999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

旱澇交替下控制灌溉對稻田節水及氮磷減排的影響

2017-06-05 15:00:27高世凱俞雙恩曹睿哲
農業工程學報 2017年5期

高世凱,俞雙恩,王 梅,曹睿哲,郭 蓉

旱澇交替下控制灌溉對稻田節水及氮磷減排的影響

高世凱,俞雙恩※,王 梅,曹睿哲,郭 蓉

(1. 河海大學南方地區高效灌排與農業水土環境教育部重點實驗室,南京 210098;2. 河海大學水利水電學院,南京 210098)

該文研究控制灌排技術對稻田水氮磷動態變化及節水減排效應的影響。于2015年5—10月在河海大學江寧校區節水園,在有底側坑內進行水稻栽培試驗,于水稻分蘗期、拔節孕穗期、抽穗開花期和乳熟期4個生育階段進行控水試驗,以常規控制灌溉為對照,測定稻田淹排水銨態氮(NH4+-N)、硝態氮(NO3--N)和總磷濃度變化。結果表明:旱轉澇處理淹水初期稻田水中銨態氮(NH4+-N)、硝態氮(NO3--N)和總磷濃度顯著高于澇轉旱處理,這個時期地表和地下排水應該引起注意。控制灌排條件下灌水量減少7.4%~18.5%,排水量減少23.0%~43.5%,NH4+-N負荷減少18.5%~54.5%,NO3--N負荷減少16.8%~57.7%,總磷負荷減少34.2%~58.3%;其中拔節孕穗期和抽穗開花期在保證節水減排的同時,也能實現較高的產量;因此,控制灌排技術具有較好的節水減排效果,對南方稻作區灌排實踐具有指導意義。

土壤水分;氮;磷;旱澇交替;控制灌排;水稻;農田水深

0 引 言

水稻是南方地區最主要的糧食作物,生育期內的降雨較多,排水量較大[1-2]。農田排水造成氮磷等營養物質流失,不僅降低了水分和肥料的利用效率,還導致了附近河流、湖泊和水庫的水體富營養化[3-4]。然而稻田具有人工濕地的功能,延長降雨和灌溉水層在田間的滯留時間,有利于提高水分利用率和凈化水質[5-6]。因此實施水稻節水灌溉技術和控制排水技術對于節約水資源、減輕環境污染具有重要意義。

已有研究表明,控制排水有利于提高肥料和水分利用率,從而降低農田氮磷等對河流和地下水的污染[7-11]。控制排水減少農田氮磷損失的途徑主要有控制排水流量和排水強度、控制降雨期間和雨后的排水時間以及雨水滯留在田間和排水溝中的時間。瞿思堯等[12-13]的研究發現,連續對農田實施控制排水措施可以使排水量大約降低30%;Williams等[14]研究表明,與常規排水方式相比,控制排水可以使硝態氮(NO3--N)降低約20%左右,而溶解磷大約可降低35%。近年來,干濕交替、間歇灌溉、控制灌溉等水稻節水灌溉技術逐漸替代傳統的淹水灌溉。但現有的大部分節水灌溉技術,灌水下限較高,同時限制了雨后蓄水深度,以避免產生淹水脅迫[8,15-17]。這些灌溉技術雖然保持了較高的產量,但也造成灌水量和排水量較大,雨水利用率相應降低。水稻控制灌排綜合考慮了節水灌溉與控制排水的協同效應,在保證水稻產量的前提下,在保持或者甚至低于現有節水模式的灌水下限,適當增加雨后蓄水深度,達到水稻節水、減排、控污、高產的目的。已有的關于水分脅迫對稻田氮磷流失影響的研究[1,5,12],多是針對單一受旱或受澇條件下開展的,對旱澇交替情況下稻田氮磷動態變化影響的研究涉及較少。此外,大多研究是針對水稻全生育期的氮磷變化規律。本文探討旱轉澇(drought then flooding,HZL)和澇轉旱(flooding then drought,LZH)條件下控制灌排技術對不同生育階段氮磷濃度變化規律的影響及節水減排效應,對合理制定農田水位調控下稻田控制灌排模式、控制農業面源污染具有重要意義。

1 材料與方法

1.1 試驗區基本情況及農藝措施

試驗于2015年5—10月在河海大學南方地區高效灌排與農業水土環境教育部重點實驗室江寧校區節水園區進行。試驗區(31°86′N,118°60′E)屬于亞熱帶濕潤氣候,年均降雨量1 021.3 mm,其中5—9月降雨量占年平均降雨量的60%以上,年均蒸發量900 mm,平均無霜期237 d,年平均氣溫15.7 ℃,日照時數2 212.8 h。節水園區共有32個規格為2.5 m×2.0 m×2.0 m(長×寬×深)的蒸滲測坑(28個有底,4個無底),按南北方向布置,共2排,每排16個,地面設移動式雨棚,中間地下設有廊道及設備室,有底測坑可以實時控制地下水位。試驗所用土壤為黏壤土,測坑內0~30 cm土層土壤容重為1.46 g/cm3,總孔隙度為44.9%,田間持水率為25.28%,pH值為6.97,有機質為2.19%,全氮為0.91 g/kg,全磷為0.32 g/kg,速效氮為27.65 mg/kg,速效磷為12.5 mg/kg。

試驗供試水稻品種為南粳9108,5月13日泡種,15日催芽,5月17日下種,6月16日移栽,栽插密度為

20 cm×14 cm,每穴3根籽苗。移植前1周,對試驗測坑進行泡田,以便于耕耙和插秧。水稻生育期內共施肥3次,施肥情況見表1。

表1 研究區農田施肥狀況Table1 Farmland fertilization condition in experimental area

1.2 試驗設計

考慮南方地區水稻生長特點及氣候條件,不同處理控水試驗設計詳見表2。選取水稻分蘗期、拔節孕穗期、抽穗開花期和乳熟期4個生育階段進行控水試驗,共8個處理,每個處理設3個重復,在24個有底的蒸滲測坑內進行試驗。控制灌溉(CK)水深達到灌水下限值(-200 mm),立即灌水至灌水上限(分蘗期為20 mm,其他生育期為50 mm);CK在分蘗期的雨后蓄水上限為100 mm,其他生育期為200 mm,當雨后水深值超過蓄水上限,立即排水至蓄水上限。HZL處理,控水期開始排干水深為0,控水5 d后達到控水下限(-500 mm),第6天灌水至淹水上限(分蘗期為200 mm,其他生育期為 250 mm),然后讓其自然消退,淹水5 d后將田面水排到灌水上限;LZH各處理,控水開始當天立即灌水至淹水上限(分蘗期為200 mm,其他生育期為250 mm),然后讓其自然消退,淹水5 d后將田面水排盡,直至水深達到控水下限(-500 mm),再灌水至該生育期灌水上限;除控水期外,HZL和LZH處理的其他時間水深與控制灌溉(CK)相同。控水期間,降雨時關閉雨棚。各處理田面有水層時,應保持2 mm/d的田間滲漏量,田面無水層時,禁止地下排水。

1.3 測定指標與方法

1)灌水時間。每天大約08:30用直尺測量農田水深,當水深值達到或接近控制的下限值(測量值與控制設定值的差值≤50 mm(地下水)或≤10 mm(水層))時,按處理要求灌水。

2)水樣采集及分析方法。各生育期地表水按照取水間隔(淹水1、3、5 d)采用50 mL醫用注射器,不擾動土壤層,隨機抽取測坑內中部地表水;地下水在田面無水層時,在水深為0、–250、–500 mm左右時采集地下排水的尾水(距田間地面1.7 m);當田面有水層時,與地表水同一時間取水,采集的水樣注入塑料瓶并做好標記,低溫保存于冰箱中,進行冷藏(3 ℃)處理,并在24 h內進行水質分析。用納氏試劑光度法測定銨態氮(NH4+-N),紫外分光光度法測定NO3–-N,鉬銻抗分光光度法測定總磷(total P,TP)濃度[18]。測定儀器為日本島津公司的UV2800紫外分光光度儀。試驗為完全隨機區組設計,用SPSS 19.0軟件進行統計分析,依據F–檢驗和Leastsignificant difference(LSD)方法進行顯著性分析(α=0.05)。

3)地表氮磷流失量。它指淹水5 d后將田面水排到灌水適宜上限的氮磷流失量。

表2 各處理控水方案Table2 Water control program of each treatment

2 結果與分析

在水稻分蘗期、拔節孕穗期、抽穗開花期和乳熟期4個生育階段進行控水試驗,得到淹水期間各處理地表水濃度見圖1。濃度顯然受到淹水持續時間的影響。由于淹水時間的延長,通過微生物相互作用、土壤顆粒沉降和植物吸收,各處理地表水中的濃度顯著減少(P<0.05)。與淹水1 d相比,淹水5 d處理HZL-1、HZL-2、HZL-3和HZL-4的濃度減少了55.2%、53.1%、51.0%、32.5%(P<0.05),濃度減少了38.8%、52.2%、40.4%、26.9%(P<0.05);處理LZH-1、LZH-2、LZH-3和LZH-4的濃度減少了50.9%、42.2%、54.74%、42.1%(P<0.05),濃度減少了35.1%、62.2%、62.1%、16.4%(P<0.05)。長時間淹水導致生物反硝化活動增強,各生育期地表水濃度顯著大于濃度(P<0.05)。淹水結束時,HZL-1的濃度顯著大于LZH-1(P<0.05),產生這種現象的原因可能主要是較高的濃度經硝化生成,導致濃度降低較慢。在乳熟期,HZL處理的N濃度在5 d略微升高,濃度呈現先升高后降低的趨勢,產生這種現象的原因可能一方面是乳熟期植物吸收氮素減少,另一方面是受旱復水后前期硝化作用較強,隨淹水時間的延長,硝化作用減弱。在淹水初期,HZL處理的濃度顯著大于LZH處理(P<0.05),這可能是因為土壤含水率降低抑制了微生物和酶的活性,導致了無機氮在干旱條件下積累,而旱后復水促進了氮的礦化和硝化。因此,水稻旱后受澇時,延長淹水時間,更有利于減少稻田排水中的濃度,分蘗期旱后淹水5 d后,濃度還較高,應避免這個時期的排水。此外,由于乳熟期旱后淹水初期濃度較高,應避免這個時期的排水。

圖1 地表水的濃度變化Fig.1 Change in-N concentration in surface water

圖2 控水期間地下水濃度變化Fig.2 Change ofconcentration in underground water during water control process

2.2 地表水及地下水TP濃度變化

2.2.1 地表水TP濃度變化

地表水TP濃度變化見圖3。分蘗期、拔節孕穗期、抽穗開花期和乳熟期各處理的TP濃度變化呈現逐漸降低趨勢。與淹水1 d相比,淹水5 d處理HZL-1、HZL-2、HZL-3和HZL-4的TP濃度減少了38.8%、52.2%、40.4%、26.9%(P<0.05);LZH-1、LZH-2、LZH-3和LZH-4的TP濃度減少了31.8%、55.0%、62.9%、49.9%(P<0.05)。HZL處理的TP濃度顯著大于LZH處理,這可能是因為旱轉澇的土壤環境能夠提高土壤磷素的有效性,增強了磷素的溶解活性。

圖3 地表水TP變化Fig.3 Change of TP concentration in surface water

2.2.2 地下水TP濃度變化

稻田地下水TP濃度變化見圖4。LZH-1、LZH-2和LZH-3的TP濃度總體呈下降趨勢,HZL-1、HZL-2、HZL-3和HZL-4處理在控水1 d的TP濃度顯著大于控水前(P<0.05),這是因為干旱使土壤顆粒縫隙變大導致復水后不易被土壤吸附的磷入滲到地下水中。處理HZL-2和HZL-3第1天與第5天的TP濃度差異不顯著(P>0.05),產生這種現象是由于拔節孕穗期和抽穗開花溫度較高,導致較大的土壤縫隙,使地表磷滲入較多。

圖4 控水期間地下水TP濃度變化Fig.4 Change of TP concentration in underground water during water control process

2.3 控制灌排條件下各生育期氮磷流失負荷

地表氮磷流失負荷見表3。延長稻田淹水時間,能夠有效減少農田氮磷流失負荷。與CK處理相比,HZL-1、HZL-2和HZL-3處理負荷減少了51.3%、30.33%、26.2%(P<0.05),TP負荷分別減少了34.2%、40.9%、41.7%、(P<0.05); HZL-1、HZL-2、HZL-3、HZL-4處理N負荷分別減少了34.6%、45.6%、49.0%、16.8%(P<0.05);LZH-1、LZH-2、LZH-3和LZH-4處理負荷減少了54.5%,18.5%、30.0%、30.9%(P<0.05),負荷減少了57.7%、48.5%、39.4%、31.9%(P<0.05),TP負荷減少了55.3%、50.0%、58.3%、42.9%(P<0.05)。HZL-4處理與CK處理的、TP負荷差異均不顯著(P>0.05),這可能是HZL-4處理的淹水起始濃度較大和乳熟期作物對和TP的吸收降低。HZL和LZH處理的負荷在分蘗期差異顯著(P<0.05),在拔節孕穗期、抽穗開花期和乳熟期不顯著(P>0.05)。HZL和LZH處理的分蘗期和拔節孕穗期的TP負荷差異不顯著(P>0.05),而抽穗開花期和乳熟期TP負荷顯著(P<0.05),這主要是隨著水稻生育生長階段的進行,磷素逐漸被土壤吸附,而旱后復水導致磷流失增加。因此,控制灌排模式能夠從源頭上減少農田氮磷排放量。

表3 不同生育期稻田地表氮磷流失負荷Table3 Nitrogen and phosphorus loss from paddy field under different growth stages

2.4 控制灌排對灌水量、排水量和產量的影響

控制灌排稻田能夠顯著減少稻田灌水量(除乳熟期LZH外)和排水量(P<0.05)(表4)。與CK處理相比,控制灌排處理的灌水量減少了7.4%~18.5%(P<0.05),排水量減少了23.0%~43.5%(P<0.05)。由于控制灌排提高了雨后淹水深度,降低了灌水下限,導致了分蘗期處理產量顯著減少(P<0.05),而拔節孕穗期,抽穗開花期保持較高的產量。因此,在拔節孕穗期和抽穗開花期實施控制灌排,能夠實現節水減排,也能保持較高的產量。在分蘗期和乳熟期實施控制灌排時,應降低此生育階段的雨后蓄水深度和提高灌水下限。

表4 不同處理灌水量、排水量和水稻產量Table4 Irrigation amount, drainage amount and rice grain yield under different treatments

3 討 論

4 結 論

1)稻田灌排條件下延長淹水時間顯著減少了氮磷濃度。地表和地下排水中的濃度顯著大于在各生育階段的淹水初期,HZL處理的地表水、和TP濃度顯著大于LZH處理,此階段應避免地表排水。當水分脅迫從旱轉為澇時,增加了地下水氮磷淋失的風險。

3)控制灌排通過對稻田水位的調控,灌水量減少7.4%~18.5%,排水量減少23.0%~43.5%。在拔節孕穗期和抽穗開花期實施控制灌排,不僅能夠實現節水減排,也能保持較高的產量。

[1] Shao Guangcheng, Wang Minghui, Yu Shuangen, et al. Potential of controlled irrigation and drainage for reducing nitrogen emission from rice paddies in southern China[J]. Journal of Chemistry, 2015, 2015(5): 1-9.

[2] Shao Guangcheng, Deng Sheng, Liu Na, et al. Effects of controlled irrigation and drainage on growth, grain yield and water use in paddy rice[J]. Eur J Agron, 2014, 53(53): 1-9.

[3] 郭相平,張展羽,殷國璽. 稻田控制排水對減少氮磷損失的影響[J]. 上海交通大學學報,2006,24(3):307-310.

Guo Xiangping, Zhang Zhanyu, Yin Guoxi. Effect of controlled drainage on loss of nitrogen and phosphorous from paddy field[J]. Journal of Shanghai Jiaotong University, 2006, 24(3): 307-310. (in Chinese with English abstract)

[4] Xiao Menghua, Yu Shuangen, Wang Yanyan, et al. Nitrogen and phosphorus changes and optimal drainage time of flooded paddy field based on environmental factors[J]. Water Sci Eng, 2013, 6(2): 164-177.

[5] 肖夢華,俞雙恩,章云龍. 控制排水條件下淹水稻田田面及地下水氮濃度變化[J]. 農業工程學報,2011,27(10):180-186.

Xiao Menghua, Yu Shuang′en, Zhang Yunlong. Changes of nitrogen concentration for surface and groundwater in flooding paddy field under controlled drainage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(10): 180-186. (in Chinese with English abstract)

[6] Xiao Menghua, Yu Shuangen, She Dongli, et al. Nitrogen and phosphorus loss and optimal drainage time of paddy field under controlled drainage condition[J]. Arab J Geosci, 2015, 8(7): 4411-4420.

[7] 彭世彰,張正良,羅玉峰,等. 灌排調控的稻田排水中氮素濃度變化規律[J]. 農業工程學報,2009,25(9):21-26.

Peng Shizhang, Zhang Zhengliang, Luo Yufeng, et al. Variation of nitrogen concentration in drainage water from paddy fields under controlled irrigation and drainage[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(9): 21-26. (in Chinese with English abstract)

[8] 喬欣,邵東國,劉歡歡,等. 節灌控排條件下氮磷遷移轉化規律研究[J]. 水利學報,2011,42(7):862-868.

Qiao Xin, Shao Dongguo, Liu Huanhuan, et al. Study on the moving and transforming law of N and P under water-saving irrigation and controlled drainage[J]. Journal of Hydraulic Engineering, 2011, 42(7): 862-868. (in Chinese with English abstract)

[9] 邵東國,孫春敏,王洪強,等. 稻田水肥資源高效利用與調控模擬[J]. 農業工程學報,2010,26(12):72-78.

Shao Dongguo, Sun Chunmin, Wang Hongqiang, et al. Simulation on regulation for efficient utilization of water and fertilizer resources in paddy fields[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(12): 72-78. (in Chinese with English abstract)

[10] 和玉璞,張展羽,徐俊增,等. 控制地下水位減少節水灌溉稻田氮素淋失[J]. 農業工程學報,2014,30(23):121-127.

He Yupu, Zhang Zhanyu, Xu Junzeng, et al. Reducing nitrogen leaching losses from paddy field under water-saving irrigation by water table control[J].Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(23): 121-127. (in Chinese with English abstract)

[11] Xiao Menghua, Hu Xiujun, Chu Linlin. Experimental study on water-saving and emission-reduction effects of controlled drainage technology[J]. Water Sci Eng, 2015, 8(2): 114-120.

[12] 瞿思堯,黃介生,楊琳,等. 旱地控制排水條件下氮素運移試驗研究[J]. 中國農村水利水電, 2009(1):48-51.

Ju Siyao, Huang Jiesheng, Yang Lin, et al. Experimental research on nitrogen transport and transformation of controlled drainage on dry lands[J]. China Rural Water and Hydropower, 2009(1): 48-51. (in Chinese with English abstract)

[13] Evans Robert O, Skaggs R Wayne, Gilliam J Wendell. Controlled versus conventional drainage effects on water quality[J]. J Irrig Drain Eng, 1995, 121(4): 271-276.

[14] Williams M R, King K W, Fausey N R. Drainage water management effects on tile discharge and water quality[J]. Agr Water Manage, 2015, 148(148): 43-51.

[15] 葉玉適,梁新強,李亮,等. 不同水肥管理對太湖流域稻田磷素徑流和滲漏損失的影響[J]. 環境科學學報,2015,35(4):1125-1135.

Ye Yushi, Liang Xinqiang, Li Liang, et al. Effects of different water and nitrogen managements on phosphorus loss via runoff and leaching from paddy fields in Taihu Lake basin[J]. Acta Scientiae Circumstantiae, 2015, 35(4): 1125-1135. (in Chinese with English abstract)

[16] 葉玉適,梁新強,金熠,等. 節水灌溉與控釋肥施用對稻田田面水氮素變化及徑流流失的影響[J]. 水土保持學報, 2014,28(5):105-112.

Ye Yushi, Liang Xinqiang, Jin Yi, et al. Dynamic variation and runoff loss of nitrogen in surface water of paddy field as affected by water-saving irrigation and controlled-release fertilizer application[J]. Journal of Soil and Water Conservation, 2014, 28(5): 105-112. (in Chinese with English abstract)

[17] Hu Xiujun, Shao Xiaohou, Li Yuanyuan, et al. Effects of controlled and mid-gathering irrigation mode of paddy rice on the pollutants emission and reduction[J]. Energy Procedia, 2012, 16(Part B): 907-914.

[18] 國家環境保護總局. 水和廢水監測分析方法[M]. 北京:中國環境科學出版社,2002.

[19] 高煥芝,彭世彰,茆智,等. 不同灌排模式稻田排水中氮磷流失規律[J]. 節水灌溉,2009(9):1-3.

Gao Huanzhi, Peng Shizhang, Mao Zhi, et al. N and P losses in surface drainage from paddy field under different irrigation and drainage Modes[J]. Water Saving Irrigation, 2009(9): 1-3. (in Chinese with English abstract)

[20] Tian Yuhua, Yin Bin, Yang Linzhang, et al. Nitrogen runoff and leaching losses during rice-wheat rotations in Taihu lake region, China[J]. Pedosphere, 2007, 17(4): 445-456.

[21] Aparicio V, Costa J L, Zamora M. Nitrate leaching assessment in a long-term experiment under supplementary irrigation in humid Argentina[J]. Agr Water Manage, 2008, 95(12): 1361-1372.

[22] 季亞輝,俞雙恩. 水位管理對稻田地表水總磷的影響[J].河海大學學報,2008,36(6):777-780.

Ji Yahui, Yu Shuang’en. Influence of water level management on total phosphorus concentration of surface water in paddy fields[J]. Journal of Hohai University, 2008, 36(6): 777-780. (in Chinese with English abstract)

[23] Sharpley Andrew N, McDowell Richard W, Kleinman Peter J A. Phosphorus loss from land to water: integrating agricultural and environmental management[J]. Plant Soil, 2001, 237(2): 287-307.

[24] Xie X J, Ran W, Shen Q R, et al. Field studies on32P movement and P leaching from flooded paddy soils in the region of Taihu Lake, China[J]. Environ Geochem Health, 2004, 26(2): 237-243.

[25] Wang Jun, Wang Dejian, Zhang Gang, et al. Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention[J]. Agr Water Manage, 2014, 141(141): 66-73.

[26] Peng Shizhang, Yang Shihong, Xu Junzeng, et al. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements[J]. Paddy Water Environ, 2011, 9(3): 333-342.

[27] 邵東國,喬欣,劉歡歡,等. 不同灌排調控模式下水肥流失規律[J]. 武漢大學學報工學版,2010,43(4):409-413.

Shao Dongguo, Qiao Xin, Liu Huanhuan, et al. Study of moving and transforming law of water and fertilizer under different treatments of irrigation and drainage[J]. Engineering Journal of Wuhan University, 2010, 43(4): 409-413. (in Chinese with English abstract)

[28] 彭世彰,熊玉江,羅玉峰,等. 稻田與溝塘濕地協同原位削減排水中氮磷的效果[J]. 水利學報,2013,39(6):657-663.

Peng Shizhang, Xiong Yujiang, Luo Yufeng, et al. The effect of paddy eco-ditch and wetland system on nitrogen and phosphorus pollutants reduction in drainage[J]. Journal of Hydraulic Engineering, 2013, 39(6): 657-663. (in Chinese with English abstract)

[29] 郭相平,袁靜,郭楓,等. 水稻蓄水-控灌技術初探[J]. 農業工程學報,2009,25(4):70-73.

Guo Xiangping, Yuan Jing, Guo Feng, et al. Preliminary study on water-catching and controlled irrigation technology of rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(4): 70-73. (in Chinese with English abstract)

[30] 陳朱葉,郭相平,姚俊琪. 水稻蓄水控灌的節水效應[J]. 河海大學學報,2011,39(4):426-430.

Chen Zhuye, Guo Xiangping, Yao Junqi. Water-saving effect of water-catching and controllable irrigation technology of rice[J]. Journal of Hohai University, 2011, 39(4): 426-430. (in Chinese with English abstract)

Effect of controlled irrigation and drainage on saving water and reducing nitrogen and phosphorus loss in paddy field under alternate drought and flooding condition

Gao Shikai, Yu Shuang′en※, Wang Mei, Cao Ruizhe, Guo Rong
(1. Key Laboratory of Efficient Irrigation-Drainage and Agricultural Soil-Water Environment in Southern China, Ministry of Education, Hohai University, Nanjing 210098, China; 2. College of Water Conservancy and Hydropower, Hohai University, Nanjing 210098, China)

Attempts to reduce the nutrient losses in drainage water have led to the promotion of controlled irrigation and drainage. Under the controlled irrigation and drainage condition, alternate drought and flooding condition (drought then flooding (HZL) and flooding then drought (LZH)) often occur. It is unclear about the change of nitrogen and phosphorus concentration in paddy water affected by controlled irrigation and drainage under the alternate stress. Therefore, this study based on farmland water depth as the control index aimed to investigate dynamic changes of nitrogen and phosphorus concentration in underground water and surface water of paddy field under the controlled irrigation and drainage in the HZL and LZH condition. Moreover, the effect of controlled irrigation and drainage on the discharge-reducing and water saving was studied. The experiments were conducted in specially designed experimental pits in Jiangning Water-saving Experiment Station at the Key Laboratory of Efficient Irrigation-Drainage and Agricultural Soil-Water Environment in Southern China, Ministry of Education, Nanjing (31°86′N, 118°60′E) during the rice growing season of 2015 (May to October). Eight controlled irrigation and drainage treatments were designed for the experiment. For the HZL treatments, rice experienced the drought stress at first, and when the field water depth dropped to the lower limit (-500 mm) the irrigation water was added with an auto-irrigation system until the upper limit of water depth (200 mm at the tillering stage and 250 mm at the other stages) was reached. For the LZH treatments, rice experienced the flooding stress at first, and then irrigation water was immediately added to the upper limit of water depth (200 mm at tillering stage and 250 mm at the other stages); the field surface water was then drained and the field water depth dropped to the lower limit (-500 mm). The controlled irrigation was considered as the control with irrigation lower limit of -200 mm and the upper limit of 20 mm for the tillering stage and 50 mm for the other stages. Ammonia N (NH4+-N), nitrate N (NO3?-N), and total phosphorus (TP) in the water samples were analyzed. The results showed that when the HZL treatments had higher NH4+-N, NO3?-N and TP concentration during the earlier period of flooding, therefore, the surface and underground drainage should be noticed. Extending the flooding days could decrease nitrogen and phosphorus concentration in the controlled irrigation and drainage. The NH4+-N was the major form of N in the surface drainage and percolation water. The TP concentration in the surface water followed a decreasing trend during the flooding. Compared to the controlled irrigation, under the controlled irrigation and drainage, the irrigation amount was reduced by 7.4%-18.5%, the drainage amount was reduced by 23.0%-43.5%, the NH4+-N load was reduced by 18.5%-54.5%, the NO3?-N load was reduced by 16.8%-57.7% and the TP load was reduced by 34.2%-58.3%. Meanwhile, most of the controlled irrigation and drainage treatments could keep high rice grain yield. In sum, the controlled irrigation and drainage could achieve a positive effect on grain yield, water saving and N-P loss reduction at the jointing-booting stage and heading and flowering stage. Therefore, the controlled irrigation and drainage technology has a good effect on water saving and N and P loss reduction and provides a guide for the irrigation and drainage.

soil moisture; nitrogen; phosphorus; alternate drought and flooding; controlled irrigation and drainage; rice; farmland water depth

10.11975/j.issn.1002-6819.2017.05.018

S143.1; S274.3

A

1002-6819(2017)-05-0122-07

高世凱,俞雙恩,王 梅,曹睿哲,郭 蓉. 旱澇交替下控制灌溉對稻田節水及氮磷減排的影響[J]. 農業工程學報,2017,33(5):122-128.

10.11975/j.issn.1002-6819.2017.05.018 http://www.tcsae.org

Gao Shikai, Yu Shuang′en, Wang Mei, Cao Ruize, Guo Rong. Effect of controlled irrigation and drainage on saving water and reducing nitrogen and phosphorus loss in paddy field under alternate drought and flooding condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 122-128. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.05.018 http://www.tcsae.org

2016-05-05

2016-12-10

國家自然科學基金“農田水位調控下水稻旱澇交替脅迫機理、稻田氮磷流失規律及節水控污灌排模式”(51479063);“南方地區土地開發整理的適宜水面率研究及其優化調控”(41401628)。

高世凱,男,河南駐馬店人,博士生,主要從事灌溉理論及節水灌溉技術研究。南京 河海大學水利水電學院,210098。

Email:igaoshikai@163.com

※通信作者:俞雙恩,男,安徽安慶人,教授,博士,主要從事灌溉排水及技術研究。南京 河海大學水利水電學院,210098。Email:seyu@hhu.edu.cn

主站蜘蛛池模板: 久久人妻xunleige无码| 国产精品永久久久久| 久热re国产手机在线观看| 日韩成人在线网站| 午夜精品影院| 日本五区在线不卡精品| 一级黄色片网| 国产在线观看一区精品| 亚洲AV无码不卡无码| 亚洲第一极品精品无码| 亚洲 日韩 激情 无码 中出| 小13箩利洗澡无码视频免费网站| 亚洲嫩模喷白浆| 无码在线激情片| 久久综合九九亚洲一区| 精品三级网站| 高清不卡毛片| 成AV人片一区二区三区久久| 亚洲aaa视频| 91久久偷偷做嫩草影院精品| 久久精品中文字幕少妇| 久久6免费视频| 欧美亚洲另类在线观看| 成年女人a毛片免费视频| 玩两个丰满老熟女久久网| 日韩午夜福利在线观看| 亚洲色偷偷偷鲁综合| 本亚洲精品网站| 国产香蕉国产精品偷在线观看| 亚洲天堂网在线播放| 在线国产三级| 亚洲无限乱码一二三四区| 国产肉感大码AV无码| 超碰91免费人妻| 女人18一级毛片免费观看| 日韩欧美成人高清在线观看| 亚洲成人黄色网址| 午夜国产不卡在线观看视频| 高潮毛片免费观看| 真实国产乱子伦视频| 欧美三级日韩三级| 久久人妻系列无码一区| 19国产精品麻豆免费观看| 91美女在线| 日本午夜在线视频| 国产xxxxx免费视频| 成人毛片免费在线观看| 亚洲精品男人天堂| 欧美中出一区二区| 92午夜福利影院一区二区三区| 国内精品九九久久久精品| 国产精品yjizz视频网一二区| 天堂久久久久久中文字幕| 国产人成在线观看| 精品国产网站| 中国黄色一级视频| 制服丝袜亚洲| 18禁黄无遮挡网站| 久久国产香蕉| 欧美成人第一页| 性做久久久久久久免费看| 四虎在线高清无码| 91欧美在线| 园内精品自拍视频在线播放| 久久99精品国产麻豆宅宅| 亚洲熟妇AV日韩熟妇在线| 久久综合激情网| 激情在线网| 玖玖免费视频在线观看| 玩两个丰满老熟女久久网| 国产精品区网红主播在线观看| 久久久无码人妻精品无码| 日韩在线观看网站| 亚洲人成色77777在线观看| 亚洲男人天堂2018| 人妻中文久热无码丝袜| 在线观看国产精美视频| 一级看片免费视频| 亚洲福利网址| 在线观看国产精美视频| 巨熟乳波霸若妻中文观看免费| 欧美精品亚洲精品日韩专区va|