馮蓓蓓



[摘要]在信息過載的網(wǎng)絡(luò)學習環(huán)境中,個性化推薦能夠幫助用戶有效獲取符合個人需求的網(wǎng)絡(luò)學習資源。文章針對網(wǎng)絡(luò)學習資源的特點,設(shè)計了基于協(xié)同過濾、深度神經(jīng)網(wǎng)絡(luò)推薦的個性化網(wǎng)絡(luò)學習推薦系統(tǒng),致力于提高學習資源系統(tǒng)的個性化程度與智能性,從一定程度上解決“信息過載”問題,滿足用戶對網(wǎng)絡(luò)學習資源的個性化需求。
[關(guān)鍵詞]網(wǎng)絡(luò)學習資源;個性化推薦;推薦系統(tǒng)
伴隨現(xiàn)代遠程教育及MOOC的快速發(fā)展,網(wǎng)絡(luò)學習資源日趨豐富。一方面,海量學習資源使學習者有了更多的選擇余地,可以根據(jù)個人的興趣愛好、知識結(jié)構(gòu)的積累,選擇更適合自己的學習資源。另一方面,網(wǎng)絡(luò)學習資源是異質(zhì)的,有文本、音頻、視頻等多種形式,學習者在紛繁復雜的學習資源中,并不總是能夠完全及時準確地發(fā)現(xiàn)自己想要的資源,這也使得很多網(wǎng)絡(luò)學習系統(tǒng)無法得到充分有效的應用。
網(wǎng)絡(luò)學習資源個性化推薦系統(tǒng)是一個基于REST架構(gòu)的分布式資源庫系統(tǒng)。主要包括管理員、用戶、學習資源。管理員可以創(chuàng)建、修改、刪除學習資源;用戶可以瀏覽、下載、評價和獲得推薦學習資源。用戶在利用傳統(tǒng)的類目、搜索學習資源的同時,系統(tǒng)還能夠根據(jù)用戶的個性化信息向用戶提供個性化的推薦。
1系統(tǒng)結(jié)構(gòu)
網(wǎng)絡(luò)學習資源個性化推薦系統(tǒng)的基本功能如下:
(1)用戶智能化管理:收集用戶的興趣偏好,根據(jù)學習資源的特征對用戶進行推薦。
(2)分類瀏覽:將網(wǎng)絡(luò)學習資源以傳統(tǒng)的類目和Tag方式加以組織,從而有利于信息的進一步挖掘。
(3)個性化檢索:依照用戶的檢索內(nèi)容和學習資源的匹配度,加入用戶的個性化的興趣偏好,向用戶反饋個性化的檢索結(jié)果。
(4)個性化推薦:構(gòu)建個性化推薦模型,基于協(xié)同過濾、知識庫等不同的推薦模型向用戶推薦學習資源。
根據(jù)以上分析,從應用角度設(shè)計和實現(xiàn)了推薦系統(tǒng)的體系結(jié)構(gòu),如圖1所示。前端開發(fā)工具采用ASPnet Web API,它是Microsoft的REST架構(gòu)平臺,基于REST的架構(gòu)能使應用程序獨立于操作系統(tǒng)和程序語言,方便地與移動設(shè)備、數(shù)據(jù)分析平臺等無縫銜接,同時也可以調(diào)用其他應用程序的功能。數(shù)據(jù)分析及推薦算法采用Python語言實現(xiàn)的sklearn機器學習模塊和TensorFlow實現(xiàn)的深度學習模塊。整個系統(tǒng)分為四大部分:前端用戶接口、推薦系統(tǒng)核心功能、學習資源管理系統(tǒng)和用戶數(shù)據(jù)處理系統(tǒng)。
2個性化推薦引擎
目前主流的推薦技術(shù)包括以下幾種:基于內(nèi)容的推薦、基于用戶統(tǒng)計信息的推薦、基于協(xié)同過濾的推薦、基于關(guān)聯(lián)規(guī)則的推薦以及基于知識庫的推薦?;谟脩?、物品的協(xié)同過濾算法是推薦系統(tǒng)中應用最廣泛、最成功的算法。協(xié)同過濾算法,通過分析用戶與物品間的關(guān)系,計算物品、用戶間的相似度,根據(jù)用戶過往的評價行為利用分類、聚類的手段向用戶提供推薦列表。
21用戶偏好分析
用戶偏好分析是個性化推薦準確性的關(guān)鍵,建立以用戶歷史行為為標準的用戶模型是做好用戶偏好分析的關(guān)鍵。結(jié)合用戶歷史行為和物品信息,可以得到用戶每種行為下的用戶偏好數(shù)據(jù),建立偏好的維度和偏好程度。
將各種行為的偏好數(shù)據(jù)合并,從而得到用戶在物品、類別、標簽等各個維度上的偏好程度。在對不同維度的數(shù)據(jù)合并計算時,應當考慮用戶對于不同行為類型的用戶偏好程度,從而賦予不同的權(quán)重。
利用機器學習中的Random Forest算法,在使用人工標記后的訓練數(shù)據(jù),經(jīng)過模型的訓練、測試,從而將用戶劃分到不同的群體。在處理用戶的偏好數(shù)據(jù)時,應當考慮時間因素的影響,根據(jù)不同的時間間隔,劃分成長期、中期、短期和實時四個時間維度,從而解決用戶因為時間的推移、興趣愛好發(fā)生變化產(chǎn)生的影響。
22協(xié)同過濾
協(xié)同過濾的推薦方法,主要利用用戶過去的行為或意見預測當前用戶對物品的可能喜好,可以推薦一些物品內(nèi)容上差異較大但用戶又感興趣的物品,以近鄰算法為主?;诮彽姆椒?,在數(shù)據(jù)預測中直接使用已有數(shù)據(jù)進行預測,將用戶的所有數(shù)據(jù)加載到內(nèi)存中進行運算。通常劃分為基于用戶的系統(tǒng)過濾和基于物品的協(xié)同過濾?;谟脩舻膮f(xié)同過濾是,獲取和當前用戶相似的用戶列表,將這些用戶喜歡的物品推薦給當前用戶;基于物品的協(xié)同過濾,獲取當前用戶偏好的物品列表,將和這些物品相似的物品加入到推薦的候選列表中。
23深度神經(jīng)網(wǎng)絡(luò)
“深度學習”(Deep Learning)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,于2006年由Hinton等人提出。含多隱層的多層感知機就是一種深度學習結(jié)構(gòu)。深度學習通過組合低層特征形成更加抽象的高層表示屬性類別或特征,以發(fā)現(xiàn)數(shù)據(jù)的分布式特征表示。比較常用的深度學習算法有,卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)、遞歸神經(jīng)網(wǎng)絡(luò)及LSTM長短時記憶等算法。
Tensor Flow是谷歌于2015年11月9日正式開源的深度學習計算框架。Tensor Flow使用數(shù)據(jù)流式圖來規(guī)劃計算流程,可以將計算映射到不同的硬件和操作平臺,大大簡化了真實場景中應用機器學習的難度。
本系統(tǒng)利用Tensor Flow平臺設(shè)計了兩個深度神經(jīng)網(wǎng)絡(luò):第一個深度神經(jīng)網(wǎng)絡(luò)用來生成候選學習資源列表;第二個深度神經(jīng)網(wǎng)絡(luò)用來對輸入的候選學習資源列表打分排名,以便將排名靠前的學習資源推薦給用戶。候選學習資源的列表并不完全依賴于第一個神經(jīng)網(wǎng)絡(luò)的結(jié)果,也可以使用其他來源產(chǎn)生的候選學習資源。
3結(jié)論
利用傳統(tǒng)的類目式導航和簡單的信息檢索手段,用戶很難在紛繁復雜的學習資源中準確地發(fā)現(xiàn)自己需要的學習資源,并且用戶之間無法共享有價值的學習資源。采用本文設(shè)計的模型,在幫助用戶快速獲取大量的有價值的學習資源的同時,還能夠根據(jù)其他用戶已經(jīng)獲取的學習經(jīng)驗來提高用戶的學習效率,這種個性化的推薦方式有助于提高用戶學習效率和學習資源的使用效率。
參考文獻:
[1]楊露基于協(xié)同過濾算法的鶴崗師專多媒體教學系統(tǒng)設(shè)計與實現(xiàn)[D].長春:吉林大學,2016
[2]裴艷基于學習分析的學習資源個性化推薦研究[D].西安:陜西師范大學,2015
[3]江周峰面向個性化學習資源共享的混合推薦系統(tǒng)的設(shè)計與實現(xiàn)[D].北京:北京郵電大學,2015
[4]應中運基于用戶情境的論壇個性化推薦模型研究[D].重慶:西南大學,2014
[5]胡小豐面向科研用戶的個性化推薦系統(tǒng)設(shè)計與實現(xiàn)[D].北京:中國農(nóng)業(yè)科學院,2013
[6]劉敏基于協(xié)同過濾技術(shù)的E-learning個性化推薦系統(tǒng)研究[D].天津:天津師范大學,2010
[基金項目]本文系安徽工業(yè)經(jīng)濟職業(yè)技術(shù)學院2014年院級質(zhì)量工程項目電子商務(wù)省級特色專業(yè)(項目編號:2014YTSZY01)和安徽省2015年省級質(zhì)量工程項目電子商務(wù)省級特色專業(yè)(項目編號:2015tszy066)階段性成果。