999精品在线视频,手机成人午夜在线视频,久久不卡国产精品无码,中日无码在线观看,成人av手机在线观看,日韩精品亚洲一区中文字幕,亚洲av无码人妻,四虎国产在线观看 ?

天牛仿生大麻收割機切割刀片設計與試驗

2017-06-05 15:00:27田昆鵬李顯旺黃繼承王錦國
農業工程學報 2017年5期

田昆鵬,李顯旺,沈 成,張 彬,黃繼承,王錦國,周 楊

天牛仿生大麻收割機切割刀片設計與試驗

田昆鵬,李顯旺,沈 成,張 彬※,黃繼承,王錦國,周 楊

(農業部南京農業機械化研究所,南京 210014)

針對現有大麻收割機切割刀片存在切割阻力大、功耗高、割茬質量差的問題。運用仿生學原理,通過提取天牛上顎切割齒部位齒廓曲線,以天牛切割齒廓代替普通稻麥收割機刀片的三角形尖齒,設計了仿生切割刀片。利用雙動刀切割裝置測試平臺,對收割期大麻莖稈進行了仿生刀片和普遍刀片單莖稈切割性能對比試驗。試驗表明,2種刀片的切割力-位移曲線都可分為擠壓、切割和切割完畢3個階段,其中仿生刀片具有切入能力強、切割茬口較平齊、切割質量好的優勢。通過對2組切割試驗數據進行均值統計和方差分析可知,仿生刀片和普通刀片單莖稈最大切割力和切割功耗平均值分別為442.6、478.1 N和2.16、2.35 J,仿生刀片和普通刀片相比,平均最大切割力和切割功耗分別降低7.4%和8.0%,表明仿生刀片較普通刀片具有更優的減阻降耗性能;方差分析表明刀片類型對單莖稈最大切割力影響極顯著(P<0.01),對單莖稈切割功耗影響顯著(P<0.05)。

切割設備;仿生;機械化;大麻收割機;天牛上顎;切割力;切割功耗

0 引 言

大麻是中國傳統的纖維作物[1-2],在中國有著較大面積的種植,由于大麻莖稈較高大粗壯,收割難一直是大麻生產面臨的重要難題。近年來,隨著中國農業機械化進程的加快,針對大麻收獲技術的研究不斷增多,用于大麻收割的機械相繼問世[3-4]。但經調研發現,目前對大麻等高稈類作物收割機械的研究主要集中在割臺機構的設計及運動參數匹配[5-8]、麻稈的力學特性分析[9-14]等方面,而對收割機的關鍵零件:切割刀片,卻缺乏相應的創新設計研究。目前大麻收割機切割刀片普遍借用稻麥收割機上使用的三角尖齒型刀片,由于大麻莖稈和稻、麥秸稈相比有較大差異,采用稻麥收割機刀片收割大麻普遍存在切割阻力大、功耗高、割茬質量差等問題,切割刀片已成為制約大麻收割機發展的一個重要瓶頸。

仿生學作為一門交叉學科,在解決切割刀具常見的能耗、質量等問題時,為研究人員提供了研究思路和有效的研究方法[15]。自然界的昆蟲和其它動物經過數以億萬年的生存競爭和進化,形成了優異的幾何形體結構、高效的能量利用率等高度適應環境的生理特征[16-18]。通過仿生學將動物的生理形態特征應用于農業機械設計的研究逐步受到人們的重視。在減阻降耗方面,仿生學已在開溝器、犁鏵、破茬旋耕刀具及收獲機械切割部件的設計中得到一定應用。

Qaisrani等[19-20]根據蜣螂頭部的表面凸包結構特征,對光滑推土板表面進行了改形仿生設計,研制了非光滑凸包推土板,試驗表明隨著土壤含水量的增加,推土阻力隨之減小,仿生推土板平均最大降阻可達30%。Soni等[21-22]運用仿生學將金龜子頭部非光滑凸包結構應用于犁鏵的設計,設計了仿生犁鏵,試驗表明當凸包高度與直徑的比率為0.25,含水率為37.2%時,可降阻耗8%~36%,降阻效果較好。張金波等[23]將家鼠爪趾結構特征應用于深松鏟結構設計,設計了破土刃口為指數函數曲線的仿生深松鏟,對比試驗表明,仿生減阻深松鏟耕作阻力可降低8.5%~39.5%。李默等[24-25]根據螳螂前足的形態特征,設計了根茬切割仿生刀片,試驗表明,仿生刃口刀片切削阻力及功耗相對普通刀片最大降幅可達23%,減阻降耗效果明顯。賈洪雷科研團隊[26-28]研究了善于嚙噬草本或禾本植物的蝗蟲的咀嚼口器,以蝗蟲咀嚼齒為仿生對象,設計了留高茬式玉米收獲機切割鋸條和圓盤刀,結果表明仿生齒鋸條能夠減少切割力15.87%,降低切割功耗12.85%;仿生圓盤刀相比普通圓盤刀片平均扭矩可降低14.89%,平均功耗可降低18.49%,切割時秸稈受到的拉力降低達31.5%,仿生刀片切割效果優勢顯著。

天牛被稱為自然界的“鋸木匠”,是硬質莖干植物中常見的一種危害力極強的害蟲[29-31]。天牛口器上顎獨特的弧形齒結構具有優良的咀嚼割切性能,能將夾在其間的植物莖枝輕松咬碎或夾斷,造成植株長勢衰弱甚至枯萎死亡。同以植物鮮根嫩葉為食的蝗蟲、螻蛄等昆蟲相比,天牛口器上顎更鋒利,咬割性能更強,具有更大的危害性。基于此,本文將汲害為利,以中國常見的云斑天牛口器上顎為仿生原型,將天牛口器特征應用于大麻收割機切割刀片設計中,以期研制出一種適合大麻收割機使用的低阻、低耗、切割質量好的切割刀片。

1 仿生切割刀片設計

1.1 云斑天牛及上顎結構形態分析

云斑天牛(如圖1a所示)一般體長為32~65 mm,體寬為9~20 mm,體黑色或黑褐色。云斑天牛口器上顎(如圖1b所示)一般長5~8 mm,寬3~5 mm,為黑色半月牙型形態,左右對稱分布各一個。參與咬割的齒刃(即圖1b中OP所示的齒廓段)較鋒利,被上顎外側的弧狀突起包圍,以保障齒刃在咬割時有足夠的強度。天牛進食時左右上顎同時向中間做剪切運動以將植物莖枝割斷,此運動特性和本文研究的大麻收割機雙動刀切割刀片的工作原理相似,這也是本文采用天牛上顎作為仿生對象的依據。

圖1 云斑天牛標本及其口器上顎圖Fig.1 Batocera horsfieldi and its mouthparts palate

1.2 天牛上顎切割部位輪廓的提取

以圖1b中的O點為坐標原點,OP為X軸,建立平面直角坐標系XOY。運用MATLAB圖像處理軟件中的Training Image Labler工具對圖1b所示的云斑天牛上顎切割齒部位的弧形輪廓邊界點進行提取[32],將提取的邊界點坐標用plot繪圖指令繪制出天牛上顎切割齒輪廓點軌跡,再運用Curve Fiting 曲線擬合工具對點軌跡進行多項式方程曲線擬合,最后可得出上顎擬合曲線的多項式方程表達式。天牛上顎齒廓切割部位提取點及齒廓擬合曲線如圖2所示,其上顎擬合曲線方程式見式(1)。式中0≤x≤5.0 mm。

圖2中O′、P′所示坐標點與圖1b中的O、P點相對應。由圖2中的齒廓擬合曲線可知,云斑天牛上顎切割部位弧形齒長度O′P′為5.0 mm,齒高O′R′為0.9 mm。擬合曲線的擬合優度R2為0.994,表明擬合出的曲線形狀與云斑天牛上顎的實際輪廓曲線高度吻合。

圖2 云斑天牛上顎切割部位齒廓提取點及齒廓擬合曲線Fig.2 Extracted points and fitted curve of cutting tooth of batocera horsfieldi palate

1.3 仿生刀片設計

為便于對比分析,仿生刀片采用與普通稻麥收割機刀片相同的刀片基體結構參數,即,取a=76 mm,b= 120 mm,c=51 mm,d=29 mm,e=13 mm,h=18 mm,k=6.2 mm,t=2.3 mm。根據刀片基體的基本結構參數在PRO/E繪圖軟件中構建仿生刀片基體的三維模型,以天牛上顎齒廓擬合曲線方程作齒廓的樣條曲線,并將齒廓樣條曲線并列均勻布置在刀片兩側的刃面上。加工時,齒背的凹槽由通過與齒廓形狀相同的磨齒模具磨出,凹槽方向與刀片的切割運動方向平行,以保障刀刃在有足夠強度的同時,盡可能地減少切割阻力。仿生刀片和普通標準刀片結構分別如圖3a、3b所示。

圖3 切割刀片結構示意圖Fig.3 Structure diagram of cutting blade

由上述2種刀片結構圖對比可知,普通刀片和仿生刀片不同之處主要在于切割齒齒形、齒距、齒高3個方面。普通刀片齒形為三角形齒,經測量,其相鄰齒距m1為2.6 mm,齒高n1為2.0 mm;仿生刀片齒形是以天牛上顎齒廓擬合曲線(見圖3b中s所示)為齒刃的弧形凹槽齒,根據測量的天牛上顎實際齒形尺寸可知,仿生刀片齒距m2為5.0 mm,齒高n2為0.9 mm。根據刀片結構圖加工出的普通刀片和仿生刀片實物圖分別如圖4所示。

圖4 切割刀片實物圖Fig.4 Physical figure of cutting blade

2 切割試驗

試驗的目的在于通過仿生切割刀片和普通刀片切割大麻的試驗對比,以單莖稈最大切割力、切割功耗和割茬效果為評價指標,分析仿生刀片的切割性能。

2.1 試驗材料

試驗材料采集自國家麻類產業體系六安大麻試驗站處于收割期的大麻,采集部位為莖稈自地面以上30 cm段。根據大麻收割機工作要求,大麻機收留茬高度約為10 cm,經測量大麻在此處平均直徑為15 mm,為便于定量對比分析,統一采集地面以上10 cm處長勢勻稱、無病蟲害、直徑誤差在(15±1) mm的莖稈作為試驗材料。

前期試驗測定發現,收割期大麻莖稈徑向結構符合復合材料的特性,其木質部軸向彈性模量為1 343.5 MPa,韌皮部徑向彈性模量為3 607.5 MPa,莖稈軸向彈性模量為17 433.5 MPa,莖稈徑向壓縮彈性模量為88.0 MPa,木質部剪切模量為33.5 MPa,莖稈剪切模量為32.0 MPa[12]。為最大限度地保持收獲期大麻莖稈的物理力學特性,摒除含水率變化對莖稈物料特性的影響,在莖稈樣本采集密封處理后48 h之內完成試驗。

2.2 試驗設備

本試驗使用的設備包括自主研制的雙動刀切割試驗裝置(如圖5所示)、濟南思達WDW-10微機控制電子萬能試驗機(其測力量程5 kN,力傳感器和位移傳感器精度都在±1%之內)、普通切割刀片和仿生切割刀片以及游標卡尺、卷尺等輔助測量工具。

圖5 雙動刀切割裝置結構示意圖Fig.5 Structure diagram of double-action cutting device

試驗時將同類型的刀片相對固定在雙動刀切割裝置兩側的刀片固定板上,將雙動刀切割裝置驅動端與萬能試驗機的加載端連接,組成一個雙動刀切割力測試系統(如圖6所示)。該測試系統工作原理為:當萬能試驗機以一定的速度加載時,帶動雙動刀切割裝置的齒輪齒條傳動機構作嚙合運動,齒輪齒條的嚙合運動帶動固定在刀片固定板上的刀片作速度相同、方向相反的上下直行運動,從而實現刀片對固定在支撐架上的莖稈的剪切動作。切割力、位移和時間等信息通過測量傳感器傳遞給萬能試驗機的測量系統,并記錄下相關信息的變化。

圖6 雙動刀切割力測試系統Fig.6 Cutting force testing system of double-action blades

2.3 試驗方法

試驗采用單因素試驗法,分別采用普通刀片和仿生刀片對單個大麻莖稈進行切割,每組試驗重復20次。萬能試驗機加載速度設定為25 mm/min,每次試驗完成后記錄下相應的切割力變化曲線,并將切割后的割茬分類保存,以便對2種刀片的割茬效果進行對比分析。

計算切割功時,刀片切割莖稈做功為切割力所做的功減去空載時驅動力所做的功,即圖7a中切割-位移曲線和空載驅動力-位移曲線所圍成的面積,切割功耗計算公式如式(2)所示。

式中W為切割功耗,J;Fi為第i個采樣點處所對應的切割力值,N;Fi0為第i個采樣點處所對應的空載驅動力值,N;Δx為萬能試驗機相鄰兩采樣點時間間隔壓頭的加載位移,mm。

2.4 試驗結果與分析

安裝有普通刀片和仿生刀片的雙動刀切割裝置的空載驅動力-位移曲線及2種刀片單莖稈切割力-位移曲線圖如圖7所示。由于普通刀片和仿生刀片切割裝置的空載驅動力主要由切割裝置的齒輪-齒條機構、滑動導軌機構、兩刀片固定板及刀片之間的摩擦力引起,2種刀片采用同一切割裝置,摩擦力值差異較小,故空載驅動力-位移曲線變化趨勢較一致,如圖7a所示。2種刀片割茬效果對比如圖7b所示。不同刀片單莖稈最大切割力和切割功耗試驗數據如表1所示,對影響最大切割力和切割功耗的試驗因素進行單因素方差分析。

由圖7a可知,2種刀片的切割力變化曲線都可分為3個階段,即擠壓階段、切割階段和切割完畢階段。圖7a中AB1和AB2所示的曲線段為擠壓階段。由仿生刀片切割力曲線可知,此階段切割力在總趨勢增大的同時伴有力值突降。經分析,其主要原因在于,在刀片切向大麻莖稈過程中,由于仿生刀片齒距較大、齒尖較鋒利,當刀片接觸到麻稈時,麻稈單位面積所受切割應力較大,致使齒尖在擠壓階段已開始發生局部切割現象。而普通刀片由于刀齒排列較緊密,在相同切割驅動力作用下,麻稈單位面積所受應力較小,刀片更多地表現為對莖稈的擠壓作用。對比擠壓階段切割力變化曲線可知,仿生切割刀片具有易于切入的優勢。

圖7 2種刀片切割力和割茬效果對比Fig.7 Comparison of cutting force and cutting stubbles of two types of blades

圖7 a中B1C1和B2C2所示的階段為莖稈切割階段。由切割力變化曲線可知,采用仿生刀片切割時,切割力從最大值急劇下降至最小值。而普通刀片的切割力則表現為在波動過程中下降。經分析,其主要原因在于仿生刀片獨特的弧形齒和齒背凹槽結構。在擠壓階段齒尖發生局部切割后,由于弧形齒刃結構的存在,在后續地切割過程中,齒刃的切割狀態主要表現為滑切,滑切作用的存在大大降低了切割阻力、提高了切割效果;其次,相鄰弧形齒組成的突起邊界形成了鋒利的楔形塊結構,在切割驅動力作用下,鋒利的楔形塊起到了瞬時將木質部橫向劈裂的作用;此外,齒背的凹槽也起到了容納切割后木質物料的作用,這也大大降低了切割后物料對刀片的阻力。而普通刀片由于滑切效果差且無容削空間,該結構在切割粗莖稈大麻時起到了阻礙作用。由于普通刀片切入能力不強,切割階段仍伴有擠壓莖稈現象發生,受到擠壓的莖稈在不能被瞬時徹底切斷的情況下發生縱向劈裂,從而引起切割力在波動中下降。

表1 兩種刀片單莖稈最大切割力與切割功耗試驗結果Table1 Test results of single stalk maximum cutting force and cutting energy consumption of two types of blades

圖7a中C1D1和C2D2所示的曲線段為切割完畢階段。由該階段切割力變化曲線可知,仿生刀片的切割力與空載驅動力較接近,而普通刀片切割力卻遠遠大于空載驅動力。這是因為普通刀片切割后,由于切割不徹底,仍有部分未割斷的麻皮纖維和較多木質部碎渣進入兩刀片之間,對刀片的上下運動起了阻礙作用,增大了切割摩擦力。而仿生刀片由于能夠對麻皮和木質部有效切割,且產生碎渣較少,此現象不明顯。

結合圖7b中的割茬效果對比可知,仿生刀片和普通刀片相比,仿生刀片對麻皮和木質部能更為有效切割,無未割斷麻皮纖維及多余木質部殘渣出現,切割茬口更平齊,割茬質量更好。

由表1試驗結果可知,仿生刀片單莖稈最大切割力平均值為442.6 N、標準差為27.7 N,切割功耗平均值為2.16 J、標準差為0.20 J;普通刀片單莖稈最大切割力平均值為478.1 N、標準差為29.4 N,切割功耗平均值為2.35 J、標準差為0.29 J。經計算可知,仿生刀片和普通刀片相比,平均最大切割力和切割功耗分別降低7.4%和8.0%,表明仿生刀片在減阻降耗方面具有較大優勢。對不同刀片最大切割力試驗數據進行F檢驗,F值為15.49,顯著性水平P值為0.000 3(P<0.01),表明不同刀片類型對單莖稈最大切割力有極顯著影響;對不同刀片切割功耗試驗數據進行F檢驗,得F值為5.735,顯著性水平P值為0.021 7(0.01<P<0.05),表明不同刀片類型對單莖稈切割功耗有顯著影響。

3 結 論

1)運用仿生學原理,將天牛口器上顎結構特性應用于大麻收割機切割刀片的設計,設計了一種切割刀片。

2)為驗證仿生刀片的切割性能,進行了仿生刀片和普通刀片切割大麻莖稈的對比試驗,試驗表明仿生刀片和普通刀片相比具有切割能力強、割茬平齊、切割效果好的優勢。

3)通過對試驗數據進行分析可知,仿生刀片和普通刀片單莖稈最大切割力和切割功耗平均值分別為442.6、478.1 N和2.16、2.35 J,仿生刀片和普通刀片相比,平均最大切割力和切割功耗分別降低7.4%和8.0%,仿生刀片的減阻降耗效果顯著,滿足使用要求。

[1] 呂江南,龍超海,馬蘭,等.大麻鮮莖剝皮機的設計與試驗[J].農業工程學報,2014,30(14):298-307.

Lu Jiangnan, Long Chaohai, Ma Lan, et al. Design and experiment on decorticator of hemp fresh stem[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 298-307. (in Chinese with English abstract)

[2] 郭麗,王明澤,王殿奎,等.工業大麻綜合利用研究進展與前景展望[J].黑龍江農業科學,2014(8):132-134.

Guo Li, Wang Mingze, Wang Diankui, et al. Research progress and prospect of comprehensive utilization of industrial hemp[J]. Heilongjiang Agriculture Sciences, 2014(8): 132-134. (in Chinese with English abstract)

[3] 沐森林,陳長林,張彬,等.國內麻類作物收獲機械現狀及對策建議[J].中國農機化,2010(3):11-14.

Mu Senlin, Chen Changlin, Zhang Bin, et al. Current situation and existing problem of bast fiber harvester in China[J]. Chinese Agricultural Mechanization, 2010(3): 11-14. (in Chinese with English abstract)

[4] 呂江南,龍超海,馬蘭,等.我國麻類作物機械化作業技術裝備發展現狀與建議[J].中國麻業科學,2013(6):307-312,328.

Lu Jiangnan, Long Chaohai, Ma Lan, et al. Research progress and suggestions on mechanized equipments for bast fiber crops in China[J]. Plant Fiber Sciences in China, 2013(6): 307-312, 328. (in Chinese with English abstract)

[5] 沈成,李顯旺,張彬,等.苧麻莖稈臺架切割試驗與分析[J].農業工程學報,2016,32(1):68-76.

Shen Cheng, Li Xianwang, Zhang Bin, et al. Bench experiment and analysis on ramie stalk cutting[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 68-76. (in Chinese with English abstract)

[6] 張世福,宋占華,閆銀發,等.農作物秸稈切割試驗臺測控系統的研制與試驗[J].農業工程學報,2013,29(增刊1):10-17.

Zhang Shifu, Song Zhanhua, Yan Yinfa, et al. Development and experiment of measure and control system for stalk cutting test bench[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(Supp.1): 10-17. (in Chinese with English abstract)

[7] 黃繼承,李顯旺,沈成,等.苧麻聯合收割機切割器的運動仿真和結構分析[J].中國農機化學報,2013(6):170-173.

Huang Jicheng, Li Xianwang, Shen Cheng, et al. Kinematics simulation and structural analysis on cutter of ramie combine harvester[J]. Journal of Chinese Agricultural Mechanization, 2013(6): 170-173. (in Chinese with English abstract)

[8] 陳巧敏,李顯旺,張彬,等.苧麻收割機升降門架有限元分析:基于ANSYS Workbench[J].農機化研究,2014,36(5):11-15.

Chen Qiaomin, Li Xianwang, Zhang Bin, et al. Lifting door frame of ramie combine harvester finite element analysis based on ansys workbench[J]. Journal of Agriculture Mechanization Research, 2014, 36(5): 11-15.(in Chinese with English abstract)

[9] 黃海東,李繼波,廖慶喜.收割期苧麻底部莖稈剪切的機械物理特性與參數[J].華中農業大學學報,2008,27(3):453-455.

Huang Haidong, Li Jibo, Liao Qingxi. The shearing characteristics and parameters of the bottom stalk of ramie in harvesting period[J]. Journal of Huazhong Agricultural University, 2008, 27(3): 453-455. (in Chinese with English abstract)

[10] 蘇工兵,劉儉英,王樹才,等.苧麻莖稈木質部力學性能試驗[J].農業機械學報,2007,38(5):62-65.

Su Gongbing, Liu Jianying, Wang Shucai, et al. Study on mechanical properties of xylem of ramie stalk[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007, 38(5): 62-65. (in Chinese with English abstract)

[11] Cao Zhen, Jin Xin, Liao Qingxi. Experimental research on physical and mechanical parameters of matured bottom stalk of the reed for harvester design[J]. International Journal of Agricultural and Biological Engineering, 2011, 4(2): 36-42.

[12] 周楊,李顯旺,沈成,等.工業大麻莖稈力學模型的試驗分析[J].農業工程學報,2016,32(9):22-29.

Zhou Yang, Li Xianwang, Shen Cheng, et al. Experimental analysis on mechanical model of industrial hemp stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 22-29. (in English with Chinese abstract)

[13] 沈成,李顯旺,田昆鵬,等.苧麻莖稈力學模型的試驗分析[J].農業工程學報,2015,31(20):26-33.

Shen Cheng, Li Xianwang, Tian Kunpeng, et al. Experimental analysis on mechanical model of ramie stalk[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(20): 26-33. (in Chinese with English abstract)

[14] 沈成,陳巧敏,李顯旺,等.苧麻莖稈軸向壓縮力學試驗與分析[J].浙江農業學報,2016,28(4):688-692.

Shen Cheng, Chen Qiaomin, Li Xianwang, et al. Test and analysis of axial compressive mechanical properties for ramie stalk[J]. Acta Agriculturae Zhejiangensis, 2016, 28(4): 688-692. (in Chinese with English abstract)

[15] 高知輝.金屬鋸切圓鋸片的仿生設計[D].長春:吉林大學,2016.

Gao Zhihui. Bionic Design of Circular Saw Blade for Metal Cutting[D]. Changchun: Jilin University, 2016. (in Chinese with English abstract)

[16] Vincent J F, Mann D L. Systematic technology transfer from biology to engineering[J]. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2002, 360 (1791): 159-173.

[17] Junior W K, Candido H A, Marques A C, et al. Development of junction elements from study of the bionics[J]. Journal of Bionic Engineering, 2007, 4(1): 41-46.

[18] 王立新,高雅妍.農業機械領域的工程仿生研究概況與應用前景[J].河北科技大學學報,2014,35(4):309-317.

Wang Lixin, Gao Yayan. Research advance and development prospect of engineering bionics in agricultural machinery field[J]. Journal of Hebei University of Science and Technology, 2014, 35(4): 309-317. (in Chinese with English abstract)

[19] Qaisrani A R, Chen Bingcong, Ren Luquan. Modified and unsmoothed plow surfaces-a means to reduce plowing resistance[J]. International Agricultural Engineering Journal, 1992, 1(3): 115-124.

[20] Qaisrani A R, Tong Jin, Ren Luquan, et al. The effects of unsmoothed surfaces on soil adhesion and draft of bulldozing plates[J]. Transactions of the Chinese Society of AgriculturalEngineering, 1993, 9(1): 7-13.

[21] Soni P, Salokhe V M. Influence of dimensions of UHMW-PE protuberances on sliding resistance and normal adhesion of bangkok clay soil to biomimetic plates[J]. Journal of Bionic Engineering, 2006, 3(2): 63-71.

[22] Soni P, Salokhe V M, Nakashima H. Modification of a mouldboard plough surface using arrays of polyethylene protuberances[J]. Journal of Terramechanics, 2007, 44(6): 411-422.

[23] 張金波,佟金,馬云海.仿生減阻深松鏟設計與試驗[J].農業機械學報,2014,45(4):141-145.

Zhang Jinbo, Tong Jin, Ma Yunhai. Design and experiment of bionic anti-drag subsoiler[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(4): 141-145. (in Chinese with English abstract)

[24] 李默.基于螳螂前足結構特征的仿生切茬刀片設計[D].長春:吉林大學,2013.

Li Mo. Design of Bionic Stubble-cutting Blade Based on the Structure Characteristic of Praying Mantis’s Foreleg[D]. Changchun: Jinlin University, 2013.(in Chinese with English abstract)

[25] Li Mo, Chen Donghui, Zhang Shujun, et al. Biomimeitc design of a stubble-cutting disc using finite element analysis[J]. Journal of Bionic Engineering, 2013, 10(1): 118-127.

[26] Jia Honglei, Li Changying, Zhang Zhihong, et al. Design of bionic saw blade for corn stalk cutting[J]. Journal of Bionic Engineering, 2013, 10(4): 497-505.

[27] 李常營.留高茬式玉米收獲機切割部件的仿生設計及其切割機理[D].長春:吉林大學,2014.

Li Changying. Bionic Blade of Corn Harvester for Leaving High Stubble and Its Cutting Mechanism[D]. Changchun: Jinlin University, 2014. (in Chinese with English abstract)

[28] 王剛,賈洪雷,趙佳樂,等.玉米留高茬切割器的設計及留茬效果試驗[J].農業工程學報,2014,30(23):43-49.

Wang Gang, Jia Honglei, Zhao Jiale, et al. Design of corn high-stubble cutter and experiments of stubble retaining effects[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE) , 2014, 30(23): 43-49. (in Chinese with English abstract)

[29] 蔡小娜,黃大莊.中國主要天牛危害狀識別鑒定研究[J].中國森林病蟲,2009,28(6):37-40.

Cai Xiaona, Huang Dazhuang. Recognition and identification of damgae features of main longhorn beetles in china[J]. China’s Forest Diseases and Pests, 2009, 28(6): 37-40.(in Chinese with English abstract)

[30] 周琦.森林害蟲:天牛的危害和防治[J].黑龍江科學,2015,6(1):47-48.

Zhou Qi. Hazards and control the forest pests-beetles[J]. Heilongjiang Science, 2015, 6(1): 47-48.(in Chinese with English abstract)

[31] 劉鳳華,王新亮,劉濤,等.云斑天牛的危害及防治技術[J].安徽農業科學,2014,42(23):7814-7816.

Liu Fenghua, Wang Xinliang, Liu Tao, et al. Biological characters and control of batocera horsfieldi[J]. Journal of Anhui Agri.Sci, 2014, 42(23): 7814-7816. (in Chinese with English abstract)

[32] 于萬波.基于MATLAB的圖像處理[M].北京:清華大學出版社,2008.

Design and test of cutting blade of cannabis harvester based on longicorn bionic principle

Tian Kunpeng, Li Xianwang, Shen Cheng, Zhang Bin※, Huang Jicheng, Wang Jinguo, Zhou Yang
(Nanjing Reseach Institute for Agricultural Mechanization of Ministry of Agriculture, Nanjing 210014, China)

Cutting blade is one of the key parts of a cannabis harvester and the cutting performance of the blade directly determines the performance of the machine. Due to the current lack of special cutting blades for existing cannabis harvesters, rice and wheat harvester cutting blades have to be utilized instead. However, these cutting blades have problems associated with large cutting resistance, high energy consumption, and poor cutting quality. For these reasons, this study aimed to utilize the principle of bionics to develop a longicorn mouthparts palate for a bionic prototype. This was achieved by extracting the cutting tooth profile curve of longicorn mouthparts palate, instead of the ordinary rice and wheat harvester blade triangular tines, and thus designing the bionic cutting blade. Using a double-action blades testing system, which was composed of a self-developed double-action blades cutting device and a WDW-10 computer-controlled electronic universal testing machine, a single stalk cutting performance contrast test was carried out using the cannabis stalks of harvest time. Comparing the 2 types of blades’ cutting force -displacement curves can be seen that both of the curves could be divided into extrusion, cutting, and cutting out stages. In extrusion stage, due to the large pitch and sharp teeth of the bionic blade, the unit area of cannabis stalk suffered great stress, consequently strengthening the cutting ability of the bionic blade. While the teeth of ordinary blades were arranged closer, achieving the same cutting driving force, the unit area of cannabis stalk suffered less stress, thus, the blade showed more effect of compression on the stalk. In cutting stage, due to the unique arc tooth and tooth back groove structure of the bionic blade, the teeth edge mainly played a role of sliding cut, which can greatly reducing the cutting resistance during cutting. Secondly, the adjacent protrusions of the arc tooth boundary formed a wedge block structure, which resulted in the effect of splitting the transverse xylem instantly. In addition, the back groove of tooth played a role of accommodating the shred wooden material, which can also reduce the resistance of cutting. While, due to the close arrangement of the triangular teeth of ordinary blade, the sliding cut effect was poor and they had no capacity to accommodate the shred material. When cutting, the structure suffered from a blocking effect instead, which resulted in an increase of cutting resistance. In cutting out state, due to the bionic blade can cut more thoroughly, less uncut bark fiber and wood debris entered the two opposite blades, thus keeping the friction small, and the bionic blade force is closer to no-load driving force. Comparison of cutting stubbles of two types of blades can be seen that the stubbes cut by bionic blades is more flush than that by ordinary blades. The statistical average of both groups of test data showed that the single stalk maximum cutting force and the cutting energy consumption of bionic blade and ordinary blade were 442.6, 478.1 N and 2.16, 2.35 J, respectively. In comparison to an ordinary blade, the bionic blade achieved a reduction of the average maximum cutting force and cutting energy consumption by 7.4% and 8.0%, respectively. This showed that the bionic blade has a better performance of drag reduction and consumption reduction than the ordinary blade. The maximum cutting force of different blades was verified via F test, resulting in an F value of 15.49 at a significance level of P<0.01, which reveals that the blade type has a significant influence on the cutting force. Furthermore, the cutting energy consumption of different blades was also verified via F test, resulting in an F value of 5.735 at a significance level of P<0.05, which reveals that the blade type also has a significant influence on the cutting energy consumption of a single stalk.

cutting equipment; bionic; mechanization; cannabis harvester; longicorn palate; cutting force; cutting energy

10.11975/j.issn.1002-6819.2017.05.008

S225.5+9

A

1002-6819(2017)-05-0056-06

田昆鵬,李顯旺,沈 成,張 彬,黃繼承,王錦國,周 楊. 天牛仿生大麻收割機切割刀片設計與試驗[J]. 農業工程學報,2017,33(5):56-61.

10.11975/j.issn.1002-6819.2017.05.008 http://www.tcsae.org

Tian Kunpeng, Li Xianwang, Shen Cheng, Zhang Bin, Huang Jicheng, Wang Jinguo, Zhou Yang. Design and test of cutting blade of cannabis harvester based on longicorn bionic principle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 56-61. (in Chinese with English abstract)

doi:10.11975/j.issn.1002-6819.2017.05.008 http://www.tcsae.org

2016-06-14

2017-02-07

國家農業產業技術體系崗位任務(CARS-19-E22);國家“十二五”科技支撐計劃項目(2011BAD20B05-4);中國農業科學院科技創新工程項目(莖稈作物機械化收獲團隊)

田昆鵬,男,河南商丘人,助理研究員,主要從事莖稈類作物收獲裝備技術研究。南京 農業部南京農業機械化研究所,210014。Email:tiankp2005@163.com

※通信作者:張 彬,女,浙江東陽人,副研究員,主要從事農業裝備工程技術研究。南京 農業部南京農業機械化研究所,210014。

Email:xtsset@hotmail.com

主站蜘蛛池模板: 狠狠操夜夜爽| 热99精品视频| 中文字幕亚洲另类天堂| 国产福利2021最新在线观看| 欧美另类精品一区二区三区| 国产av剧情无码精品色午夜| 国产女同自拍视频| 91青青视频| 99久久精品久久久久久婷婷| 久久www视频| 精品无码一区二区三区在线视频| 国产美女在线观看| 日韩视频福利| 日韩一区精品视频一区二区| 香蕉eeww99国产在线观看| 广东一级毛片| 欧美高清国产| 高清色本在线www| 国产H片无码不卡在线视频| 国产成人8x视频一区二区| 欧美成人看片一区二区三区| 99在线视频免费| 色哟哟国产精品一区二区| 毛片手机在线看| 在线国产毛片| 亚洲色图另类| 亚洲欧美另类中文字幕| 国产成人av大片在线播放| 伊人激情久久综合中文字幕| 欧美区一区| 午夜啪啪网| 国产欧美日韩91| 伊人精品视频免费在线| 无码内射中文字幕岛国片| 欧美亚洲香蕉| 天天综合网亚洲网站| 亚洲欧美日韩中文字幕在线| 久草中文网| 国产玖玖玖精品视频| 亚洲无线一二三四区男男| 国产区在线观看视频| 欧美国产精品不卡在线观看| 欧美在线中文字幕| 国产精品成人观看视频国产| 3344在线观看无码| 国产成人精品视频一区二区电影 | 国产亚洲日韩av在线| 国产农村精品一级毛片视频| 国产成人综合亚洲欧洲色就色| 日韩欧美91| 四虎国产永久在线观看| 国产精品分类视频分类一区| 国产一级毛片高清完整视频版| 免费一级毛片完整版在线看| 免费观看亚洲人成网站| av大片在线无码免费| 国产精品刺激对白在线| 国产aaaaa一级毛片| 国产高清自拍视频| 极品国产一区二区三区| 国产乱人乱偷精品视频a人人澡| 99r在线精品视频在线播放| 九色免费视频| 国产网站一区二区三区| 亚洲Va中文字幕久久一区| 国产视频你懂得| 少妇精品网站| 欧美亚洲国产精品第一页| …亚洲 欧洲 另类 春色| 最新国产高清在线| 国产一级在线播放| 国产精品无码AV片在线观看播放| 黄片一区二区三区| 欧美日韩国产在线播放| 久久黄色免费电影| 欧美日韩国产精品va| 国产一级妓女av网站| 国产AV无码专区亚洲A∨毛片| 国产精品流白浆在线观看| 国产电话自拍伊人| 99精品国产自在现线观看| 国产精品任我爽爆在线播放6080|