羅東升,朱玉麗,王 梅,胡小松,吳繼紅※
(1. 中國農業大學食品科學與營養工程學院,北京 100083;2. 國家果蔬加工工程技術研究中心,北京 100083;3. 農業部果蔬加工重點開放實驗室,北京 100083;4. 哈密職業技術學院,哈密 100875)
預處理對紅棗分段間歇微波耦合熱風干燥特性及品質的影響
羅東升1,2,3,朱玉麗1,2,3,王 梅4,胡小松1,2,3,吳繼紅1,2,3※
(1. 中國農業大學食品科學與營養工程學院,北京 100083;2. 國家果蔬加工工程技術研究中心,北京 100083;3. 農業部果蔬加工重點開放實驗室,北京 100083;4. 哈密職業技術學院,哈密 100875)
為探究分段間歇微波耦合熱風干燥紅棗最佳工藝,分析不同預處理對紅棗品質的影響。該文采用響應面法,優化出最佳干燥工藝為:第一段間歇比為4、水分轉換點為1g/g、第二段間歇比為6。此條件下,干燥時間為625.27 min,能耗為5 128 kJ,維生素C質量分數為419 mg/(100g),經驗證,模型預測誤差小于5%。基于最佳工藝,探究熱燙、油酸乙酯結合預凍和高壓二氧化碳3種預處理方式對紅棗干燥速率、單位耗能及品質的影響。結果顯示,油酸乙酯結合預凍處理組干燥時間最短(P<0.05)、能耗最低(P<0.05);高壓二氧化碳處理組干燥后維生素C、總酮、總酚質量分數,抗氧化能力均最高(P<0.05);熱燙預處理組褐變程度最低(P<0.05),組間色澤無明顯差異(P>0.05)。試驗證實,高壓二氧化碳聯合分段間歇微波耦合熱風干燥是一種高效干燥技術,能保證紅棗的營養品質,研究為該項技術的推廣提供基礎數據。
干燥;優化;品質控制;紅棗;預處理;分段間歇微波耦合熱風干燥
羅東升,朱玉麗,王 梅,胡小松,吳繼紅. 預處理對紅棗分段間歇微波耦合熱風干燥特性及品質的影響[J]. 農業工程學報,2017,33(7):261-267.doi:10.11975/j.issn.1002-6819.2017.07.034 http://www.tcsae.org
Luo Dongsheng, Zhu Yuli, Wang Mei, Hu Xiaosong, Wu Jihong. Effects of pretreatment on characteristics and qualities of Chinese jujube drying by segmented intermittent microwave coupled with hot air[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 261-267. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.07.034 http://www.tcsae.org
紅棗(Zizyphus jujubaMill.),俗名大棗、干棗等,是鼠李科,棗屬的果實,具有極高的營養與醫藥價值[1]。中國是世界上唯一的紅棗出口國,種植面積達100多萬hm2,年產量為450萬t,占世界總產量的99%,具有極大的商業價值[2]。由于鮮棗含水率高,采收后極易褐變、霉變而喪失食用價值,嚴重制約紅棗產業的發展[3]。因此,提升紅棗干燥技術對產業發展起著重要的推動作用。
微波干燥具有高效、衛生等優點,廣泛應用于紅棗干燥。但常規的連續或間歇微波干燥,會因功率密度過大引起“熱點”或焦糊現象。因此,新型聯合干燥技術已被開發[4-5],聯合干燥過程中熱風和低功率微波交替進行,可降低“熱點”和焦糊概率,極大地提高干燥品質。但熱風干燥效率低,使其推廣受到一定限制。該文引入分段間歇微波耦合熱風干燥(segmented intermittent microwave coupled with hot air drying ,IM&AD)技術,通過調整不同階段微波間歇比,控制樣品功率密度,避免焦糊。同時,微波場與熱風場同時進行,樣品在熱風輔助下,增強物料內外的傳質與傳熱能力,大幅度提高干燥效率。
另外,紅棗表皮特殊的角質、蠟質等結構,阻礙水分蒸發,延長干燥時間,降低干燥品質[6]。干燥預處理可以改變紅棗表皮結構,提高干燥效率與品質,常見的預處理技術包括熱燙、冷凍、化學浸泡、高壓等[7-8]。其中高壓二氧化碳是一種兼具殺菌與鈍酶特性的新型預處理技術,曾用于改善櫻桃番茄的干燥品質[9]。該文將其應用于紅棗干燥預處理,解決紅棗特殊表皮結構引起的干燥難題。
該研究以分段間歇微波耦合熱風干燥技術為主體,探究紅棗干燥最佳的工藝條件及不同的預處理方式對干燥能效及紅棗品質的影響,為工業上快速、優質干燥紅棗提供參考。
1.1 原 料
金絲小棗,大小均一,無機械損傷、病蟲害的優質全紅果,種植于北京市門頭溝區。
1.2 試驗試劑
甲醇,氫氧化鈉,偏磷酸,醋酸鈉,沒食子酸,氯化鐵,福林酚,分析純,北京化學試劑公司;乙腈,甲醇,色譜純,美國MREDA公司;1,1-二苯基-2-三硝基苯肼,維生素C,水溶性維生素E(Trolox),標準品(純度≥99.9%),美國Sigma-Aldrich公司。
1.3 儀器與設備
高壓 CO2設備,CAU-HPCD-1(專利號:ZL200520132590.X),中國農業大學自主研發;間歇微波耦合熱風干燥設備,最大微波功率700W,最高熱風溫度 60℃,最高風速 5 m/s,中國農業大學自主研發;CR21GIII型高速冷凍離心機,日本 HITACHI公司;LC-20A型高效液相色譜儀,日本 SHIMADUZU公司;DZF-6050型真空干制箱,法國Veolia Water Technologies公司;CM-3700d型分光測色儀,日本KONICA MINOLTA公司。
1.4 試驗方法
1.4.1 分段間歇微波耦合熱風干燥工藝優化
取200 g鮮棗(干基含水率為1.75 g/g),分散于微波爐轉盤,避免“尖角效應”[10],紅棗微波功率密度為2 W/g。當紅棗含水率降至0.2 g/g時,停止干燥。含水率W(g/g)計算公式如下[11]
式中M鮮棗表示鮮棗質量,g;M干基表示干基質量,g。
參照 Fang等[12]方法,微波功率 60 W,熱風溫度45 ℃,風速2 m/s,以間歇比1、水分轉換點(以含水率表示)及間歇比 2為影響因素,以干燥時間、能耗、維生素C質量分數為響應值設計優化試驗。根據預試驗結果,設計試驗因素水平編碼見表1。根據Estürk等[13]的報道,間歇比表達式:(ton+toff)/ton,ton為微波開啟時間,s,toff為微波停止時間,s。

表1 響應面試驗因素與水平Table1 Factors and levels of response surface
1.4.2 干燥預處理方法
高壓二氧化碳處理(high pressure carbon dioxide,HPCD)參照郭蘊涵等[14]條件適當調整:將200 g鮮棗置于20 ℃、5 MPa的高壓CO2反應釜中,保壓20 min,卸壓后,取出待用。
熱燙處理參照Ade-Omowaye等[15]條件適當調整:取200 g鮮棗,在沸水中浸燙90 s,取出瀝干,放至25 ℃,待用。
油酸乙酯結合預凍處理(alkaline ethyl oleate,AEEO+預凍)參照Zhu等[16]條件適當調整:取200 g鮮棗,在35℃的油酸乙酯中浸泡10 min。清洗表面油酯,在?18 ℃下凍藏12 h。25 ℃解凍,待用。
1.4.3 干燥特性測定
以紅棗干燥速率變化反映干燥特性內容,包括不同預處理方式對干燥速率的影響及物料含水率對干燥速率的影響。干燥速率v(g/(g·s))的計算公式如下

式中t1,t2分別表示干燥的某個時刻,s;Q1與Q2分別表示t1與t2時刻的紅棗干基含水率,g/g。
1.4.4 干燥能耗測定
總能耗表示200 g鮮棗干燥至含水率為0.2 g/g時消耗的電能,單位為kJ。
單位能耗表示蒸發單位質量水分所耗的電能[17],計算公式

式中N為單位能耗,kJ/g;E為總能耗,kJ;G為干燥過程中去除水分的質量,g。
1.4.5 干燥品質測定
褐變度:將棗樣(干棗3 g,鮮棗5 g)與體積分數95%的乙醇混合勻漿,定容至50 mL。取10 mL離心后上清液與10 mL 95 %的乙醇混合,以420 nm處吸光值表示褐變度[18]。
顏色變化:將棗樣(干棗9 g,鮮棗15 g)與蒸餾水冰浴下混合勻漿,定容至30 mL。參照Zhao等[19]方法分別測定漿液的L*(亮度),a*(紅綠色度),b*(黃藍色度)及總色差ΔE*值。
維生素C質量分數:將棗樣(干棗3 g,鮮棗5 g)與質量分數 2.5%的偏磷酸冰浴下混合勻漿,定容至50 mL。參照Liu等[20]方法測定離心后上清液中維生素C質量分數,以 mg/(100g)計,維生素 C標準曲線為y=34 137x?101 345,R2=0.998 6。
總酮和總酚質量分數:將棗樣(干棗3 g,鮮棗5 g)與體積分數80%的甲醇混合勻漿,定容至25 mL。在20 ℃下超聲30 min,冷凍離心,取上清液。采用Folin-Ciocalteu比色法測定總酚質量分數[21],結果以沒食子酸當量表示mg/g,其中沒食子酸標準曲線為y=2.134x+0.0401,R2=0.997 8;采用NaNO2-Al(NO3)3-NaOH法測定總酮質量分數[22],結果以蘆丁當量表示mg/g,其中蘆丁標準曲線為y=0.004 3x?0.054 7,R2=0.993 8。
抗氧化能力:樣液制備同總酮測定,采用鐵氰化鉀法(ferricyanide reducing power,FRAP)與自由基清除法(2,2-diphenyl-1-picrylhydrazyl,DPPH)表征紅棗抗氧化能力[23];FRAP測定結果以維生素C質量分數表示mg/g,其中維生素C標準曲線為y=0.005 7x+0.032 3,R2=0.995 1;DPPH測定結果以Trolox質量分數表示mg/g,其中Trolox標準曲線為y=0.006 9x+0.023,R2=0.9963。
1.5 數據統計分析
以上試驗均重復3次。響應面分析采用Design expert v8.0.6軟件;差異性分析采用 SPSS v17.0軟件,其中P>0.05時,表示差異不顯著;P<0.05時,表示差異顯著;采用Origin v8.5軟件進行數據處理和繪圖。
2.1 響應面優化結果與分析
根據響應面軟件中Box-Benhnken模型的中心組合原理設計試驗,并對試驗結果進行方差分析,結果如表2。
利用Design Expert 軟件對數據進行多元回歸擬合,去除非顯著項,獲得響應值干燥時間(Y1,min),干燥能耗(Y2,kJ)及維生素C質量分數(Y3,mg/(100 g))與影響因子間歇比1(X1),水分轉換點(X2,g/g)及間歇比2(X3)間的簡化二次多項式回歸模型如下


表2 回歸模型方差分析Table2 Variance analysis for the regression model
由表2方差分析可知,回歸模型(4),(5)和(6)均顯著(P<0.01),失擬項均不顯著(P>0.05),決定系數均大于 0.96,表明模型可靠,誤差小,實測值和預測值高度相關,3個模型能夠準確地預測結果變化。由表2顯著性分析可知,3個模型中一次項均顯著(P<0.05),表明間歇比1(X1),水分轉換點(X2),間歇比2(X3)對干燥時間(Y1),干燥能耗(Y2)及維生素C質量分數(Y3)影響顯著,其影響強度順序為X3>X2>X1。為保證Y1和Y2最小,同時Y3最大, 3個指標的權重認為同等重要,經響應面軟件優化后,得出最佳工藝組合條件:X1為 4 (5 s/15 s),X2為1g/g,X3為6(5 s/25 s),此時Y1為623 min,Y2為5 148 kJ,Y3為425 mg/(100g)。經試驗驗證,所得Y1為 625.27 min,Y2為 5 128 kJ,Y3為419 mg/(100 g),與預測值誤差均小于5%,說明響應面優化最佳工藝參數可靠,能夠應用到預處理試驗。
2.2 預處理方式對干燥特性的影響
由圖1a可知,在干燥100 min內,無處理組和預處理組間的干燥速率差異不顯著(P>0.05)。因為干燥初期,紅棗內水分充足,利于吸收微波能促進蒸發,同時劇烈蒸發導致紅棗內外形成的巨大壓差與溫差,也有助于水分散失。此時,表皮結構對水分散失的阻礙作用較小,各組干燥速率相近。在干燥100 min后,隨著紅棗內水分減少及間歇比增大,能效轉化及供給效率降低,水分蒸發動力減小,紅棗表皮結構阻礙能力相對增強,組間干燥速率差異顯著(P<0.05)。預處理組的干燥速率均大于無處理組,且組間差異明顯,表明預處理技術,能夠改變紅棗表皮特殊結構,提高干燥速率,但由于作用機理不同[24-27],對干燥后期速率的影響程度不同。圖1b顯示,干燥速率先上升后下降,中間接近恒速。干燥速率上升是因為樣品內水分和熱量在間歇期重新分配,有利于提升干燥速率[28]。恒速階段是由于紅棗內部水分充足,能夠快速平衡紅棗表面蒸發水分[29]。當紅棗含水率降至1.0 g/g時,干燥速率下降,原因包括兩方面:微波間歇比增大與含水率降低,水分蒸發所需能量減少;組織內多糖、蛋白質等含親水性大分子物質以及細胞失水形成巨大的滲透壓阻礙水分向表皮擴散[21]。
2.3 預處理方式對干燥能耗的影響
由圖2可知,在含水率>1 g/g時,紅棗單位能耗非常接近(P>0.05)。因為干燥初期各組紅棗含水率均很高,能耗主要用于水分蒸發,此時組間差異并不顯著(P>0.05)。在干燥后期,單位能耗迅速上升,組間差異逐漸明顯。能耗上升的原因與上述干燥速率下降原因相似,主要由于能效轉化與供給效率降低及親水性大分子組分與細胞高滲透壓的綜合作用[21]。預處理組能耗均低于無處理組,以AEEO+預凍組單位能耗最低(P<0.05)。因為預處理能夠破壞紅棗表皮特殊結構,增強細胞通透性,減小傳質阻力,利于水分擴散,同時AEEO+預凍處理可能對紅棗表皮結構破壞最嚴重,這與干燥速率變化趨勢相符。

圖1 預處理方式對紅棗含水率和干燥速率的影響Fig.1 Effect of different pretreatments on moisture content and drying rate of Chinese jujube

圖2 紅棗干燥單位能耗的變化Fig.2 Drying unit energy consumption of Chinese jujube
2.4 預處理方式對紅棗品質的影響
2.4.1 預處理方式對褐變度的影響
紅棗富含多酚、多糖、氨基酸、維生素C等成分,在酶與高溫的作用下,易發生酶促及非酶褐變[30]。由表3可知,鮮棗出現褐變,表明發生了酶促褐變。干燥組褐變度顯著高于鮮棗(P<0.05),表明除了酶促褐變,在干燥過程中仍會發生非酶褐變。預處理組褐變度均低于無處理組,且組間差異顯著(P<0.05),因為預處理可以提高干燥速率,減少紅棗熱加工時間,降低酶促褐變程度,但不同預處理對紅棗干燥速率提升能力不同,各組間褐變差異明顯,表明褐變與干燥時間密切相關。熱燙組干燥時間較HPCD和AEEO+預凍組長,褐變度卻最低,可能由于熱燙抑制了酶促褐變,而高壓和冷凍破壞膜結構,引起酶與底物接觸,加快酶促褐變[31]。
2.4.2 預處理方式對顏色的影響
由表3可知,干燥組亮度(L*值)低于鮮樣組,預處理組亮度顯著高于無處理組(P<0.05)。這表明干燥中的褐變反應能使紅棗色澤變暗,且干燥時間越長色澤越暗。預處理組間亮度差異并不明顯(P>0.05),表明亮度變化與上述褐變度相比,與干燥時間的關聯性較低。干燥后,紅色強度(a*值)顯著高于鮮樣(P<0.05),并且干燥組間差異明顯(P<0.05)。這可能由于干燥過程中,黃酮類紅色素發生熱氧化,形成紅色強度更高的聚合物[32],且氧化程度與干燥時間密切相關。干燥后紅棗色澤(?E值)均發生變化[33],預處理組與無處理組間差異明顯(P<0.05),但預處理組間變化不明顯(P>0.05),表明干燥時間,氧化及褐變反應對紅棗色澤有一定的影響,但程度并不強烈。
2.4.3 預處理方式對維生素C質量分數的影響
由表3可知,與鮮棗相比,干燥處理后維生素C質量分數下降超過80%。其中,HPCD組維生素C質量分數最高,AEEO+預凍組最低。因為HPCD處理會使二氧化碳進入細胞,酸化細胞環境,增強維生素C的穩定性,減少氧化損失[34]。AEEO+預凍處理中堿性油脂和凍融都會破壞細胞壁膜結構,導致維生素C大量流失[35]。盡管熱燙處理會導致部分細胞膜破壞,但與直接干燥及HPCD處理組相比,維生素C質量分數并無顯著性差異(P>0.05)。這表明,它們維生素C質量分數下降的主要因素是氧化降解,流失較少。根據維生素C的流失程度,可以推測,在不同的預處理方式中,AEEO+預凍法對細胞結構破壞最嚴重,這與干燥動力學和能耗方面研究相呼應。
2.4.4 預處理方式對總酮和總酚質量分數的影響
根據表 3顯示,干燥后,紅棗中總酮和總酚的質量分數大幅下降。其中HPCD組內的總酮和總酚質量分數最高(P<0.05),因為熱燙、油酸乙酯與冷凍在預處理過程中會破壞紅棗膜結構,導致酮類和酚類氧化降解、或流失[36-37],而HPCD處理可以降低細胞內pH值,提高酮類和酚類熱穩定性[38-39]。熱燙及AEEO+預凍組和無處理相比,盡管有部分內容物流失,但酮類質量分數仍較高,酚類質量分數差異不明顯(P>0.05)。這表明,熱燙流失的酮類和酚類比氧化或高溫降解量低很多,并且酚類在干燥完成前已經降到最低值。
2.4.5 預處理方式對抗氧化性的影響
如表3所示,紅棗干燥處理后,HPCD組抗氧化能力最高,無處理組最低。這與干燥后各組中總酮、總酚質量分數的趨勢非常接近,尤其是總酚質量分數。表明紅棗的抗氧化能力與總酮,特別是總酚質量分數密切相關。另外紅棗中含有豐富的維生素C、維生素E及色素等抗氧化成分[40],會在酮、酚的基礎上增強紅棗的抗氧化能力。經干燥處理后紅棗的抗氧化能力(FRAP與DPPH自由基清除力)均下降,可能由于干燥過程中上述抗氧化成分的氧化、熱降解及流失造成。

表3 不同預處理方式對紅棗品質的影響Table3 Effects of different pretreatments on quality of Chinese jujube
經響應面優化出分段間歇微波耦合熱風干燥最佳工藝條件為:間歇比1為4(5 s/15 s)、水分轉換點為1 g/g、第二段間歇比為 6(5 s/25 s),此時干燥時間最短為625.27 min,能耗最低為5 128 kJ,維生素C保留最多為419 mg/(100 g),經驗證,模型預測誤差在<5%,結果非常可靠。
采用熱燙、高壓二氧化碳(HPCD)及油酸乙酯(AEEO)+冷凍的預處理方式聯合最佳干燥工藝,比較不同預處理方式對紅棗干燥速率、干燥能耗以及品質的影響。研究發現,AEEO+預凍處理后樣品的干燥速率最高(P<0.05)、能耗最低(P<0.05),但由于內容物(維生素C與酚類、酮類)流失及氧化,干燥后紅棗品質較差;HPCD處理能穩定紅棗內維生素C、酚類及酮類等成分,因此相對其他預處理組,該組內營養成分保留較多并且抗氧化性較強(P<0.05),品質較高(P<0.05)。熱燙處理后紅棗干燥速率及能耗較高(P<0.05),且干燥后紅棗品質較差(P<0.05),但熱燙處理可以減輕干燥后紅棗褐變程度。綜上,盡管AEEO+預凍處理后紅棗干燥速率高,干燥能耗低,但是AEEO+預凍處理樣品時間較長。綜合考慮干燥過程與預處理過程,HPCD可作為一種高品質紅棗干燥預處理技術。
[1] Fang S Z, Wang Z F, Hu X S, et al. Hot-air drying of whole fruit Chinese jujube (Zizyphus jujubeMiller): physicochemical properties of dried products[J]. Food Science and Technology, 2009, 44(9): 1415-1421.
[2] 閆忠心,魯周民,劉坤,等. 干制條件對紅棗香氣品質的影響[J]. 農業工程學報,2011,27(1):389-392. Yan Zhongxin, Lu Zhoumin, Liu Kun, et al. Effects of drying conditions on Chinese jujube aroma components[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(1): 389-392. (in Chinese with English abstract)
[3] 于靜靜,畢金峰,丁媛媛. 不同干燥方式對紅棗品質特性的影響[J]. 現代食品科技,2011,27(6):610-614. Yu Jingjing, Bi Jinfeng, Ding Yuanyuan. Effect of drying treatment methods on the quality properties of Red Jujube[J]. Modern Food Science and Technology, 2011, 27(6): 610-614. (in Chinese with English abstract)
[4] Zielinska M, Sadowskia P, B?aszczak W. Combined hot air convective drying and microwave-vacuum drying of blueberries (Vaccinium corymbosumL.): Drying kinetics and quality characteristics[J]. Drying Technology, 2016, 34(16): 665-684.
[5] 劉小丹,張淑娟,賀虎蘭,等. 紅棗微波-熱風聯合干燥特性及對其品質的影響[J]. 農業工程學報,2012,28(24):280-286. Liu Xiaodan, Zhang Shujuan, He Hulan, et al. Drying characteristics and its effects on quality of jujube treated by combined microwave-hot-air drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 280-286. (in Chinese with English abstract)
[6] 劉聰,海妮,張英. 紅棗不同部位中有效成分含量的比較研究[J]. 現代食品科技,2014,30(3):258-261. Liu Cong, Hai Ni, Zhang Ying. The content variation of phytochemicals in different parts of Chinese jujube from different cultivars[J]. Modern Food Science and Technology, 2014, 30(3): 258-261. (in Chinese with English abstract)
[7] 于靜靜,馬濤,畢金峰,等. 冬棗變溫壓差膨化干燥預處理研究[J]. 食品與機械,2010,26(5):144-147. Yu Jingjing, Mao Tao, Bi Jinfeng, et al. Explosion puffing drying pretreatment on jujube at variable temperature and pressure[J]. Food and Machinery, 2010, 26(5): 144-147. (in Chinese with English abstract)
[8] Anetr J, Timothyj M, Larysap B, et al. Accelerated drying of button mushrooms, Brussels sproutsand cauliflower by applying power ultrasound and its rehydration properties[J]. Journal of Food Engineering, 2007, 81(3): 88-97.
[9] 龍婉蓉,郭蘊涵,趙翠萍,等. 高密度CO2預處理對櫻桃番茄干燥的影響[J]. 食品工業科技,2012,33(4):387-390. Long Wanrong, Guo Yunhan, Zhao Cuiping, et al. Effect of dense phase carbon dioxide pretreatment on drying cherry tomato[J]. Science and Technology of Food Industry, 2012, 33(4): 387-390. (in Chinese with English abstract)
[10] Clark D E, Sutton W H. Microwave processing of materials[J]. Annual Review of Materials Science, 1996, 26(1): 299-331.
[11] GB 5009.3-2010. 食品中水分的測定[S].
[12] Fang S Z, Wang Z F, Hu X S, et al. Energy requirement and quality aspects of Chinese jujube (Zizyphus jujubaMiller) in hot air drying followed by microwave drying[J]. Journal of Food Process Engineering, 2011, 34(2): 491-510.
[13] Estürk O, Soysal Y. Drying properties and quality parameters of dill dried with intermittent and continuous microwaveconvective air treatments[J]. Journal of Agricultural Sciences, 2010, 16(1): 26-36.
[14] 郭蘊涵,汪政富,趙翠萍,等. 高壓二氧化碳浸漬速凍胡蘿卜片工藝及產品品質的研究[J]. 食品工業科技,2012,33(16):240-245. Guo Yunhan, Wang Zhengfu, Zhao Cuiping, et al. Study on high pressure carbonic maceration(HPCM) freezing process and quality of carrot slices[J]. Science and Technology of Food Industry, 2012, 33(16): 240-245. (in Chinese with English abstract)
[15] Ade-Omowaye B I O, Rastogi N K, Angersbach A, et al. Effects of high hydrostatic pressure or high intensity electrical field pulse pre-treatment on dehydration characteristics of red paprika[J]. Innovative Food Science & Emerging Technologies, 2001, 2(1): 1-7.
[16] Zhu B M, Wen X S, Wei G D. Effect of pre-treatments on drying characteristics of Chinese jujube (Zizyphus jujubaMiller)[J]. International Journal of Agricultural and Biological Engineering, 2014, 7(1): 94-102.
[17] 陳健凱,林河通,林藝芬,等. 基于品質和能耗的杏鮑菇微波真空干燥工藝參數優化[J]. 農業工程學報,2014,30(3):277-284. Chen Jiankai, Lin Hetong, Lin Yifen, et al. Optimized technology ofPleurotus eryngiiby microwave-vacuum drying based on quality and energy consumption[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 277-284. (in Chinese with English abstract)
[18] Roig M G, Bello J F, Rivera Z S, et al. Studies on the occurrence of non-enzymatic browning during storage of citrus juice[J]. Food Research International, 1999, 32(9): 609-619.
[19] Zhao D, An K, Ding S, et al. Two-stage intermittent microwave coupled with hot-air drying of carrot slices: Drying kinetics and physical quality[J]. Food and Bioprocess Technology, 2014, 7(8): 2308-2318.
[20] Liu H, Cao J, Jiang W. Evaluation and comparison of vitamin C, phenolic compounds, antioxidant properties and metal chelating activity of pulp and peel from selected peach cultivars[J]. Lebensmittel-Wissenschaft und Technologie -Food Science and Technology, 2015, 63(2): 1042-1048.
[21] Sarsavadia P N. Development of a solar-assisted dryer and evaluation of energy requirement for the drying of onion[J]. Renewable Energy, 2007, 32(15): 2529-2547.
[22] Kou X, Chen Q, Li X, et al. Quantitative assessment of bioactive compounds and the antioxidant activity of 15 jujube cultivars[J]. Food Chemistry, 2015, 173: 1037-1044.
[23] Zhang H, Jiang L, Ye S, et al. Systematic evaluation of antioxidant capacities of the ethanolic extract of different tissues of jujube (Ziziphus jujubaMill.) from China[J]. Food and Chemical Toxicology, 2010, 48(6): 1461-1465.
[24] Doymaz I, Ismail O. Drying characteristics of sweet cherry[J]. Food and Bioproducts Processing, 2011, 89(1): 31-38.
[25] Arévalo-Pinedo A, Murr F E X. Influence of pre-treatments on the drying kinetics during vacuum drying of carrot and pumpkin[J]. Journal of Food Engineering, 2007, 80(1): 152-156.
[26] Doymaz I. Effect of citric acid and blanching pre-treatments on drying and rehydration of Amasya red apples[J]. Food and Bioproducts Processing, 2010, 88(2): 124-132.
[27] Damar S, Balaban M O. Review of dense phase CO2technology: microbial and enzyme inactivation, and effects on food quality[J]. Journal of Food Science, 2006, 71(1): R1-R11.
[28] Kumar C, Karim M A, Joardder M U H. Intermittent drying of food products: A critical review[J]. Journal of Food Engineering, 2014, 121: 48-57.
[29] Arévalo-Pinedo A, Murr F E X. Influence of pre-treatments on the drying kinetics during vacuum drying of carrot and pumpkin[J]. Journal of Food Engineering, 2007, 80(1): 152-156.
[30] López J, Uribe E, Vega-Gálvez A, et al. Effect of air temperature on drying kinetics, vitamin C, antioxidant activity, total phenolic content, non-enzymatic browning and firmness of blueberries variety O Neil[J]. Food and Bioprocess Technology, 2010, 3(5): 772-777.
[31] Butz P, Koller W, Tauscher B, et al. Ultra-high pressure processing of onions: Chemical and sensory changes[J]. LWT-Food Science and Technology, 1994, 27(5): 463-467.
[32] 吳宇寬,劉章武. 紅棗紅色素提取方法的優化研究[J]. 現代食品科技,2008,24(3):265-267. Wu Yukuan, Liu Zhangwu. Optimization of red pigment extraction from jujube[J]. Modern Food Science and Technology, 2008, 24(3): 265-267. (in Chinese with English abstract)
[33] Krapfenbauer G, Kinner M, G?ssinger M, et al. Effect of thermal treatment on the quality of cloudy apple juice[J]. Journal of Agricultural and Food Chemistry, 2006, 54(15): 5453-5460.
[34] Verbeyst L, Bogaerts R, Van der Plancken I, et al. Modelling of vitamin C degradation during thermal and high-pressure treatments of red fruit[J]. Food and Bioprocess Technology, 2013, 6(4): 1015-1023.
[35] Ade-Omowaye B I O, Taiwo K A, Eshtiaghi N M, et al. Comparative evaluation of the effects of pulsed electric field and freezing on cell membrane permeabilisation and mass transfer during dehydration of red bell peppers[J]. Innovative Food Science & Emerging Technologies, 2003, 4(2): 177-188.
[36] Ungar Y, Osundahunsi O F, Shimoni E. Thermal stability of genistein and daidzein and its effect on their antioxidant activity[J]. Journal of Agricultural and Food Chemistry, 2003, 51(15): 4394-4399.
[37] Meng J F, Fang Y L, Qin M Y, et al. Varietal differences among the phenolic profiles and antioxidant properties offour cultivars of spine grape (Vitis davidiiFoex) in Chongyi County (China)[J]. Food Chemistry, 2012, 134(4): 2049-2056.
[38] Liu Y, Chen H B, Zhao Y Y, et al. Quantification and stability studies on the flavonoids of Radix Hedysari[J].Journal of Agricultural and Food Chemistry, 2006, 54(18): 6634-6639.
[39] Chen J, Sun H, Wang Y, et al. Stability of apple polyphenols as a function of temperature and pH[J]. International Journal of Food Properties, 2014, 17(8): 1742-1749.
[40] Kamiloglu ?, Ercisli S, Sengül M, et al. Total phenolics and antioxidant activity of jujube (Zizyphus jujubeMill.) genotypes selected from Turkey[J]. African Journal of Biotechnology, 2009, 8(2): 303-307.
Effects of pretreatment on characteristics and qualities of Chinese jujube drying by segmented intermittent microwave coupled with hot air
Luo Dongsheng1,2,3, Zhu Yuli1,2,3, Wang Mei4, Hu Xiaosong1,2,3, Wu Jihong1,2,3※
(1.College of Food Science & Nutritional Engineering, China Agricultural University,Beijing100083,China; 2.National Engineering & Technology Research Centre for Fruits & Vegetable Processing,Beijing100083,China; 3.Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture,Beijing100083,China; 4.Hami Vocational and Technical College,Hami100875,China)
This research was aimed to explore the optimal drying process of Chinese jujube by segmented intermittent microwave coupled with hot air drying (IM&AD) and to study the influence of different drying pretreatment technologies on drying rate, unit energy consumption and quality of jujube. The drying pretreatment technologies included dipping in alkaline emulsion ethyl oleate solution followed by slow freezing at -18 ℃ (AEEO + freeing), high pressure carbon dioxide (HPCD), and hot water blanching (HWB). Firstly, to obtain the best drying process, intermittent ratio in the first drying stage (IR1), transition point in moisture content between the 2 stages of drying (TPMC), and intermittent ratio in the second drying stage (IR2) were set as the independent variables, and the drying time, unit energy consumption and vitamin C content after drying were set as the dependent variables. According to central composite design of the response surface technology, the obtained optimal process parameters were IR1 of 4 (the ratio of runtime to stand-by time of microwave oven was 5 s : 15 s), TPMC of 1, and IR2 of 6 (5 s : 25 s). On this condition, the drying time was the shortest (625.27 min), the unit energy consumption was the minimum (5 128 kJ) and the vitamin C content after drying was the maximum (419 mg/(100 g)). Then, to know the effect of drying pretreatment technologies on quality, Chinese jujube samples were dried respectively by 3 pretreatment technologies combined with the best drying process. The results implied that the special epidermis structure of Chinese jujube may be damaged during drying pretreatments, and especially the method of AEEO + freeing led to the moisture in Chinese jujube much more easily diffused and evaporated. So the drying rate was obviously improved and the energy consumption was reduced. Correspondingly, with regard to drying rate, the AEEO + freeing groups were the maximum, followed by the HPCD groups and the HWB groups, and the control groups were the minimum. The unit energy consumption was different: The AEEO + freeing groups were the minimum and the HWB groups were the maximum. There were rich amino acids, saccharides, vitamin C and polyphenols in Chinese jujube. So the browning occurred easily during pretreatment and drying process including enzymatic browning and non-enzymatic browning. The results showed that the HWB groups could inhibit enzyme activity and reduce the enzymatic browning degree, while the AEEO + freeing and HPCD groups would enhance enzymatic browning degree by breaking the cell membrane. So the browning degree of HWB groups was the minimum (P<0.05). In addition, a closely positive correlation was observed between the browning and drying time. The brightness of Chinese jujube changed obviously after drying process compared with the control group, but there were no significant differences between the 3 pretreatment groups (P>0.05). The red was the characteristic color of Chinese jujube, and it became darker with drying time continuing due to oxidation reaction. The HPCD pretreatment resulted in the highest vitamin C content, total flavonoids and phenolics retention, and oxidation resistance value. It was mainly due to the acidic condition provided by carbon dioxide in HPCD, which could make vitamin C, flavonoids and phenolics more stable than others. Meanwhile, these components had a potent antioxidant activity, so the HPCD groups had a stronger antioxidant ability. The results show that the IM&AD combined with the HPCD is advanced technology to dry Chinese jujube, and the data in this study can promote this technology to be applied widely.
drying, optimization; quality control; Chinese jujube; pretreatment; segmented intermittent microwave coupled with hot air drying
10.11975/j.issn.1002-6819.2017.07.034
TS255.36
A
1002-6819(2017)-07-0261-07
2016-08-30
2017-03-27
國家科技支撐計劃課題(2012BAD36B07)
羅東升,博士生,主要從事果蔬加工、食品風味化學方面研究。北京 中國農業大學食品科學與營養工程學院,100083。
Email:ldsxnsp@163.com
※通信作者:吳繼紅,教授,博士,博士生導師,主要從事食品非熱加工,食品風味化學、食品質量控制方面研究。北京 中國農業大學食品科學與營養工程學院,100083。
Email:wjhcau@hotmail.com