董林林張海東于東升史學正?郭乃嘉任 楊張 麗
(1 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點實驗室(中國科學院南京土壤研究所),南京 210008)
(2 蘇州市農(nóng)業(yè)科學院,江蘇蘇州 215155)
(3 中寧縣農(nóng)業(yè)技術推廣服務中心,寧夏中寧 751200)
引黃灌淤耕作對剖面土壤有機質(zhì)組分構成的影響*
董林林1,2張海東1,2于東升1史學正1?郭乃嘉1任 楊3張 麗3
(1 土壤與農(nóng)業(yè)可持續(xù)發(fā)展國家重點實驗室(中國科學院南京土壤研究所),南京 210008)
(2 蘇州市農(nóng)業(yè)科學院,江蘇蘇州 215155)
(3 中寧縣農(nóng)業(yè)技術推廣服務中心,寧夏中寧 751200)
土壤有機質(zhì)組分構成是影響土壤有機碳庫穩(wěn)定性最直接的原因。為研究灌溉耕作對不同組分土壤有機質(zhì)含量變化產(chǎn)生的影響,以寧夏引黃灌區(qū)為研究對象,通過密度分組方法,測定并分析土壤輕組和重組有機碳含量的變化。結果表明,經(jīng)過不同時間的引黃灌溉耕作后,土壤輕組和重組有機質(zhì)含量增加,但是不同組分,其變化量之間存在差異。在剖面深度上,土壤輕組和重組有機質(zhì)含量及其增加量均隨土層深度的增加而降低,表層土壤輕組和重組有機質(zhì)增加最顯著,土壤有機質(zhì)組分含量的變化受土壤類型的影響明顯。與未受灌溉耕作影響的自然土壤相比,灌溉土壤0~60 cm深度內(nèi)輕組有機質(zhì)與總有機質(zhì)間的相關性增強,而且這種相關性隨土層深度增加而減弱;自然土壤和灌溉土壤剖面各層次重組有機質(zhì)與總有機質(zhì)間均有極強的相關性,說明重組有機質(zhì)是土壤有機質(zhì)最為重要的組分,但輕組有機質(zhì)對灌溉耕作的響應更加敏感,重組有機質(zhì)較輕組有機質(zhì)具有更好的固碳效果。
引黃灌溉;土壤;輕組有機質(zhì);重組有機質(zhì)
土壤有機質(zhì)(Soil organic matter,SOM)是最主要的土壤肥力指標之一,其含量的高低對作物的生長產(chǎn)生重要影響。根據(jù)密度分組的方法,可將土壤有機質(zhì)分為輕組和重組有機質(zhì)[1-2]。輕組有機質(zhì)(Light fraction organic matter,LFOM)相對活躍,可為作物生長提供營養(yǎng)物質(zhì),是陸地生態(tài)系統(tǒng)碳循環(huán)的重要參與者;重組有機質(zhì)(Heavy fraction organic matter,HFOM)相對穩(wěn)定,對促進土壤固碳和減緩全球變暖具有重要意義。由于受到自然或人為因素的影響,土壤有機質(zhì)處于不斷地變化之中[2-4],且各類因素對土壤有機質(zhì)變化的影響存在明顯差異。如:秸稈還田或作物覆蓋等方法由于直接增加了有機質(zhì)投入而使土壤有機質(zhì)含量增加,相對而言,土壤輕組有機質(zhì)含量的增加更明顯[4-6];免耕及保護性耕作因減輕了對土壤的擾動,降低了土壤的呼吸速率及生物酶活性,減少了土壤有機質(zhì)的礦化分解,更有利于活性較強的輕組分有機質(zhì)的累積[2,7];灌溉既能促進作物生長,又能增加土壤有機質(zhì)投入,是保障農(nóng)業(yè)正常生產(chǎn)和提升土壤質(zhì)量的重要措施[8-10]。
但是,由于灌溉水質(zhì)、灌溉方式和時間的不同,灌溉對土壤有機質(zhì)變化的影響差異較大[9-11]。較為普遍的觀點認為,灌溉可以促進作物生長,增加有機質(zhì)投入,從而有利于土壤有機碳的增加。如:Presley等[12]認為灌溉28~31a后,土壤有機質(zhì)在剖面上未發(fā)生明顯變化。Ogle 等[13]通過綜合分析界定了農(nóng)業(yè)管理措施對土壤有機碳的影響,并指出灌溉有利于增加土壤有機碳儲量。此外引用污水進行灌溉時,由于污水中有機質(zhì)的輸入,可增加土壤有機質(zhì)含量,如:趙加瑞等[14]在陜西交口抽渭灌區(qū)的研究表明,表層土壤活性有機質(zhì)組分較井水灌溉的土壤增加顯著,非活性有機質(zhì)組分主要受天氣和土壤屬性的影響,變化不明顯。Lei等[15]的分析表明,灌溉34 a后,小麥地土壤有機碳庫較雨養(yǎng)農(nóng)田表層(0~20 cm)土壤有機碳庫約高出10%~12%;Boulal和Gómez-Macpherson[16]在西班牙的研究認為,持續(xù)灌溉4 a后土壤有機質(zhì)含量接近于雨養(yǎng)保護性耕作11a的土壤有機質(zhì)含量,且持續(xù)灌溉的水土保持效應明顯;Mohawesh等[17]在敘利亞西南部的研究結果顯示,運用有機質(zhì)含量為30.57 g L-1的橄欖油廠廢水灌溉5a和15a后,土壤有機碳含量由未灌溉土壤中的6.4 g kg-1分別增加至 46.5和76.8 g kg-1。但是,Negahban-Azar等[18]在美國亞利桑那州和加利福尼亞州的報道指出,運用廢水灌溉的土壤,表層有機質(zhì)含量較用清水灌溉的土壤分別低70%和30%;Albalawneh等[19]在約旦的研究結果顯示,經(jīng)過2 次處理過的廢水灌溉后,土壤有機質(zhì)含量出現(xiàn)了輕微下降,平均含量由19.9 g kg-1降至 19.1 g kg-1。
在我國西部內(nèi)陸干旱—半干旱地區(qū),引用含有大量泥沙的河水灌溉進行農(nóng)業(yè)生產(chǎn)具有悠久的歷史,而且對這些地區(qū)的土壤性質(zhì)產(chǎn)生了巨大的影響。如:王吉智[20]和龔子同等[21]的研究指出,引黃灌溉不僅有利于土壤有機質(zhì)的提升,更有利于灌淤土的形成;毛偉兵等[22]和孫玉霞等[23]的研究表明:隨灌溉時間的延長,小開河引黃灌區(qū)土壤有機碳的含量有顯著提高,且0~5cm 表層土壤中,土壤有機碳含量增加明顯高于其他土層;郭秉晨等[24]和Dong等[25]在寧夏地區(qū)的研究結果均顯示,引用含有泥沙的黃河水灌溉,能明顯增加土壤有機質(zhì)含量,且隨著灌溉時間的延長,土壤有機質(zhì)含量呈增加的趨勢。但是,引用含有泥沙的河水灌溉對土壤有機質(zhì)組分變化造成的影響尚不清楚。借此,本研究以寧夏引黃灌區(qū)為例,揭示高含沙黃河水灌溉、淤積和耕作影響下SOM組分含量的變化特征,及其與總有機質(zhì)含量間的關系;明確不同灌溉時間作用下,總有機質(zhì)與各組分有機質(zhì)間相關關系隨土層深度的變化趨勢,以期為增加灌區(qū)土壤固碳和促進農(nóng)業(yè)生產(chǎn)提供理論指導和科學依據(jù)。
1.1 研究區(qū)概況
寧夏引黃灌區(qū)位于寧夏回族自治區(qū)北部(35°14′25″~39°23′10″N,104°16′55″~107°38′53″E),地處中國西北半干旱地區(qū),屬溫帶季風氣候,年降水量約為200 mm。黃河自南向北流經(jīng)被譽為“西部糧倉”的寧夏北部平原。寧夏引黃灌區(qū)現(xiàn)有灌溉面積4.61×105hm2,其中,自流灌溉面積為3. 83×105hm2,占全區(qū)引黃灌溉總面積的83.2%,是我國四大自流灌區(qū)之一;揚黃灌溉面積為7.73×104hm2,占全區(qū)引黃灌溉總面積的16.8%。灌渠自建成之后持續(xù)使用至今,因此,在本研究中,土壤的灌溉時間可以根據(jù)灌渠的修建時間來確定。灌淤土在該區(qū)的分布最廣,其次是地帶性土壤淡灰鈣土,此外還分布有風沙土、潮土和新積土等耕作土壤。參照灌區(qū)土壤的分布狀況,共采集了5類土壤,并在沒有進行灌溉耕作的區(qū)域布設對照樣點(圖1),根據(jù)各類土壤的分布特點結合各灌渠灌溉面積的大小布設樣點45個[25]。灌淤土是其他幾類土壤經(jīng)灌溉、耕作等人為擾動影響下形成的土壤,因此,其他幾類土壤的對照樣點也是灌淤土的對照樣點。樣點的具體布設情況如圖1所示。
1.2 樣品采集與分析
土壤樣品采集于2009年10月底,冬季灌水之前,采樣深度為100 cm,按土壤發(fā)生分類學劃分為四個層次[26],分別為0~20、20~30、30~60、60~100 cm,每層自上而下均勻采集土壤樣品1.0 kg。采用環(huán)刀法測定土壤容重,每層重復采樣三個[25-26]。采用改進的比重法將土壤有機質(zhì)分為輕組(比重小于1.7)和重組(比重大于1.7)兩類[2]。采用重鉻酸鉀外加熱法測定重組有機質(zhì)中碳含量[27],借助元素分析儀測定輕組部分碳、氮含量。
1.3 數(shù)據(jù)處理
單因素方差分析用于檢驗土層深度和灌溉時間對總有機質(zhì)、輕組和重組有機質(zhì)產(chǎn)生的影響。皮爾遜相關系數(shù)用于確定不同組分的有機質(zhì)與總有機質(zhì)間的相關關系。最小顯著性差異被用來區(qū)分灌溉和對照土壤之間輕組和重組有機質(zhì)之間的差異(p<0.05)。

圖1 寧夏引黃灌區(qū)土壤類型及剖面樣點分布Fig. 1 Distribution of soil sampling sites and soil types in the Ningxia Irrigation Zone
2.1 灌溉耕作對土壤有機質(zhì)含量的影響
在剖面深度上,灌溉土壤和對照土壤之間,有機質(zhì)差異明顯(圖2)。

圖2 寧夏引黃灌區(qū)對照土壤與灌溉土壤有機質(zhì)含量的剖面分布Fig. 2 Total organic matter content in the control and irrigated soils in Ningxia Irrigation Zone,China
總體而言,與對照土壤相比,經(jīng)不同時長的引黃灌溉耕作后,灌溉土壤各層次有機質(zhì)含量均明顯增加(p<0.05)(圖1)。自表層向下,土壤有機質(zhì)含量隨著土層深度的增加呈下降的趨勢,與對照土壤有機質(zhì)含量的變化趨勢相似,但變化規(guī)律更加明顯。相對于自然土壤,灌溉土壤0~20 cm、20~30 cm、30~60 cm和60~100 cm各層次SOM分別增加了227.1%、150.9%、140.6%和130.1%,增加幅度隨土層深度增加而降低。說明灌溉耕作引起的土壤有機質(zhì)變化隨土層深度的增加而降低,對表層(0~20 cm)和亞表層(20~30 cm)土壤有機質(zhì)的變化影響最深刻,增加最顯著(p<0.01),30~100 cm處土壤有機質(zhì)含量增加相對較少。據(jù)Davidson 和Janssens[28]的研究,土壤有機質(zhì)的周轉(zhuǎn)時間與基質(zhì)有關,但是從本研究結果來看,基質(zhì)對SOM的影響與土層深度有關,基質(zhì)對深層土壤有機質(zhì)的影響更顯著,而農(nóng)業(yè)管理措施則對表層及亞表層土壤SOM的累積和礦化分解影響更大。本研究中,表層土壤有機質(zhì)累積高于其他層次,一方面是因為表層外源有機質(zhì)的輸入相對更多,另一方面可能是因為灌溉降低了土壤中氧氣的擴散,有機質(zhì)只進行厭氧反應[29-30],礦化分解量相對較少,利于有機質(zhì)累積。
2.2 灌溉耕作對土壤輕組有機質(zhì)含量的影響
寧夏引黃灌區(qū)5種類型土壤輕組有機質(zhì)含量隨土層深度的變化如圖3所示。

圖3 寧夏引黃灌區(qū)對照與灌溉土壤輕組有機質(zhì)含量的剖面分布Fig. 3 Light fraction organic matter content in the control and irrigated soils in Ningxia Irrigation Zone,China
寧夏引黃灌區(qū)5種類型土壤輕組有機質(zhì)含量均隨土層深度的增加呈下降趨勢,但是不同深度土層內(nèi),輕組有機質(zhì)因土壤類型的不同存在明顯差異(圖2)。在剖面深度上,相對于自然土壤,表層(0~20 cm)和亞表層(20~30 cm)土壤LFOM增加顯著(p<0.05),30~100 cm土層LFOM增加不顯著; 5類土壤輕組有機質(zhì)含量僅表層(0~20 cm)增加明顯(p<0.05),灌淤土和潮土的輕組有機質(zhì)含量相對較高,淡灰鈣土、風沙土和新積土輕組有機質(zhì)含量相對較低。可能是由于灌淤土和潮土分布的區(qū)域,土壤灌溉條件便利,灌溉時間相對較長,土壤水分條件好,以作物秸稈及根系殘留物形式進入土壤中的有機質(zhì)較多,相對適宜的環(huán)境條件更有利于土壤有機質(zhì)的累積,而其他幾類土壤主要分布在較為干旱的山區(qū),以揚黃灌溉為主,土壤水分條件差,不利于有機質(zhì)的累積。
圖3顯示,與未受灌溉耕作影響的自然土壤相比,在相同土層深處,寧夏引黃灌區(qū)5種類型土壤輕組有機質(zhì)含量之間差異性顯著(p<0.05),但是各類土壤輕組有機質(zhì)的增加量均隨土層深度的增加呈現(xiàn)下降的趨勢,說明有機質(zhì)來源是影響土壤有機質(zhì)含量和增加量的重要因素。灌溉耕作后,灌淤土和潮土各土層的輕組有機質(zhì)含量增加更為明顯,淡灰鈣土除表層土壤輕組有機質(zhì)含量增加外,其他各層次土壤有機質(zhì)含量有所減少,說明引黃灌溉耕作對各類土壤輕組有機質(zhì)含量變化的作用效果不同。土壤輕組有機質(zhì)的變化應是多種因素共同作用的結果。
2.3 灌溉耕作對土壤重組有機質(zhì)含量的影響
相對于未受灌溉耕作影響的自然土壤,在剖面深度上,寧夏引黃灌區(qū)5種類型土壤重組有機質(zhì)的變化如圖4所示。

圖4 寧夏引黃灌區(qū)對照與灌溉土壤重組有機質(zhì)含量的剖面分布Fig. 4 Heavy fraction organic matter Content in the control and irrigated soils in Ningxia Irrigation Zone,China
灌溉土壤和自然土壤中,重組有機質(zhì)含量均隨土層深度的增加而降低(圖4),與輕組有機質(zhì)隨土層深度變化的趨勢相似,符合土壤有機質(zhì)剖面分布的一般規(guī)律[29-30]。與對照土壤相比,在剖面深度上,5類灌溉土壤HFOM均有增加。灌淤土各土層HFOM增加顯著(p<0.05)。0~30 cm土壤重組有機質(zhì)變化最劇烈,60~100 cm深度,增加較少,這些均表明,因灌溉耕作增加的SOM主要集中在耕作層和犁底層。已有研究也認為,農(nóng)業(yè)生產(chǎn)措施僅能影響表層0~20 cm 或0~30 cm中SOM的變化,這種影響很難到達更深的土層[28,31-32]。
無論是灌溉土壤還是自然土壤,HFOM均占有絕對的比例,是土壤有機質(zhì)的重要組分,其他相關研究也得到了相似的結論[29,31-32]。灌溉后,土壤剖面各層次HFOM較LFOM增加更明顯,出現(xiàn)這種現(xiàn)象的原因可能與有機質(zhì)的周轉(zhuǎn)周期有關。耕作過程中投入的有機質(zhì),在微生物的作用下,以不同的形態(tài)賦存于土壤中,其周轉(zhuǎn)時間也存在明顯的差異。其中,LFOM被認為具有較短的周轉(zhuǎn)周期,且易被作物吸收,是作物生長重要的營養(yǎng)物質(zhì)來源;而HFOM相對穩(wěn)定,周轉(zhuǎn)時間長,約上百年或上千年,因此,可以長時間的儲存于土壤之中。在寧夏引黃灌區(qū),長期的灌溉耕作,使大量的有機質(zhì)進入到土壤中,隨著灌溉時間的延長,土層厚度不斷增加,最早形成的有機質(zhì)被封存起來。然而,由于LFOM的周轉(zhuǎn)時間短,大部分的輕組物質(zhì)經(jīng)過礦化分解后,以CO2的形式釋放到大氣中,致使其含量降低,特別是灌溉時間在50年以上的土壤,深層土壤LFOM含量相對較低。但是,HFOM周轉(zhuǎn)時間較長,隨著灌溉時間的延長,會不斷地累積起來,而使其含量不斷增加,因此礦化分解的HFOM相對較少,較LFOM增加明顯。但是,土層厚度增加是否能保護較老的有機質(zhì)不被分解,或者灌溉水入滲會刺激較老的有機質(zhì)分解等問題尚不清楚。
2.4 土壤輕組和重組有機質(zhì)與總有機質(zhì)的關系
在寧夏引黃灌區(qū),對照土壤和灌溉土壤輕組和重組有機質(zhì)與總有機質(zhì)的關系如圖5和圖6所示。

圖5 對照土壤剖面各層次輕組和重組有機質(zhì)與總有機質(zhì)間的關系Fig. 5 Relationships between total organic matter and light and heavy fraction organic matter at each depth in control soil
圖5和圖6顯示,灌溉土壤LFOM與SOM相關性的變化最明顯,灌溉土壤0~60 cm各土層輕組有機質(zhì)與總有機質(zhì)之間具有較強的相關性(p<0.01),對照土壤LFOM含量與總有機質(zhì)含量間并無顯著相關性;但是,60~100 cm土層對照土壤LFOM與總有機質(zhì)間具有顯著相關性(p<0.05),灌溉土壤LFOM與總有機質(zhì)間無明顯相關性。
圖5顯示,對照土壤LFOM和總有機質(zhì)含量間的相關性隨土層深度增加呈增強的趨勢。但灌溉土壤輕組與總有機質(zhì)含量之間的相關性呈現(xiàn)隨土層深度增加而減弱的趨勢(圖6);灌溉土壤除表層(0~20 cm)HFOM與SOM之間的相關性稍弱于對照土壤外,其他各層次土壤HFOM與SOM含量之間的相關性均強于對照土壤(圖5和圖6),表明了灌溉耕作對增加土壤輕組和重組有機質(zhì)含量具有積極作用。與對照土壤相比,隨土層深度增加,LFOM 與SOM間相關性的增強和HFOM與SOM間相關性的減弱結果表明,土壤LFOM對灌溉耕作作用的響應要強于HFOM。然而,LFOM在土壤中的累積和分解速率快于HFOM,因此,LFOM變化更適合用于評價因引用含有泥沙的河水灌溉導致的土壤有機質(zhì)變化。
2.5 灌區(qū)5種類型土壤間有機質(zhì)組分構成的差異
引黃灌溉對不同深度土層土壤有機質(zhì)組分變化的影響不同,剖面深度上各類土壤輕組、重組和總有機質(zhì)間的相關關系見表1。
經(jīng)灌溉耕作后,土壤輕組和重組有機質(zhì)含量均增加,但是由于不同類型的土壤對灌溉的響應不同,而且不同類型的土壤,灌溉耕作時間也不盡相同,因此不同組分有機質(zhì)的變化程度也不同。結合圖6和表1不難看出,土壤輕組和重組有機質(zhì)的增加與土壤總有機質(zhì)的增加呈線性相關,但是,HFOM對總有機質(zhì)的增加影響更大。無論是對照土壤還是灌溉土壤,HFOM與總有機質(zhì)間的相關系數(shù)均大于0.97,說明HFOM對土壤總有機質(zhì)的影響更大,已有的研究也得出了相似的結果[31-32]。總之,引用含有泥沙的黃河水進行灌溉、耕作,既能增加土壤含水量、減緩有機物質(zhì)的礦化分解、降低土壤CO2釋放量[32-33],更能促進作物生長,增加有機質(zhì)投入,利于土壤有機碳的累積[34-36]。

圖6 灌溉土壤剖面各層次輕組和重組有機質(zhì)與總有機質(zhì)間的關系Fig. 6 Relationships between total organic matter and light and heavy fraction organic matter at each depth in irrigated soil

表1 寧夏引黃灌區(qū)5種類型土壤有機質(zhì)組分與總有機質(zhì)間的相關性Table 1 Pearson correlation coefficient between organic matter fractions and total organic matter of the five irrigated soils in Ningxia Irrigation Zone,China
在寧夏引黃灌區(qū),與對照土壤相比,灌溉耕作是增加土壤輕組、重組有機質(zhì)含量的有效措施,剖面各層次土壤LFOM和HFOM均與總有機質(zhì)有較好的相關性,但是HFOM與SOM間的相關性更強。灌溉耕作對土壤有機質(zhì)組分變化產(chǎn)生的影響因土壤類型的不同差異明顯。HFOM是相對穩(wěn)定的碳組分,也是灌區(qū)土壤有機質(zhì)的主要組分,對土壤固碳意義更大。LFOM為作物生長提供營養(yǎng)元素,促進作物生長,從而增加了土壤有機質(zhì)投入,為土壤固碳創(chuàng)造了條件。與LFOM相比,HFOM具有更長的周轉(zhuǎn)時間和更好的穩(wěn)定性,這也是灌區(qū)土壤重組有機質(zhì)累積更多的關鍵之處。
[1] Turchenek L W,Oades J M. Fractionation of organomineral complexes by sedimentation and density techniques. Geoderma,1979,21:311—343
[2] Nascentea A S,Li Y,Crusciol C A C. Cover crops and no-till effects on physical fractions of soil organic matter. Soil & Tillage Research,2013,130:52—57
[3] 李曉迪,王淑民,張黎明,等. 土壤數(shù)據(jù)源和制圖比例尺對旱地土壤有機碳儲量估算的影響. 土壤學報,2016,53(1):58—71
Li X D,Wang S M,Zhang L M,et al. Impacts of source of soil data and scale of mapping on assessment of organic carbon storage in upland soil(In Chinese). Acta Pedologica Sinica,2016,53(1):58—71
[4] Ellerbrock R H,Gerke H H,Deumlich D. Soil organic matter composition along a slope in an erosion-affected arable landscape in North East Germany. Soil Tillage Research,2016,156:209—218
[5] Malhi S S,Nyborg M,Goddard T,et al. Long-term tillage,straw management and N fertilization effects on quantity and quality of organic C and N in a Black Chernozem soil. Nutrient Cycling in Agroecosyst,2011,90:227—241
[6] Nogueirol R C,Pellegrino Cerri C E,da Silva W T L,et al. Effect of no-tillage and amendments on carbon lability in tropical soils. Soil & Tillage Research, 2014,143:67—76
[7] Guimar?es D V,Isidória Silva Gonzaga M,da Silva T O,et al. Soil organic matter pools and carbon fractions in soil under different land uses. Soil & Tillage Research,2013,126:177—182
[8] Li S,Zhang S,Pu Y,et al. Dynamics of soil labile organic carbon fractions and C-cycle enzyme activities under straw mulch in Chengdu Plain. Soil & Tillage Research,2016,155:289—297
[9] Shashi B V,Achim D,Kenneth G C,et al. Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems. Agricultural and Forest Meteorology,2005,131:77—96
[10] Zhang G B,Ji Y,Ma J,et al. Intermittent irrigation changes production,oxidation,and emission of CH4in paddy fields determined with stable carbon isotope technique. Soil Biology & Biochemistry,2012,52:108—116
[11] 唐光木,徐萬里,盛建東,等. 新疆綠洲農(nóng)田不同開墾年限土壤有機碳及不同粒徑土壤顆粒有機碳變化. 土壤學報,2010,47(2):279—285
Tang G M,Xu W L,Sheng J D,et al. The variation of soil organic carbon and soil particle-size in Xinjiang oasis Farmland of different years(In Chinese). Acta Pedologica Sinica,2010,47(2):279—285
[12] Presley D R,Ransom M D,Kluitenberg G J,et al. Effects of thirty years of irrigation on the genesis and morphology of two semiarid soils in Kansas. Soil Science Society of America Journal,2004,68:1916—1926
[13] Ogle S M,Breidt F J,Paustian K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry,2005,72:87—121
[14] 趙加瑞,王益權,劉軍,等. 灌溉水質(zhì)與土壤有機質(zhì)累積的關系. 生態(tài)環(huán)境,2008,17(3):1240—1243
Zhao J R,Wang Y Q,Liu J,et al. Effect of irrigation water quality on soil organic matter accumulation (In Chinese). Ecology and Environment,2008,17 (3):1240—1243
[15] Lei D,Zhu G Y,Tang Z S,et al. Global patterns of the effects of land-use changes on soil carbon stocks. Global Ecology and Conservation,2016,5:127—138
[16] Boula H,Gómez-Macpherson H. Dynamics of soil organic carbon in an innovative irrigated permanent bed system on sloping land in southern Spain. Agriculture,Ecosystems & Environment,2010,139(1/2):284—292
[17] Mohawesh O,Mahmoud M,Janssen M,et al. Effect of irrigation with olive mill wastewater on soil hydraulicand solute transport properties. International Journal of Environmental Science and Technology,2013,11 (4):927—934
[18] Negahban-Azar M,Sharvelle S E,Stromberger M E,et al. Fate of gray water constituents after long-term application for landscape irrigation. Water Air & Soil Pollution,2012,223(8):4733—4749
[19] Albalawneh A,Chang T,Chou C S. Impacts on soil quality from long-term irrigation with treated greywater. Paddy and Water Environment,2015,DOI 10.1007/ s10333-015-0499-6
[20] 王吉智. 灌淤土——中國干旱與半干旱地區(qū)的人為土壤.干旱區(qū)資源與環(huán)境,1993,7(3/4):233—237
Wang J Z. Irrigating Warped soils—a kind of anthrosols in arid and semiarid region in China(In Chinese). Journal of Arid Land Resources and Environment,1993,7(3/4):233—237
[21] 龔子同,張甘霖,王吉智,等. 中國的灌淤人為土. 干旱區(qū)研究,2005,22(1):4—10
Gong Z T,Zhang G L,Wang J Z,et al. Formation and taxonomy of irrigation-silted soils in China(In Chinese). Arid Zone Research,2005,22(1):4—10
[22] 毛偉兵,傅建國,孫玉霞,等. 引黃泥沙對小開河灌區(qū)土壤理化性狀的影響. 人民黃河,2009,31(8):66—68
Mao W B,F(xiàn)u J G,Sun Y X,et al. Effect of sediment from Yellow River water on soil physical and chemical properties in Xiaokai River irrigation area(In Chinese). Yellow River,2009,31(8):66—68
[23] 孫玉霞,楊蕓,李妮,等. 小開河灌區(qū)引黃入田泥沙的土壤環(huán)境效應. 中國農(nóng)村水利水電,2010,(3):51—54
Sun Y X,Yang Y,Li N,et al. Effect of sediment from Yellow River water on soil environment in Xiaokai River Irrigation Area(In Chinese). China Rural Water and Hydropower,2010,(3):51—54
[24] 郭秉晨,馬玉蘭,馮靜,等.寧夏引黃灌區(qū)耕地土壤有機質(zhì)及養(yǎng)分質(zhì)量分數(shù)變化趨勢. 農(nóng)業(yè)科學研究,2006,27(3):1—5
Guo B C,Ma Y L,F(xiàn)eng J,et al. Changing trend of organic matter and nutrient content in cultivated land of the Ningxia irrigation area of Yellow River(In Chinese). Journal of Agricultural Sciences,2006,27 (3):1—5
[25] Dong L L,Yu D S,Zhang H D,et al. Long-term effect of sediment laden Yellow River irrigation water on soil organic carbon stocks in Ningxia,China. Soil & Tillage Research,2015,145:148—156
[26] 董林林,楊浩,于東升,等. 不同類型土壤引黃灌溉固碳效應的對比研究. 土壤學報,2011,48(5):922—930
Dong L L,Yang H,Yu D S,et al. Effect of irrigation with water diverted from the Yellow River on carbon sequestration in soils of different types in Ningxia Irrigation Zone(In Chinese). Acta Pedologica Sinica,2011,48(5):922—930
[27] 魯如坤. 土壤農(nóng)業(yè)化學分析方法. 北京:中國農(nóng)業(yè)科技出版社,2000.
Lu R K. Analytical methods for soil and agro-chemistry (In Chinese). Beijing:China Agricultural Science and Technology Press,2000
[28] Davidson E A,Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature,2006,doi:10.1038/nature04514
[29] Rovira P,Vallejo V R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil:An acid hydrolysis approach. Geoderma,2002,107:109—141
[30] Dikgwatlhe S B,Kong F L,Chen Z D. Tillage and residue management effects on temporal changes in soil organic carbon and fractions of a silty loam soil in the North China Plain. Soil Use and Management,2014,30:496—506
[31] Janzen H H,Campbell C A,Brandt S A,et al. Lightfraction organic matter in soil from long-term crop rotations. Soil Science Society of America Journal,1992,56:1799—1806.
[32] Benbi D K,Toor A S,Kumar S. Management of organic amendments in rice-wheat cropping system determines the pool where carbon is sequestered. Plant and Soil,2012,360(1-2):145—162
[33] Yang F,Zhang G L,Yang J L,et al. Organic matter controls of soil water retention in alpine grassland and its significance for hydrological processes. Journal of Hydrology,2014,519:3086—3093
[34] Dexter A R,Richard G,Arrouays D,et al. Complexed organic matter controls soil physical properties. Geoderma,2008,144(3):620—627
[35] Saxton K E,Rawls W J. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal,2006,70(5):1569—1578
[36] Zornoza R,Rosales R M,Acotsta J A,et al. Efficient irrigation management can contribute to reduce soil CO2emissions in agriculture. Geoderma,2016,263:70—77
Effect of Cultivation and Irrigation with Sediment Laden Yellow River Water on SOM Composition in Profile Depth
DONG Linlin1,2ZHANG Haidong1,2YU Dongsheng1SHI Xuezheng1?GUO Naijia1REN Yang3ZHANG Li3
(1 State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)
(2 Suzhou academy of agricultural sciences,Suzhou,Jiangsu 215155,China)
(Zhongning Agricultural Technical Extension and Service Center,Zhongning,Ningxia 751200,China)
【Objective】Soil organic carbon(SOC),which is the largest storage of organic carbon in the terrestrial ecosystem,is subject to influences of a number of factors,such as climate,geography,human activities,etc. Irrigation is an effective measure to ensure crop production as well as to increase SOC content,particularly,in arid and semiarid areas. Northwest China is an area that has a long history of irrigation with sediment laden river water,where a special layer of anthropogenic soil or irrigation-silt has formed. The layer is quite uniform in soil color,composition,texture,calcium carbonate content,and organic carbon content. When the layer of irrigation-silted is ≥50 cm in thickness,it is termed as irrigationsilted soil. The soil is ≥4 g kg-1in SOC content,even at the bottom of the irrigation-silted layer. Composition of the soil organic matter(SOM)in fraction,heavy or light is the major factor affecting stability of the SOC storage in the layer.【Method】An irrigation zone in Ningxia Province,Northwest China,was selected in the study to evaluate effects of cultivation and irrigation with sediment laden Yellow River water on content and fractionation of SOC. The Yellow River flows through northern part of Ningxia from south to north. Irrigatedalluvial soil,Light sierozem soil,Aeolien sandy soil,F(xiàn)luvi-aquic soil and Fluvent soil are the types of soils commonly distributed in the Zone. Based on that,a total of 45 soil profiles were specified,including 6 in non-cultivated and non-irrigated natural fields as control,and 39 in irrigated fields different in irrigation history. Each profile was divided into four layers(0~20,20~30,30~60 and 60~100 cm). Soil samples were collected from the layers for analysis of SOC content and for fractionations of SOC,light and heavy by density using 1.7 g m3NaI solution,so as to illustrate effects of the irrigation with Yellow River water on content and fractionation of SOC.【Result】Both light and heavy SOMs were found to have increased in content after years of irrigation,but the increment varied with the duration of irrigation and the fraction. The longer the history of irrigation,the higher the content of both light and heavy OMs in the soil regardless of type. As a result of farming cultivation,including fertilizer or manure application,the contents of OM increased the most significantly(p<0.001)in the plow or surface layer(0~20 cm),and the content and the increment declined along the profile and varied with the type of soil. Irrigated-alluvial soil with a long history of irrigation was found to be highest in OM content,which implies that soil type is another important factor influencing accumulation of SOM. Compared to non-irrigated and non-cultivated soils,irrigated soils exhibited a close relationship between the fraction of light OM and the total SOM in the 0~60 cm soil layer,and the relationship weakened with increasing soil depth,but a very close relationship was found between the fraction of heavy SOM and the total SOM in all the soil layers of both irrigated and non-irrigated fields,which indicates that heavy organic matter is the major component of SOM and accumulates more rapidly thanlight organic matter.【Conclusion】Irrigation with sediment laden Yellow River water helps increase SOC storage,either light or heavy in the Ningxia Irrigation Zone. Heavy OM is the major component of SOM,while light OM is more sensitive to cultivation and irrigation. And the former plays a better role than the latter does in sequestrating soil carbon.
Irrigation with Yellow River water;soil;Light fraction organic matter;Heavy fraction organic matter
S158.1
A
(責任編輯:檀滿枝)
* 國家自然科學基金項目(41501326,41501296)、中國科學院戰(zhàn)略性先導科技專項(XDA05050507)和江蘇省博士后基金(1202051C)資助 Supported by the National Natural Science Foundation of China(Nos. 41501326,41501296),the Strategic Priority Research Program of the Chinese Academy of Sciences(No. XDA05050509)and Jiangsu Postdoctoral Science Foundation(No.1202051C)
? 通訊作者 Corresponding author,E-mail:xzshi@issas.ac.cn
董林林(1979—),女,甘肅天水人,博士后,主要從事土壤有機碳演變與全球變化研究。E-mail:jinjindoudou2005@163.com
2016-07-01;
2016-12-09;優(yōu)先數(shù)字出版日期(www.cnki.net):2017-01-09
10.11766/trxb201607010301