蓋霞普,張亦濤,劉 劍,王洪媛

?

秸稈還田提高水稻-油菜輪作土壤固氮能力及作物產(chǎn)量

張 丹1,付 斌2,胡萬里2,翟麗梅1,劉宏斌1,陳安強(qiáng)2,蓋霞普1,張亦濤1,劉 劍3,王洪媛1※

(1. 中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,農(nóng)業(yè)部面源污染控制重點(diǎn)實(shí)驗(yàn)室,北京 100081; 2. 云南省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)環(huán)境資源研究所,昆明 650205; 3. 賓夕法尼亞州立大學(xué)植物營養(yǎng)系,賓夕法尼亞 16802)

為探討西南山區(qū)水稻-油菜輪作模式下秸稈還田對作物產(chǎn)量和土壤氮素固持能力的影響,于2013-2015年在洱海流域稻油輪作農(nóng)田中設(shè)置空白處理(CK)、單施化肥(CF)、化肥+玉米秸稈(CFMS)以及化肥+蠶豆秸稈(CFBS)4個(gè)處理,測定分析了作物產(chǎn)量、土壤微生物量及土壤理化性質(zhì)等關(guān)鍵指標(biāo)。結(jié)果表明,與CF處理相比,秸稈還田提高水稻、油菜產(chǎn)量及其地上部含氮量,增加氮素有效輸出。不同處理土壤微生物量碳、氮質(zhì)量分?jǐn)?shù)存在差異,其大小順序?yàn)椋篊FMS>CFBS>CF>CK。與土壤碳氮比相比,土壤微生物熵和微生物量C/N對秸稈還田做出快速響應(yīng),秸稈還田提高土壤微生物熵,降低微生物量C/N。此外,秸稈還田顯著降低油菜收獲后的土壤硝態(tài)氮?dú)埩簦?0.05),與CF相比,玉米秸稈和蠶豆秸稈還田分別使土壤硝態(tài)氮?dú)埩袅繙p少11.6%~55.0%和13.7%~52.3%。可見,中國西南山區(qū)稻油輪作模式下秸稈還田能提高作物產(chǎn)量和含氮量,增強(qiáng)土壤微生物氮素固持能力,有效降低土壤氮素流失風(fēng)險(xiǎn),且玉米秸稈在增產(chǎn)、固氮方面的作用優(yōu)于蠶豆秸稈。結(jié)果可為提高西南山區(qū)水稻、油菜產(chǎn)量,增強(qiáng)土壤氮素固持能力,降低土壤氮素流失風(fēng)險(xiǎn)提供參考。

秸稈;有機(jī)碳;土壤;秸稈還田;水稻-油菜輪作;作物產(chǎn)量;土壤微生物量;硝態(tài)氮?dú)埩?/p>

0 引 言

氮肥為全球作物產(chǎn)量提高做出了重要貢獻(xiàn)[1-2]。然而,過度追求高產(chǎn)導(dǎo)致的氮肥過量施用,導(dǎo)致中國當(dāng)季氮肥利用率較低[3],大量盈余氮素通過揮發(fā)、徑流以及淋溶等方式進(jìn)入大氣或水體[4-5],造成大氣污染、地表水富營養(yǎng)化和地下水硝酸鹽超標(biāo)等環(huán)境問題[6]。“第一次全國污染源普查”數(shù)據(jù)結(jié)果表明,農(nóng)業(yè)源總氮占總氮排放量的57%[7],其中,化肥過量施用是農(nóng)業(yè)面源污染的主要因素之一[8]。因此,提高氮肥利用率,減少土壤氮素流失成為中國乃至全球研究熱點(diǎn)問題。

大量研究表明,秸稈還田技術(shù)能有效提高氮素利用率,減少氮肥施用量和氮素?fù)p失量,可部分解決農(nóng)田土壤中過量氮肥施用引發(fā)的污染問題[9-10]。王靜等[11]研究表明,秸稈覆蓋使巢湖地區(qū)農(nóng)田土壤徑流量減少30.5%,徑流氮損失量降低27.4%。張剛等[12]通過原狀土柱模擬試驗(yàn)表明,與單施化肥相比,秸稈還田配施化肥處理氮肥淋溶損失率降低30.9%。此外,秸稈還田是實(shí)現(xiàn)秸稈資源化利用的重要途徑之一,既減輕焚燒對環(huán)境的污染,又能改善土壤肥力,提高作物產(chǎn)量[13-14]。

不同碳氮比(C/N)秸稈還田對土壤氮素固持轉(zhuǎn)化的影響不同。低C/N秸稈中含有較高的氮組分,在土壤中容易分解,且能釋放較多的礦質(zhì)態(tài)氮,有利于提高土壤微生物生物量[15-16]。高C/N秸稈易發(fā)生氮素凈固持,有利于減少土壤氮素流失風(fēng)險(xiǎn)[17-19],但高C/N秸稈還田前期,易發(fā)生土壤微生物與作物爭氮現(xiàn)象[20],導(dǎo)致作物生長前期土壤氮素供應(yīng)不足,秸稈還田與化肥結(jié)合可有效解決此問題。

玉米、水稻以及豆類等是云南省主要的種植作物,其種植面積分別占作物總播種面積的21.2%、15.9%以及7.8%[21],每年農(nóng)作物秸稈產(chǎn)生量超過2000萬t。其中,稻草主要用于奶牛養(yǎng)殖墊圈,而大部分玉米秸稈和豆類秸稈或就地焚燒,或隨意堆放在田間地頭,既影響農(nóng)村環(huán)境,又浪費(fèi)資源。目前,針對該地區(qū)稻油輪作模式下,習(xí)慣化肥氮投入基礎(chǔ)上的秸稈還田對作物產(chǎn)量和土壤氮素固持能力影響的研究較少。本研究選擇玉米秸稈和蠶豆秸稈作為研究對象,探究在常規(guī)化肥氮施用下,不同類型秸稈還田對作物產(chǎn)量和土壤氮素固持能力的影響及作用機(jī)制,從而達(dá)到增加作物產(chǎn)量,提高化肥氮素利用率,減少氮素流失,最終實(shí)現(xiàn)作物秸稈合理有效利用。

1 材料與方法

1.1 研究區(qū)概況

試驗(yàn)點(diǎn)位于云南省大理州洱源縣上寺村(99°57′E,25°58′N,海拔2 099 m),該地區(qū)氣候類型為北亞熱帶高原季風(fēng)氣候,四季溫差小,降雨充沛,年均氣溫13.9 ℃,降雨量為745 mm,主要集中在每年5-10月份。種植模式為典型的水稻-油菜輪作,土壤類型為水稻土,試驗(yàn)前采集0~20 cm耕層土壤測定土壤基礎(chǔ)理化性質(zhì):土壤pH值為5.7,土壤有機(jī)質(zhì)(soil organic matter,SOM)質(zhì)量分?jǐn)?shù)51.1 g/kg,全氮(total nitrogen, TN)質(zhì)量分?jǐn)?shù)2.7 g/kg,全磷(total phosphorus, TP)質(zhì)量分?jǐn)?shù)0.9 mg/kg,速效鉀質(zhì)量分?jǐn)?shù)8.3 mg/kg,硝態(tài)氮(NO3--N)質(zhì)量分?jǐn)?shù)37.4 mg/kg,銨態(tài)氮(NH4+-N)質(zhì)量分?jǐn)?shù)0.7 mg/kg,土壤微生物量碳(soil microbial biomass carbon, SMBC)和微生物量氮(soil microbial biomass nitrogen, SMBN)質(zhì)量分?jǐn)?shù)分別為443.1和32.7 mg/kg。

1.2 試驗(yàn)設(shè)計(jì)

試驗(yàn)時(shí)間為2013年11月-2015年10月,試驗(yàn)共設(shè)4個(gè)處理:不施肥(no fertilization, CK),單施化肥(chemical fertilizer, CF),化肥+玉米秸稈(chemical fertilizer combined with maize straw, CFMS)以及化肥+蠶豆秸稈(chemical fertilizer combined with broad bean straw,CFBS),按照隨機(jī)區(qū)組試驗(yàn)設(shè)計(jì),每個(gè)處理設(shè)置3個(gè)重復(fù)(區(qū)組),共12個(gè)處理樣方,每個(gè)樣方面積為30 m2(5 m×6 m)。參照當(dāng)?shù)胤柿嫌昧窟M(jìn)行施肥,除了CK處理外,其他處理的氮、磷、鉀化肥用量一致,油菜季氮、磷(P2O5)、鉀(K2O)化肥用量分別為180、74和120 kg/hm2,其中氮肥按照基肥∶現(xiàn)蕾期追肥∶開花期追肥=3∶3∶4分施,磷鉀肥按基肥:開花期追肥=7∶3分施;水稻季氮、磷(P2O5)、鉀(K2O)化肥用量分別為75、52.5和60 kg/hm2,其中氮肥和鉀肥按照基肥∶穗肥=7∶3分施,磷肥全部作基肥施用。化肥品種分別為尿素(N 46%)、過磷酸鈣(P2O516%)和硫酸鉀(K2O 50%),CFMS和CFBS處理中玉米秸稈、蠶豆秸稈用量相等且全部作基肥施用,油菜季用量為6 900 kg/hm2,水稻季用量為3 450 kg/hm2,還田方式為粉碎翻壓還田,玉米秸稈和蠶豆秸稈C/N分別為66和45,其余組分含量見表1。油菜種植和收獲時(shí)間分別為11月和次年5月,水稻種植和收獲時(shí)間分別為5月和10月。

表1 秸稈各組分含量

1.3 樣品采集與測試方法

分別于2015年(鑒于大田試驗(yàn)布置的第1 年數(shù)據(jù)不穩(wěn)定,因此2014年沒有進(jìn)行土壤取樣分析)5月油菜和10月水稻收獲后,多點(diǎn)取樣法采集各樣方0~20 cm耕層土壤混合樣,帶回實(shí)驗(yàn)室,過2 mm篩,部分鮮土4 ℃冰箱保存,用于測定SMBC、SMBN、NH4+-N以及NO3--N,另一部分土樣進(jìn)行風(fēng)干,用于測定土壤pH、SOM和TN。

SMBC和SMBN采用氯仿熏蒸0.5 mol/L K2SO4浸提法測定[22]。首先將土樣在25 ℃恒溫培養(yǎng)箱中培養(yǎng)7 d,然后稱取預(yù)處理土樣6份(每份12 g)放入燒杯中,將其中3份置于內(nèi)置50 mL NaOH和50 mL去乙醇氯仿小燒杯的真空干燥器中,抽真空后保持氯仿沸騰5 min,然后將干燥器移置在黑暗條件下25 ℃培養(yǎng)24 h,再次抽真空完全去除土壤中的氯仿。另外3份做未熏蒸對照試驗(yàn),將熏蒸和未熏蒸的土樣轉(zhuǎn)移到100 mL提取瓶中,加入40 mL 0.5 mol/L K2SO4浸提液(水∶土質(zhì)量比為4∶1)震蕩30 min,然后過濾得上清液。上清液中的總有機(jī)碳、氮用總有機(jī)碳分析儀(Vario TOC,Elementar Analysensysteme GmbH,德國)測定,熏蒸與未熏蒸土壤提取液中有機(jī)碳、氮測定值之差和分別除以相對應(yīng)的轉(zhuǎn)換系數(shù)K(0.45)和K(0.68),即分別得到土壤微生物量碳和微生物量氮。土壤NO3--N和NH4+-N含量采用0.01 mol/L CaCl2浸提,流動(dòng)分析儀(AA3,Seal Analytical GmbH,德國)測定,SOM采用重鉻酸鉀外加熱氧化法測定,TN采用H2SO4-加速劑消煮凱氏定氮法測定(KDY-9830,北京市通潤源機(jī)電技術(shù)有限責(zé)任公司,中國),土壤含水量和pH值采用《土壤和農(nóng)業(yè)化學(xué)分析法》測定[23]。

2014年和2015年油菜和水稻收獲后自然風(fēng)干,對籽粒和秸稈分別稱質(zhì)量,計(jì)算產(chǎn)量和地上部生物量。作物籽粒和秸稈中TN以及玉米秸稈和蠶豆秸稈中SOM、TN、TP、K2O、灰分測定方法見《土壤和農(nóng)業(yè)化學(xué)分析法》[23],纖維素、半纖維素和木質(zhì)素測定方法與王金主等[24]測定方法相同。相關(guān)計(jì)算公式如下:

籽粒總含氮量(kg/hm2)=籽粒產(chǎn)量(kg/hm2)×

籽粒全氮質(zhì)量分?jǐn)?shù)(g/kg)÷1000; (1)

秸稈總含氮量(kg/hm2)=秸稈產(chǎn)量(kg/hm2)×

秸稈全氮質(zhì)量分?jǐn)?shù)(g/kg)÷1000; (2)

地上部總含氮量(kg/hm2)=籽粒含氮量(kg/hm2)+

秸稈含氮量(kg/hm2)。 (3)

1.4 數(shù)據(jù)分析

采用OriginLab 8.5軟件作圖,采用SPSS 19.0進(jìn)行單因素方差分析(One-way ANOVA),統(tǒng)計(jì)分析處理間作物產(chǎn)量、土壤理化性質(zhì)以及土壤微生物量碳、氮質(zhì)量分?jǐn)?shù)之間的差異,分析前,對所有數(shù)據(jù)進(jìn)行方差齊性檢驗(yàn),方差不齊時(shí)進(jìn)行對數(shù)轉(zhuǎn)化。多重比較采用Duncan法(=0.05),平均值在<0.05水平下的任何差異具有統(tǒng)計(jì)學(xué)意義。

2 結(jié)果與分析

2.1 作物產(chǎn)量和含氮量

由表2可知,與單施化肥(CF)相比,秸稈還田處理的油菜產(chǎn)量和生物量分別增加28.6%~62.1%和54.7%~83.8%,呈顯著性差異(<0.05),其中,玉米秸稈(CFMS)還田后油菜產(chǎn)量和生物量顯著高于蠶豆秸稈(CFBS)(<0.05),其增產(chǎn)幅度分別為16.7%~17.5%和4.5%~18.8%。對于水稻而言,CFMS處理產(chǎn)量最高,為11.0~12.2 t/hm2,分別比CFBS和CF處理增加24.5%~27.9%和32.6%~35.8%,其次是CFBS處理,產(chǎn)量為8.6~9.8 t/hm2,比CF處理增加6.2%~6.5%。與CF相比,秸稈還田處理水稻生物量顯著增加(<0.05),增加幅度為20.0%~23.5%,其中,CFMS處理水稻生物量最大。CF處理水稻產(chǎn)量和生物量分別比CK提高39.7%~41.5%和38.2%~39.7%,達(dá)到顯著水平(<0.05)。連續(xù)2 a測定結(jié)果均表明秸稈還田能夠提高作物產(chǎn)量和生物量。

不同處理的油菜和水稻地上部含氮量與產(chǎn)量變化趨勢基本一致,各處理地上部含氮量大小順序均為CFMS>CFBS>CF>CK。與CF相比,CFMS和CFBS處理的油菜地上部含氮量分別增加14.5%~20.2%和5.2%~9.0%,水稻地上部含氮量分別增加68.3%~87.4%和35.7%~55.0%。其中,CFMS處理的油菜和水稻地上部含氮量顯著高于CFBS處理(<0.05),增加幅度分別為5.0%~14.3%和20.9%~24.0%。由此可以看出,在增加作物產(chǎn)量和地上部含氮量方面,應(yīng)用玉米秸稈的效果高于蠶豆秸稈。

表2 秸稈還田油菜、水稻產(chǎn)量和地上部分含氮量的影響

注:CK、CF、CFMS和CFBS分別代表不施肥、單施化肥、化肥+玉米秸稈和化肥+蠶豆秸稈。表中數(shù)值為平均值±標(biāo)準(zhǔn)差,同列數(shù)據(jù)后不同字母表示處理間差異達(dá)到顯著性水平(<0.05)。下同。

Note: CK, CF, CFMS and CFBS represent no fertilization treatment, chemical fertilizer treatment, chemical fertilizer combined with maize straw treatment and chemical fertilizer combined with broad bean straw treatment. Data in the table are means±SD. Different lowercase letters within same column indicate significant differences between treatments (<0.05). The same as below.

2.2 土壤微生物量碳氮

圖1結(jié)果顯示,與CF相比,秸稈還田能夠提高SMBC質(zhì)量分?jǐn)?shù)。油菜季CFMS和CFBS處理SMBC質(zhì)量分?jǐn)?shù)分別比CF增加21.3%和14.6%,水稻季CFMS和CFBS處理分別比CF增加20.4%和11.3%。

各處理SMBN質(zhì)量分?jǐn)?shù)變化趨勢與SMBC一致,與CF相比,秸稈還田能夠顯著提高SMBN質(zhì)量分?jǐn)?shù)(<0.05)。油菜季CFMS和CFBS處理SMBN質(zhì)量分?jǐn)?shù)分別比CF處理增加29.8%和27.3%,水稻季CFMS和CFBS處理SMBN質(zhì)量分?jǐn)?shù)分別比CF處理增加17.7%和10.0%。其中,CFMS處理的SMBN質(zhì)量分?jǐn)?shù)高于CFBS處理,與CFBS處理相比,油菜季和水稻季的SMBN質(zhì)量分?jǐn)?shù)分別增加2.2%和7.0%,后者差異顯著(<0.05)。同時(shí),單施化肥能夠顯著提高SMBN質(zhì)量分?jǐn)?shù)(<0.05),其SMBN質(zhì)量分?jǐn)?shù)是CK處理的1.3~1.5倍。

由圖2a可知,秸稈還田能夠提高土壤微生物熵(SMBC/SOC)。油菜季CFMS處理SMBC/SOC最高,比CF處理增加18.5%,呈顯著性差異(<0.05)。其次是CFBS,SMBC/SOC為1.45,顯著高于CK處理(<0.05)。水稻季CFMS和CFBS處理SMBC/SOC分別是2.8和2.4,兩者均顯著高于CF處理(<0.05)。土壤微生物量化學(xué)計(jì)量碳氮比(SMB C/N)結(jié)果顯示(圖2b),與CK處理相比,其他3個(gè)處理SMB C/N均顯著降低(<0.05),油菜季CF、CFMS和CFBS的SMB C/N降低幅度為27.3%~34.3%,水稻季降低幅度為14.7%~17.8%。

2.3 土壤理化性質(zhì)

各處理對土壤理化性狀的影響如表3所示,與CF處理相比,秸稈還田對土壤pH值、TN、SOM質(zhì)量分?jǐn)?shù)以及土壤碳氮比均無顯著性影響(>0.05)。秸稈還田能夠增加旱季土壤持水能力,油菜季CFMS和CFBS處理的土壤含水量范圍為17.6%~18.9%,顯著高于CK和CF處理(<0.05)。

作物收獲后,土壤無機(jī)氮主要以NO3--N形態(tài)存在(圖3),油菜季各處理土壤NO3--N質(zhì)量分?jǐn)?shù)為20.3~45.4 mg/kg,遠(yuǎn)高于各處理土壤NH4+-N質(zhì)量分?jǐn)?shù);水稻季土壤NO3--N質(zhì)量分?jǐn)?shù)為11.5~14.6 mg/kg,是相應(yīng)處理土壤NH4+-N質(zhì)量分?jǐn)?shù)的2.0~2.5倍。與CF相比,秸稈還田能顯著降低油菜和水稻收獲后土壤NO3--N殘留量(<0.05)。油菜收獲后CFMS和CFBS處理土壤中殘留的NO3--N質(zhì)量分?jǐn)?shù)與CK相近,分別為20.4和21.7 mg/kg,比CF處理降低55.0%和52.3%。水稻收獲后CFMS和CFBS處理土壤NO3--N質(zhì)量分?jǐn)?shù)分別比CF處理降低11.6%和13.7%。

表3 秸稈還田對土壤理化性質(zhì)的影響

3 討論與建議

3.1 秸稈還田對土壤理化性質(zhì)和作物產(chǎn)量的影響

連續(xù)2 a的田間試驗(yàn)結(jié)果發(fā)現(xiàn),秸稈還田對土壤有機(jī)質(zhì)和全氮質(zhì)量分?jǐn)?shù)影響較小,表明水稻-油菜輪作模式下土壤有機(jī)質(zhì)和全氮質(zhì)量分?jǐn)?shù)較為穩(wěn)定,短時(shí)間內(nèi)對土壤管理措施變化反應(yīng)不敏感,這與Zhao等[25]的研究結(jié)果一致。胡乃娟等[26]研究結(jié)果也表明,小麥-水稻輪作體系中連續(xù)2 a秸稈全量還田,土壤總有機(jī)碳和活性有機(jī)碳質(zhì)量分?jǐn)?shù)無顯著性變化(>0.05),而長期秸稈還田能顯著提高土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù),增強(qiáng)土壤肥力[27-28]。因此,秸稈還田作為改善土壤肥力的措施需長期堅(jiān)持。

秸稈還田能夠顯著提高中國西南地區(qū)油菜、水稻產(chǎn)量和生物量(<0.05),這與以往的研究報(bào)道相一致。中國南方稻麥輪作模式下,2 a秸稈還田試驗(yàn)對兩季作物的產(chǎn)量都有明顯提高[29]。Zhao等[30]9 a的田間試驗(yàn)表明,秸稈還田后作物產(chǎn)量提高7%,尤其對缺水缺肥區(qū)農(nóng)田作物的增產(chǎn)效果更佳。秸稈還田促進(jìn)作物增產(chǎn),一方面是由于秸稈的投入改善了土壤結(jié)構(gòu),有利于土壤保水保肥[31];另一方面,外源有機(jī)物料的投入能夠補(bǔ)充有機(jī)碳,促進(jìn)微生物的活性,從而提高養(yǎng)分的有效性[32]。但由于不同秸稈類型在養(yǎng)分含量方面存在差異,導(dǎo)致其在改善土壤性質(zhì)、促進(jìn)作物生長發(fā)育方面存在差異[33-35]。本研究中,添加玉米秸稈對作物產(chǎn)量和地上部含氮量的提升優(yōu)于蠶豆秸稈,其原因可能為玉米秸稈中有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)高且含有較豐富的糖等易利用有機(jī)碳(例如,玉米秸稈中水溶性糖質(zhì)量分?jǐn)?shù)為1.35%~9.62%[36],蠶豆秸稈為1.01%[37]),對土壤微生物的促進(jìn)作用大于蠶豆秸稈,從而增加了土壤微生物對氮素的固持轉(zhuǎn)化,使易流失的無機(jī)氮轉(zhuǎn)化為相對穩(wěn)定的有機(jī)氮,有利于氮素的長效利用[18-19]。

3.2 秸稈還田對土壤氮素固持的影響

土壤氮素殘留量過高,不僅會造成氮素資源的浪費(fèi),還會對環(huán)境造成一定程度的威脅[38]。巨曉棠等[38]通過同位素示蹤技術(shù)研究表明,隨著施氮量增加,土壤中氮素殘留量增加,氮素?fù)p失量也相應(yīng)增加。西南地區(qū)降雨主要集中在5-10月(水稻季),占全年降雨量的85%左右,該階段是農(nóng)田氮素流失的關(guān)鍵期[39]。單施化肥處理油菜收獲后土壤硝態(tài)氮質(zhì)量分?jǐn)?shù)為45.4 mg/kg(或102.2 kg/hm2,按照0~20 cm土層土壤重量2 250 t/hm2計(jì)算),遠(yuǎn)高于歐美等國家限值(0~90 cm土體中殘留硝態(tài)氮低于45 kg/hm2或無機(jī)氮不高于50 kg/hm2)[40]。秸稈還田能大幅度減少油菜收獲后土壤中硝態(tài)氮?dú)埩袅浚▓D3),與單施化肥相比,秸稈還田土壤硝態(tài)氮降低54.8%~55.6%,從而能夠顯著降低水稻季土壤殘留氮的流失風(fēng)險(xiǎn)。秸稈還田降低土壤氮素流失風(fēng)險(xiǎn)的原因主要有以下3方面:1)秸稈中氮素主要以有機(jī)態(tài)形態(tài)存在,該部分氮素較穩(wěn)定,短期內(nèi)通過礦化作用轉(zhuǎn)化為無機(jī)氮的量較少[41];2)秸稈還田提高了作物產(chǎn)量和作物含氮量,增加氮素的作物攜出量;3)秸稈還田可通過提高土壤微生物活性,調(diào)節(jié)礦質(zhì)氮的固持轉(zhuǎn)化[42-43],將易流失的無機(jī)氮轉(zhuǎn)化為相對穩(wěn)定的有機(jī)氮,從而降低氮肥田間損失[44-45]。

微生物量氮是土壤有機(jī)質(zhì)中封存氮素的主要存在形式,被認(rèn)為是土壤活性氮的儲存庫,以及作物生長可利用態(tài)養(yǎng)分的重要來源[46],其含量變化能夠表征土壤微生物對氮素的固持能力[47]。本研究中秸稈還田能夠顯著提高土壤微生物量氮含量,與單施化肥相比,秸稈還田處理土壤微生物量氮增幅為10.0%~29.8%,表明秸稈還田能夠提高土壤氮素固持能力。趙世誠等[48]在華北地區(qū)的研究結(jié)果表明化肥與秸稈配施土壤微生物量氮質(zhì)量分?jǐn)?shù)比單施化肥增加88.5%。也有研究表明,秸稈還田處理中土壤微生物量氮質(zhì)量分?jǐn)?shù)比單施化肥提高114.3%[49]。秸稈還田提高土壤微生物量氮強(qiáng)度不同主要受土壤特性、耕作方式、秸稈還田種類、還田量、研究區(qū)域氣候特征等因素的影響[35,50-51]。

與單施化肥相比,秸稈還田短期內(nèi)對土壤有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)影響不大,表明利用秸稈還田提高土壤碳庫儲量是一個(gè)長期的過程[19,52],而土壤微生物量碳含量和微生物熵的快速反應(yīng)特性可以將其作為土壤總有機(jī)質(zhì)變化的早期指標(biāo)[53]。近年來,微生物量C/N在土壤生態(tài)系統(tǒng)中的調(diào)控作用受到越來越多的關(guān)注[54-55]。Li等[56]認(rèn)為微生物量C/N是稻田土壤生產(chǎn)力的有效指標(biāo),稻田土壤微生物量C/N越低,土壤生產(chǎn)能力越強(qiáng),這與我們的研究結(jié)果相一致。本研究中,秸稈還田和單施化肥都導(dǎo)致了微生物量C/N降低,表明在資源供給過程中,土壤微生物往往會為了吸收更多的養(yǎng)分而調(diào)節(jié)其生態(tài)化學(xué)計(jì)量碳氮比[2]。

3.3 建 議

本研究僅僅是從量(作物含氮量、微生物量、土壤氮素殘留量)的角度對秸稈還田降低土壤氮素流失風(fēng)險(xiǎn)的影響機(jī)制進(jìn)行了分析和探討,而未涉及對氮素循環(huán)速率的影響。Buchkowski等[55]認(rèn)為,土壤碳氮循環(huán)過程中土壤微生物生態(tài)化學(xué)計(jì)量C/N對循環(huán)速率的調(diào)控作用要大于微生物量本身,而只有當(dāng)外源有機(jī)物料的碳氮比接近于原有微生物量碳氮比時(shí)微生物量才會發(fā)揮較大的調(diào)控作用。因此,還需要對相關(guān)理論做進(jìn)一步的研究。

4 結(jié) 論

1)中國西南山區(qū)稻油輪作模式下,短期(2 a)秸稈還田對土壤有機(jī)質(zhì)、全氮等土壤肥力指標(biāo)的影響不顯著,但與單施化肥處理相比,土壤全氮和有機(jī)質(zhì)略有增加。

2)秸稈還田能夠增加作物產(chǎn)量,提高作物地上部含氮量。與單施化肥相比,秸稈處理油菜和水稻產(chǎn)量分別增加28.6%~62.1%和6.2%~35.8%,作物地上部含氮量分別增加5.2%~20.2%和35.7%~87.4%。同時(shí),秸稈還田能顯著提高土壤微生物的氮素固持能力,減少土壤硝態(tài)氮?dú)埩簟=斩掃€田處理土壤微生物量氮質(zhì)量分?jǐn)?shù)比單施化肥處理增加10.0%~29.8%,油菜收獲后土壤硝態(tài)氮?dú)埩魷p少52.3%~55.0%,從而降低水稻季氮素流失風(fēng)險(xiǎn)。

3)中國西南山區(qū)稻油輪作模式下,與蠶豆秸稈處理相比,玉米秸稈處理作物產(chǎn)量、地上部含氮量以及土壤微生物量氮含量分別增加16.7%~27.9%、5.0%~24.0%和2.2%~7.0%。因此,玉米秸稈還田在增產(chǎn)、固氮方面的作用優(yōu)于蠶豆秸稈。

[1] Malhi S S, Lemke R, Wang Z H, et al. Tillage, nitrogen and crop residue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas emissions[J]. Soil & Tillage Research, 2006, 90(1/2): 171-183.

[2] 巨曉棠. 氮肥有效率的概念及意義——兼論對傳統(tǒng)氮肥利用率的理解誤區(qū)[J]. 土壤學(xué)報(bào),2014,51(5):921-933.

Ju Xiaotang. The concept and meanings of nitrogen fertilizer availability ratio-discussing misunderstanding of traditional nitrogen use efficiency[J]. Acta Pedologica Sinica, 2014, 51(5): 921-933. (in Chinese with English abstract)

[3] Castellano M J, David M B. Long-term fate of nitrate fertilizer in agricultural soils is not necessarily related to nitrate leaching from agricultural soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): E766-E766.

[4] Sieling K, Kage H. Efficient N management using winter oilseed rape: A review[J]. Agronomy For Sustainable Development, 2010, 30(2): 271-279.

[5] Ollivier J, Toewe S, Bannert A, et al. Nitrogen turnover in soil and global change[J]. FEMS Microbiology Ecology, 2011, 78(1): 3-16.

[6] Yuan L, Zhang Z C, Cao X C, et al. Responses of rice production, milled rice quality and soil properties to various nitrogen inputs and rice straw incorporation under continuous plastic film mulching cultivation[J]. Field Crop Research, 2014, 155: 164-171.

[7] 第一次全國污染源普查資料編纂委員會. 污染源普查數(shù)據(jù)集[M]. 北京:中國環(huán)境科學(xué)出版社,2011.

[8] 巨曉棠,谷保靜. 我國農(nóng)田氮肥施用現(xiàn)狀、問題及趨勢[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2014,20(4):783-795.

Ju Xiaotang, Gu Baojing. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(4): 783-795. (in Chinese with English abstract)

[9] Watanabe T, Man L H, Vien D M, et al. Effects of continuous rice straw compost application on rice yield and soil properties in the Mekong Delta[J]. Soil Science and Plant Nutrition, 2009, 55(6): 754-763.

[10] 陳金,唐玉海,尹燕枰,等. 秸稈還田條件下適量施氮對冬小麥氮素利用及產(chǎn)量的影響[J]. 作物學(xué)報(bào),2015,41(1):160-167.

Chen Jin, Tang Yuhai, Yin Yanping, et al. Effects of straw returning plus nitrogen fertilizer on nitrogen utilization and grain yield in winter wheat[J]. Acta Agronomica Sinica. 2015, 41(1): 160-167. (in Chinese with English abstract)

[11] 王靜,郭熙盛,王允青. 秸稈覆蓋與平衡施肥對巢湖流域農(nóng)田氮素流失的影響研究[J]. 土壤通報(bào),2011,42(2):331-335.

Wang Jing, Guo Xisheng, Wang Yunqing. Effects of straw mulch and balanced fertilization on nitrogen loss from farmland in Chaohu Lake region[J]. Chinese Journal of Soil Science, 2011, 42(2): 331-335. (in Chinese with English abstract)

[12] 張剛,王德建,俞元春,等. 秸稈全量還田與氮肥用量對水稻產(chǎn)量、氮肥利用率及氮素?fù)p失的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2016,22(4):877-885.

Zhang Gang, Wang Dejian, Yu Yuanchun, et al. Effects of straw incorporation plus nitrogen fertilizer on rice yield, nitrogen use efficiency and nitrogen loss[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(4): 877-885. (in Chinese with English abstract)

[13] 王如芳,張吉旺,董樹亭,等. 我國玉米主產(chǎn)區(qū)秸稈資源利用現(xiàn)狀及其效果[J]. 應(yīng)用生態(tài)學(xué)報(bào),2011,22(6):1504-1510.

Wang Rufang, Zhang Jiwang, Dong Shuting, et al. Present situation of maize straw resource utilization and its effect in main maize production regions of China[J]. Chinese Journal of Applied Ecology, 2011, 22(6): 1504-1510. (in Chinese with English abstract)

[14] Powlson D S, Riche A B, Coleman K, et al. Carbon sequestration in European soils through straw incorporation: Limitations and alternatives[J]. Waste Management, 2008, 28(4): 741-746.

[15] Thormann M N, Currah R S, Bayley S E. Succession of microfungal assemblages in decomposing peatland plants[J]. Plant and Soil, 2003, 250(2): 323-333.

[16] Eskelinen A, Stark S, Mannisto M. Links between plant community composition, soil organic matter quality and microbial communities in contrasting tundra habitats[J]. Oecologia, 2009, 161(1): 113-123.

[17] Ros G H, Hoffland E, Temminghoff E J M. Dynamics of dissolved and extractable organic nitrogen upon soil amendment with crop residues[J]. Soil Biology & Biochemistry, 2010, 42(12): 2094-2101.

[18] Howlader M A R, Solaiman A R M, Chowdhury M A H. Biodynamics of microbial biomass nitrogen and sulfur in soil amended with organic matter and fertilizer(1): Soil Biomass[J]. Bulletin of the Institute of Tropical Agriculture, Kyushu University, 2010, 33: 37-47.

[19] Machado D, Sarmiento L, Gonzalez-Prieto S. The use of organic substrates with contrasting C/N ratio in the regulation of nitrogen use efficiency and losses in a potato agroecosystem[J]. Nutrient Cycling in Agroecosystems, 2010, 88(3): 411-427.

[20] Yadvinder S, Bijay S, Ladha J K, et al. Effects of residue decomposition on productivity and soil fertility in rice-wheat rotation[J]. Soil Science Society of America Journal, 2004, 68(3): 854-864.

[21] 國家統(tǒng)計(jì)局農(nóng)村社會經(jīng)濟(jì)調(diào)查司. 中國農(nóng)村統(tǒng)計(jì)年鑒-2014[M]. 北京:中國統(tǒng)計(jì)出版社,2014.

[22] Jenkinson D S, Brookes P C, Powlson D S. Measuring soil microbial biomass[J]. Soil Biology & Biochemistry, 2004, 36(1): 5-7.

[23] 魯如坤. 土壤和農(nóng)業(yè)化學(xué)分析法[M]. 北京:中國農(nóng)業(yè)科技出版社,2000.

[24] 王金主,王元秀,李峰,等. 玉米秸稈中纖維素、半纖維素和木質(zhì)素的測定[J]. 山東食品發(fā)酵,2010(3):44-47.

[25] Zhao Shicheng, Li Kejiang, Zhou Wei, et al. Changes in soil microbial community, enzyme activities and organic matter fractions under long-term straw return in north-central China[J]. Agriculture Ecosystems & Environment, 2016, 216: 82-88.

[26] 胡乃娟,韓新忠,楊敏芳,等. 秸稈還田對稻麥輪作農(nóng)田活性有機(jī)碳組分含量、酶活性及產(chǎn)量的短期效應(yīng)[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2015,21(2):371-377.

Hu Naijuan, Han Xinzhong, Yang Minfang, et al. Short-term influence of straw return on the contents of soil organic carbon fractions, enzyme activities and crop yields in rice -wheat rotation farmland[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 371-377. (in Chinese with English abstract)

[27] 劉禹池,曾祥忠,馮文強(qiáng),等. 稻-油輪作下長期秸稈還田與施肥對作物產(chǎn)量和土壤理化性狀的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2014,20(6):1450-1459.

Liu Yuchi, Zeng Xiangzhong, Feng Wenqiang, et al. Effects of long-term straw mulch and fertilization on crop yields and soil physical and chemical properties under rice-rapeseed rotation[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1450-1459. (in Chinese with English abstract)

[28] 王玄德,石孝均,宋光煜. 長期稻草還田對紫色水稻土肥力和生產(chǎn)力的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2005,11(3):302-307.

Wang Xuande, Shi Xiaojun, Song Guangyu. Effects of long-term rice straw returning on the fertility and productivity of purplish soil[J]. Journal of Plant Nutrition and Fertilizer, 2005, 11(3): 302-307. (in Chinese with English abstract)

[29] Zhu L Q, Hu N J, Zhang Z W, et al. Short-term responses of soil organic carbon and carbon pool management index to different annual straw return rates in a rice-wheat cropping system[J]. Catena, 2015, 135: 283-289.

[30] Zhao H, Sun B F, Lu F, et al. Straw incorporation strategy on cereal crop yield in China[J]. Crop Science, 2015, 55(4): 1773-1781.

[31] Yin W, Yu A Z, Chai Q, et al. Wheat and maize relay-planting with straw covering increases water use efficiency up to 46%[J]. Agronomy for Sustainable Development, 2015, 35(2): 815-825.

[32] 陳曉芬,李忠佩,劉明,等. 不同施肥處理對紅壤水稻土團(tuán)聚體有機(jī)碳、氮分布和微生物生物量的影響[J]. 中國農(nóng)業(yè)科學(xué),2013,46(5):950-960.

Chen Xiaofen, Li Zhongpei, Liu Ming, et al. Effects of different fertilizations on organic carbon and nitrogen contents in water-stable aggregates and microbial biomass content in paddy soil of subtropical China[J]. Scientia Agricultura Sinica, 2013, 46(5): 950-960. (in Chinese with English abstract)

[33] Xiao K C, Xu J M, Tang C X, et al. Differences in carbon and nitrogen mineralization in soils of differing initial pH induced by electrokinesis and receiving crop residue amendments[J]. Soil Biology & Biochemistry, 2013, 67: 70-84.

[34] Xu J M, Tang C, Chen Z L. Chemical composition controls residue decomposition in soils differing in initial pH[J]. Soil Biology & Biochemistry, 2006, 38(3): 544-552.

[35] 劉四義,賈淑霞,張曉平,等. 玉米和大豆秸稈還田對黑土微生物量及呼吸的影響[J]. 土壤與作物,2014(3):105-111.

Liu Siyi, Jia Shuxia, Zhang Xiaoping, et al. Effects of corn and soybean residues return on microbial biomass and respiration in the black soil[J]. Soil and Crop, 2014(3): 105-111. (in Chinese with English abstract)

[36] 閆貴龍,孟慶翔,陳紹江. 玉米類型和籽粒成熟期影響秸稈營養(yǎng)成分與活體外消化率的比較研究[J]. 動(dòng)物營養(yǎng)學(xué)報(bào),2005,17(3):52-57.

Yan Guilong, Meng Qingxiang, Chen Shaojiang. Comparison of nutrient content anddigestibility of corn stalks of different corn variety type and during different maturity stage of kernals[J]. Acta Zoonutrimenta Sinica, 2005, 17(3): 52-57. (in Chinese with English abstract)

[37] 顧擁建,占今舜,沙文鋒,等. 不同處理方式對青貯蠶豆秸稈發(fā)酵品質(zhì)和營養(yǎng)成分的影響[J]. 飼料研究,2016(8):1-3.

[38] 巨曉棠,張福鎖. 關(guān)于氮肥利用率的思考[J]. 生態(tài)環(huán)境,2003,12(2):192-197.Ju Xiaotang, Zhang Fusuo. Thingking about nitrogen recovery rate[J]. Ecology and Environment, 2003, 12(2): 192-197. (in Chinese with English abstract)

[39] 李文超. 鳳羽河流域農(nóng)業(yè)面源污染負(fù)荷估算及關(guān)鍵區(qū)識別研究[D]. 北京:中國農(nóng)業(yè)科學(xué)院,2014.

Li Wenchao, Evaluating the Loads of Agricultural Non-point Source Pollution and Identifying Critical Source Areas in Fengyu Basin[D]. Beijing: Chinese Academy of Agricultural Sciences, 2014. (in Chinese with English abstract)

[40] Raun W R, Johnson G V, Westerman R L. Fertilizer nitrogen recovery in long-term continuous winter wheat[J]. Soil Science Society of America Journal, 1999, 63(3): 645-650.

[41] 余坤,馮浩,趙英,等. 氨化秸稈還田加快秸稈分解提高冬小麥產(chǎn)量和水分利用效率[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(19):103-111.

Yu Kun, Feng Hao, Zhao Ying, et al. Ammoniated straw incorporation promoting straw decomposition and improving winter wheat yield and water use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(19): 103-111. (in Chinese with English abstract)

[42] 郝曉暉,胡榮桂,吳金水,等. 長期施肥對稻田土壤有機(jī)氮、微生物生物量及功能多樣性的影響[J]. 應(yīng)用生態(tài)學(xué)報(bào),2010,21(6):1477-1484.

Hao Xiaohui, Hu Ronggui, Wu Jinshui, et al. Effects of long-term fertilization on the paddy soils organic nitrogen microbial biomass and microbial functional diversity[J]. Chinese Journal of Applied Ecology, 2010, 21(6): 1477-1484. (in Chinese with English abstract)

[43] Gentile R, Vanlauwe B, Chivenge P, et al. Trade-offs between the short- and long-term effects of residue quality on soil C and N dynamics[J]. Plant and Soil, 2011, 338 (1/2): 159-169.

[44] Akkal C N, Morvan T, Menasseri A S, et al. Nitrogen mineralization, plant uptake and nitrate leaching following the incorporation of (15N)-labeled cauliflower crop residues () into the soil: A 3-year lysimeter study[J]. Plant and Soil, 2010, 328(1/2): 17-26.

[45] Shan J, Yan X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils[J]. Atmospheric Environment, 2013, 71: 170-175.

[46] Simpson I J, Blake D R, Rowland F S, et al. Implications of the recent fluctuations in the growth rate of tropospheric methane[J]. Geophysical Research Letters, 2002, 29(10): 1-4.

[47] Mooshammer M, Wanek W, Haemmerle I, et al. Adjustment of microbial nitrogen use efficiency to carbon: Nitrogen imbalances regulates soil nitrogen cycling[J]. Nature Communications, 2014, 5: 1-7.

[48] 趙士誠,曹彩云,李科江,等. 長期秸稈還田對華北潮土肥力、氮庫組分及作物產(chǎn)量的影響[J]. 植物營養(yǎng)與肥料學(xué)報(bào),2014,20(6):1441-1449.

Zhao Shicheng, Cao Caiyun, Li Kejiang, et al. Effects of long-term straw return on soil fertility, nitrogen pool fractions and crop yields on fluvo-aquic soil in North China[J]. Journal of Plant Nutrition and Fertilizer, 2014, 20(6): 1441-1449. (in Chinese with English abstract)

[49] 張星,劉杏認(rèn),張晴雯,等. 生物炭和秸稈還田對華北農(nóng)田玉米生育期土壤微生物量的影響[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(10):1943-1950.

Zhang Xing, Liu Xingren, Zhang Qingwen, et al. Effects of biochar and straw direct return on soil microbial biomass during maize growth season in North China Plain[J]. Journal of Agro-Environment Science 2015, 34(10): 1943-1950. (in Chinese with English abstract)

[50] 楊敏芳,朱利群,韓新忠,等. 耕作措施與秸稈還田對稻麥兩熟制農(nóng)田土壤養(yǎng)分、微生物生物量及酶活性的影響[J]. 水土保持學(xué)報(bào),2013,27(2):272-275.

Yang Minfang, Zhu Liqun, Han Xinzhong, et al. Effects of tillage and residues incorporation on soil nutrient, microbial biomass and enzyme activity under rice-wheat rotation[J]. Journal of Soil and Water Conservation, 2013, 27(2): 272-275. (in Chinese with English abstract)

[51] Wan X H, Huang Z Q, He Z M, et al. Soil C:N ratio is the major determinant of soil microbial community structure in subtropical coniferous and broadleaf forest plantations[J]. Plant and Soil, 2015, 387(1/2): 103-116.

[52] Yao S, Merwin I A, Bird G W, et al. Orchard floor management practices that maintain vegetative or biomass groundcover stimulate soil microbial activity and alter soil microbial community composition[J]. Plant and Soil, 2005, 271(1/2): 377-389.

[53] Strickland Michael S, Rousk Johannes. Considering fungal: Bacterial dominance in soils-Methods, controls, and ecosystem implications[J]. Soil Biology & Biochemistry, 2010, 42(9): 1385-1395.

[54] Hill B H, Elonen C M, Seifert L R, et al. Microbial enzyme stoichiometry and nutrient limitation in US streams and rivers[J]. Ecological Indicators, 2012, 18: 540-551.

[55] Buchkowski R W, Schmitz O J, Bradford M A. Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling[J]. Ecology, 2015, 96(4): 1139-1149.

[56] Li Y, Wu J S, Shen J L, et al. Soil microbial C:N ratio is a robust indicator of soil productivity for paddy fields[J]. Scientific Reports, 2016, 6: 35266.

Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning

Zhang Dan1, Fu Bin2, Hu Wanli2, Zhai Limei1, Liu Hongbin1, Chen Anqiang2, Gai Xiapu1, Zhang Yitao1, Liu Jian3, Wang Hongyuan1※

(1.100081;2.650205;3.16802,)

Recently, crop straws returning to field has been vigorously proposed as an effective strategy to promote agricultural sustainability in China. However, there were few studies revealing the effects of straw return on rice () - rape () rotation systems in Southwest China, especially lacking contrastive research about different crop straws. To explore the effects of straw incorporation on crop yield and soil nitrogen (N) retention of rice-rape rotation system, a field experiment was conducted from 2013 to 2015 in Yunnan Province. Specifically, the experiment consisted of 4 treatments: No fertilizer (CK), chemical fertilizer (CF), chemical fertilizer plus maize straw (CFMS), and chemical fertilizer plus broad bean straw (CFBS). Crop yield, soil N content, soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), and some other soil physicochemical properties were determined after rice or rape harvest. The results showed that straw incorporation (CFMS and CFBS) considerably increased crop yield and total biomass compared with the CF, and the yield and biomass of rape were increased by 28.6%-62.1% and 5.2%-20.2%, respectively, and those of rice were increased by 6.2%-35.8% and 35.7%-87.4%, respectively. In particular, CFMS produced the highest crop yield (4.2-4.7 t/hm2for rape and 11.0-12.2 t/hm2for rice), and CFMS increased the rape and rice yield by 16.7%-17.5% and 24.5%-27.9%, respectively, compared with CFBS. In consistent with the effects on crop yield, straw incorporation effectively increased the N content of rice and rape, and CFMS and CFBS increased the N content by 14.5%-20.2% and 5.2%-9.0% for rape, respectively, and 68.3%-87.4% and 35.7%-55.0% for rice, respectively, relative to the CF. In addition, CFMS significantly increased the N content (161.0-185.3 kg/hm2for rape and 219.0-243.1 kg/hm2for rice) compared with CFBS (153.3-162.1 kg/hm2for rape and 176.6-201.0 kg/hm2for rice) (<0.05). Furthermore, the SMBC and SMBN under straw incorporation were both increased significantly compared with CK (<0.05), and they were ranked in such order: CFMS>CFBS>CF>CK. There was no significant difference in the soil pH value, total N, soil organic matter (SOM) and soil C/N among these 4 treatments (>0.05) because of the relatively short experimental period (only lasting for 2 years). Generally, the soil microbial entropy and soil microbial biomass C/N (SMB C/N) could quickly respond to straw incorporation compared with the highly stable soil C/N. Nitrate N was the main component of inorganic N in soil, and soil residual N after crop was harvested was significantly decreased under straw incorporation (<0.05), which declined by 11.6%-55.0% for CFMS and 13.7%-52.3% for CFBS compared with the CF (45.4 mg/kg). Rainfall mainly occurred during rice growing season (from May to October) in Southwest China, which had a high potential to cause N losses. However, the significant reduction of residual N in soil by straw incorporation after rape was harvested could probably lead to a lower potential of N loss in rice growing season. We conclude that the incorporation of straw into soil can increase crop yield and crop N uptake, improve soil N immobilization potential and reduce risks of N loss in the rice-rape rotation in Southwest China. Particularly, the incorporation of maize straw demonstrates greater advantages in yield increase and N retention than bean straw in actual production.

straw; organic carbon; soils; straw returning; rice-rape rotation; crop yield; soil microbial biomass; nitrate nitrogen residual

10.11975/j.issn.1002-6819.2017.09.017

S158.3

A

1002-6819(2017)-09-0133-08

2016-10-27

2017-04-09

國家自然科學(xué)基金(41301311),國家公益性行業(yè)(農(nóng)業(yè))科研專項(xiàng)(201303095),國家重點(diǎn)研發(fā)計(jì)劃(2016YFD0800500)

張丹,女,山東鄒平人,從事農(nóng)田養(yǎng)分循環(huán)與環(huán)境研究。北京中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,100081。Email:zhangdan0630@126.com

王洪媛,山東萊州人,副研究員,從事農(nóng)田土壤碳氮循環(huán)、農(nóng)業(yè)面源污染防控技術(shù)、農(nóng)業(yè)廢棄物資源化利用等研究。北京中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所,100081。Email:wanghongyuan@caas.cn

張 丹,付 斌,胡萬里,翟麗梅,劉宏斌,陳安強(qiáng),蓋霞普,張亦濤,劉 劍,王洪媛. 秸稈還田提高水稻-油菜輪作土壤固氮能力及作物產(chǎn)量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(9):133-140. doi:10.11975/j.issn.1002-6819.2017.09.017 http://www.tcsae.org

Zhang Dan, Fu Bin, Hu Wanli, Zhai Limei, Liu Hongbin, Chen Anqiang, Gai Xiapu, Zhang Yitao, Liu Jian, Wang Hongyuan. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 133-140. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.09.017 http://www.tcsae.org

猜你喜歡
水稻產(chǎn)量質(zhì)量
什么是海水稻
2022年11月份我國鋅產(chǎn)量同比增長2.9% 鉛產(chǎn)量同比增長5.6%
“質(zhì)量”知識鞏固
今年前7個(gè)月北海道魚糜產(chǎn)量同比減少37%
水稻種植60天就能收獲啦
軍事文摘(2021年22期)2021-11-26 00:43:51
質(zhì)量守恒定律考什么
海水稻產(chǎn)量測評平均產(chǎn)量逐年遞增
一季水稻
文苑(2020年6期)2020-06-22 08:41:52
水稻花
文苑(2019年22期)2019-12-07 05:29:00
做夢導(dǎo)致睡眠質(zhì)量差嗎
主站蜘蛛池模板: 亚洲国产成人久久精品软件| 热久久国产| 亚洲最大综合网| 动漫精品啪啪一区二区三区| 91美女在线| 91亚洲精选| 中文字幕资源站| 国产在线麻豆波多野结衣| 亚洲人成网站观看在线观看| 亚洲成人动漫在线| 九九九国产| 国产乱子精品一区二区在线观看| 一区二区理伦视频| 2021国产精品自产拍在线| 色综合狠狠操| 久久无码免费束人妻| 国产乱码精品一区二区三区中文 | 日韩午夜福利在线观看| 99久久亚洲综合精品TS| 国产av剧情无码精品色午夜| www.日韩三级| 久久一本精品久久久ー99| 手机在线国产精品| 国产精品尤物铁牛tv| 美女扒开下面流白浆在线试听| 视频二区亚洲精品| 色婷婷色丁香| 免费亚洲成人| 88av在线| 99视频在线免费看| 手机精品福利在线观看| 久久精品亚洲中文字幕乱码| 欧美不卡视频一区发布| 五月综合色婷婷| 青青青国产视频手机| 久久亚洲综合伊人| 婷婷午夜影院| 亚洲国产精品日韩av专区| 午夜激情婷婷| 97在线免费| 国产福利一区在线| 国产精品亚洲日韩AⅤ在线观看| 91在线国内在线播放老师 | 中文字幕在线免费看| 日本午夜视频在线观看| 五月天天天色| 欧美日韩国产精品va| 国产AV毛片| 国产96在线 | 中文字幕啪啪| 亚洲天堂精品视频| 欧美精品aⅴ在线视频| 午夜视频www| 成人综合在线观看| 国产最爽的乱婬视频国语对白| 人妻丰满熟妇av五码区| 中文字幕资源站| 国产毛片不卡| 久久国产精品影院| 亚洲乱码精品久久久久..| 人妻丰满熟妇啪啪| 亚洲日韩精品伊甸| 曰AV在线无码| 日韩成人在线视频| 亚洲视频色图| 久久精品这里只有国产中文精品| 亚洲人成网址| 亚洲人成网站在线观看播放不卡| 亚洲欧美不卡| 伊人成人在线视频| 免费在线视频a| 欧美日韩国产成人高清视频| 久久香蕉国产线看观看精品蕉| 四虎国产在线观看| 精品国产一二三区| 午夜福利无码一区二区| 欧美日本在线播放| 亚洲av成人无码网站在线观看| 国产成人综合久久精品下载| 欧美福利在线| 婷婷开心中文字幕| 四虎免费视频网站|